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Abstract: This study explores the evolving trends and research issues in the field of drone-assisted
multimodal logistics over the past two decades. By employing various text-mining techniques on
related research publications, we identify the most frequently investigated topics and research issues
within this domain. Specifically, we utilize titles, abstracts, and keywords from the collected studies
to perform both Latent Dirichlet Allocation techniques and Term Frequency-Inverse Document
Frequency analysis, which help in identifying latent topics and the core research themes within
the field. Our analysis focuses on three primary categories of drone-assisted logistics: drone–truck,
drone–ship, and drone–robot systems. The study aims to uncover which latent topics have been
predominantly emphasized in each category and to highlight the distinct differences in research
focuses among them. Our findings reveal specific trends and gaps in the existing literature, providing
a clear roadmap for future research directions in drone-assisted multimodal logistics. This targeted
analysis not only enhances our understanding of the current state of the field but also identifies
critical areas that require further investigation to advance the application of drones in logistics.

Keywords: drones; multimodal logistics; Latent Dirichlet Allocation; Term Frequency-Inverse
Document Frequency

1. Introduction

The rapid advancements in Unmanned Aerial Vehicle (UAV) technology, commonly
referred to as drones, over the past decade, have led to their widespread application across
various industries. In particular, the logistics industry has increasingly adopted drones,
as their advancing capabilities have transformed them from experimental tools into in-
tegral components of modern logistics systems, especially in delivery services [1,2]. For
instance, some countries have incorporated drones into last-mile delivery processes to
enhance efficiency and speed in both urban and rural areas [3]. Amazon is a key player
in this technology, having initiated package delivery across various regions in the United
States, including both urban and rural areas [4]. Additionally, post offices in Korea are
strengthening public delivery services by testing drones for parcel delivery to remote is-
lands affected by logistical inequality [5]. Accordingly, numerous studies in academia have
emerged that explore the integration of drones into last-mile delivery. The role of drones in
logistics is becoming increasingly emphasized, not only through the integration of drones
with vehicles in the last mile but also through new modes that link drones with delivery
personnel [6,7]. This shift has been accompanied by significant advancements in related
technologies, such as improved battery life, autonomous navigation, and sophisticated
sensing and control systems.

In line with this trend, lots of efforts to summarize the past related research have been
tried so far [8–11]. Li et al. [8] published a review paper that focuses on the application of
UAVs in logistics, examining studies from 2021 to 2022. The review classified the selected
studies into theoretical models, application scenarios, and other problems. Theoretical
models primarily address path-planning problems like the traveling salesman problem.
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Application scenarios include medical safety applications and last-mile delivery issues.
Their research discussed the advantages of UAVs, such as flexibility, low cost, and environ-
mental benefits, while also noting challenges like regulatory obstacles and implementation
costs. Future research directions include optimizing path planning algorithms and explor-
ing new application scenarios to enhance UAV efficiency in logistics. Eskandaripour and
Boldsaikhan [9] presented a comprehensive review of the evolution, current state, and
future prospects of last-mile drone delivery. This study discussed the various technological
advancements that have made drone delivery feasible, such as improvements in battery life,
navigation systems, and regulatory frameworks. The paper identified key benefits of drone
delivery, including reduced delivery times, lower operational costs, and decreased traffic
congestion. However, it also highlighted significant challenges, such as safety concerns,
regulatory hurdles, and public acceptance. Future directions include further advancements
in drone technology and improved integration with existing logistics systems to ensure
safe and efficient drone operations. Li et al. [10] provided a methodological review of
drone-aided delivery methods, identifying key challenges and future research directions.
This study categorized existing literature into various problem types, such as the traveling
salesman problem, vehicle routing problems, and urban last-mile problems. The review
highlighted the technological, safety, societal, and environmental challenges associated
with drone delivery. It also discussed the advantages of drones, such as increased speed and
efficiency and improved accessibility. The paper called for more comprehensive research
into optimizing delivery methods, addressing societal concerns, and developing robust
regulatory frameworks to support the widespread adoption of drones in logistics. Rejeb
et al. [11] examined the potential and challenges of drones in Supply Chain Management
(SCM) and logistics through a systematic literature review. They identified the strengths of
drone applications, such as supporting humanitarian logistics, reducing delivery times and
costs, improving flexibility, and enhancing sustainability. The challenges were grouped
into technical, organizational, safety, and regulatory categories. The paper also explored
real-life drone deployments in SCM and logistics, providing a research agenda for future
studies. Key areas for future research include technical advancements, better integra-
tion with existing logistics systems, and more detailed studies on regulatory impacts and
public perception.

Despite the extensive coverage of drone applications in existing review papers, one
promising aspect of modern logistics systems is notably absent: the integration of drones
with other transportation modes, termed Drone-assisted Multimodal Logistics (D-ML).
Incorporating drones can significantly enhance and support single-mode logistics systems.
For instance, drone-truck systems can improve last-mile delivery efficiency by allowing
trucks to handle bulk transportation over longer distances while drones complete the final
leg. Drone–ship collaborations can expedite the transfer of goods from ports to inland
destinations, overcoming maritime logistics bottlenecks. Similarly, drone–robot partner-
ships can optimize warehouse operations or last-mile delivery, with drones managing
parcels from above and robots handling ground-level tasks. These multimodal approaches
streamline logistics operations, reduce delivery times, and improve overall efficiency.

Although several studies examine D-ML and some review papers mention it as a
future direction, D-ML is not yet formally classified or discussed in depth. Clear definitions
and thorough investigations of this novel system are still lacking. This lack of systematic
evaluation leaves the potential and challenges of multimodal logistics systems involving
drones underexplored. As ref. [12] noted, however, relying on a single mode of logistics is
less feasible in an increasingly expansive and complex logistics environment. The future of
logistics will likely depend on the seamless integration of multiple logistics modes, with
drones playing a crucial role in enhancing efficiency and flexibility.

A systematic review of D-ML is therefore essential to consolidate existing knowledge
into a classification framework and pave the way for innovative logistics strategies that
leverage drone technology alongside other transport modes. Consequently, this study
investigates research trends and topics from 2004 to 2023, focusing on the evolution of
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research in three categories of D-ML: drone–truck, drone–maritime, and drone–robot
logistics. The three categories were chosen based on their prominence in the literature and
their representation of key areas where drones are being integrated with other transport
modes to address specific logistical challenges.

We utilize the Latent Dirichlet Allocation (LDA) technique to uncover latent topics,
which are subsequently classified into application domains and operational/technical as-
pects. Additionally, the annual increase and decrease of these potential topics are analyzed,
identifying “hot” topics that are on the rise and “cold” topics that are declining, based
on the trend slope of the average topic distribution per year. Furthermore, for each cate-
gory of D-ML, prominent words in related studies are extracted and compared using the
Term Frequency-Inverse Document Frequency (TF-IDF) methodology, and the dominant
topics are identified over time. Based on these findings, the reasons for the differences
in research among the categories of D-ML are explored, and research topics for future
investigation are proposed. By understanding how drones can be integrated with trucks,
ships, and robots, researchers and industry practitioners can develop more diverse and
scalable logistics solutions.

The remainder of this paper is organized as follows. In Section 2, we provide an
in-depth exploration of D-ML, outlining the key systems—drone–truck, drone–maritime,
and drone–robot—and how each integrates with existing logistics frameworks. This foun-
dation sets the stage for identifying research trends and topics. Section 3 details the main
methodologies employed in this study, including LDA and TF-IDF, explaining their rele-
vance and application in the context of our research. Following this, Section 4 presents the
experimental design, where we describe the data selection, preprocessing steps, and the
process of tuning the LDA model’s hyperparameters to ensure accurate analysis. Section 5
then offers a comprehensive results and analysis segment featuring TF-IDF, topic discovery,
topic classification, and an analysis of dominant topics over time within the categories
of drone–truck, drone–maritime, and drone–robot logistics. Finally, Section 6 provides
concluding remarks and suggests directions for future research.

2. Drone-Assisted Multimodal Logistics

The integration of drones with the current single-mode logistics systems has revolu-
tionized the logistics industry, creating a more efficient and versatile multimodal system.
By combining the agility and speed of drones with the extensive reach of existing systems,
logistics providers can enhance delivery speed, reduce operational costs, and reach previ-
ously inaccessible areas. During our prescreening of the literature, these three categories—
drone–assisted truck, maritime, and robotic logistics—emerged as the most prevalent and
impactful areas where drones are integrated with other transport modes. Accordingly,
this section explores the synergistic use of drones in three distinct multimodal logistics
categories. Each combination leverages the unique strengths of drones to complement and
enhance the capabilities of current operations, resulting in a more dynamic and responsive
logistics system.

2.1. Drone-Assisted Truck Logistics

Drones and trucks offer distinct advantages and limitations in delivery applications.
Drones are characterized by their speed, lightweight design, and flexible routing capabili-
ties, making them ideal for time-sensitive deliveries on constrained ground routes [13,14].
However, they are limited by load capacity and travel range. Trucks, conversely, are suit-
able for transporting large volumes of items over long distances. A common example of
drone-assisted truck logistics is where trucks deliver large quantities of goods to a cen-
tralized location, and drones then distribute items to remote or difficult-to-access areas.
This method is particularly effective in regions where truck navigation is challenging or
cost prohibitive.

Drone-assisted truck logistics can be systematically categorized into two operational
modes: synchronous and independent (Figure 1). In the synchronous mode, a truck oper-
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ates in tandem with several drones to complete the final delivery to customers. The truck
carries not only the items but also the drones and their charging systems. At designated
points, the truck deploys the drones to deliver items to customers. Meanwhile, the truck
can continue to deliver some items while moving to the next deployment point to meet
up with the drones again [14,15] or just wait at the parking spot for the drones to come
back [16,17]. Key considerations for this mode include optimizing the deployment points
to minimize overall delivery time, ensuring the drones’ battery life and charging needs are
met, and coordinating the truck’s route to efficiently rendezvous with the drones [15–17].
Additionally, the load capacities of both the truck and drones must be balanced to ensure
that each delivery segment is handled effectively.
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The independent mode is less dynamic than the synchronous mode: the operations
of trucks and drones are independent yet interconnected through a central depot. In this
mode, both trucks and drones have the same role in delivering items from the depot to the
customers. This approach is akin to traditional multimodal logistics, such as trucks and
motorcycles handling the last-mile delivery to customers. The decision-making process
involves allocating and scheduling the deliveries of trucks and drones, taking into account
the available routes, as well as their loading capacities and speeds. For example, in
consideration of the available routes, drones can be utilized for delivery points that trucks
cannot approach [18]. Meanwhile, for drones, it is essential to account for their charging or
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battery replacement schedules [14], and the delivery points must be within their operational
flight range from the depot [19].

In addition to academic research, the industry has also focused on exploring the
possibilities and addressing the challenges of combined drone–truck operations. For
example, UPS tested a residential package delivery system where a drone is launched from
the roof of a delivery truck [20]. In this test, the drone, capable of flying for 30 min and
carrying 10 pounds of packages, flew to the delivery point and then returned to the vehicle
while the truck proceeded to the next delivery point. Similarly, Amazon has registered a
patent describing a system where delivery vans carry items close to their final destination
and then deploy drones to complete the last leg of the delivery [21]. Unlike the UPS test,
Amazon’s patent envisions the use of multiple drones operating from a single vehicle,
highlighting a different approach to integrating drone technology into delivery logistics.

Although the technological and operational aspects of drone–truck collaboration have
been extensively covered in the literature, real-world examples of such systems remain
rare. While many studies have conducted experimental analyses in controlled or simulated
environments, there is a lack of widespread, practical implementations that demonstrate
the full potential of these systems under diverse real-world conditions. As efforts are made
to address challenges like seamless integration with existing logistics networks, maintain-
ing interoperability with current technologies, and scaling operations to accommodate
varying delivery volumes, new topics and issues are likely to emerge. Understanding these
practical dynamics is crucial for advancing drone-assisted truck logistics from theoretical
and experimental stages to robust, scalable, real-world applications.

2.2. Drone-Assisted Maritime Logistics

Drone-assisted maritime logistics leverages drones to enhance the efficiency and reach
of maritime delivery operations. Ships transport large quantities of goods over vast dis-
tances but face challenges in final delivery to coastal or remote areas. Drones can navigate
congested port areas and tight spaces to deliver items efficiently [22]. This approach is
advantageous in regions with difficult terrain, limited infrastructure, or insufficient docking
facilities for large vessels (Figure 2a).

In addition to overcoming challenges in final delivery, drones increase the agility and
time efficiency of the loading and unloading processes of ships [23]. By introducing novel
methods of delivery, drones provide significant operational benefits to maritime logistics.
For instance, the Side-Pull Maneuver (SPM) allows drones to drag goods along the sea
surface rather than picking them up directly from the ship. This innovative method reduces
the need for complex loading mechanisms on drones and enhances the speed and efficiency
of the delivery process [24].

Using drones to move items between ships and shore can also be applied to transfer-
ring goods between ships (Figure 2b). In the ship-to-ship mode, drones transfer goods be-
tween vessels at sea, facilitating the delivery of essential supplies, spare parts, or documents
without requiring the ships to dock. This capability is especially useful in maintaining
continuous operations and reducing downtime for ships that would otherwise need to
interrupt their journeys.

Several companies have begun to explore and implement drone-assisted maritime
logistics. For example, Maersk Tanker, a Danish tanker company, tested their first drone
delivery to a vessel in 2016 to explore the potential of integrating drones into their supply
chain [25,26]. Maersk Tankers was optimistic about the cost-saving potential of drones,
noting that substituting barge transport with drones could lead to substantial savings across
their fleet. Additionally, drones offer benefits such as conducting inspections to identify
cracks or other issues, enhancing operational efficiency and safety. The company also
stressed the importance of ensuring drone safety, stating that drones must be certified as
intrinsically safe to operate in their environment. However, there have been no significant
updates on their progress since the initial test.
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More recently, the U.S. Navy conducted a test in 2024 using drones for ship-to-ship
deliveries [27]. The test demonstrated that using drones to transport medical supplies and
critical parts between vessels at sea is a feasible option. Similar to the findings from Maersk
Tanker’s test, it also showed that the use of drones could enhance logistical efficiency
by enabling continuous operations and reducing the need for ships to dock for minor
deliveries without relying on larger manned aircraft or helicopters.

While the potential benefits of drone-assisted maritime logistics are considerable, still
many questions remain unsolved to implement these systems effectively in real-world
scenarios. For example, beyond technical advancements and regulatory compliance, op-
erational considerations play a critical role. Ships typically carry much larger loads than
drones can manage, necessitating careful prioritization of which loads are suitable for
drone transport. Decision-makers must develop strategic plans that integrate drones into
existing logistics workflows, including how to operate ships, drones, and port facilities
efficiently. Furthermore, the use of drones for ship-to-ship or ship-to-shore transport may
be either a one-time solution or a regular support method, depending on specific logistical
needs. Managers need to consider tactical planning, such as determining the number and
specifications of drones required based on historical transportation data from ships and
ports. These factors must be carefully considered to optimize the use of drones in maritime
logistics and ensure sustainable operations.

2.3. Drone-Assisted Robot Logistics

Autonomous Delivery Vehicles (ADVs) are gaining attention in both academia [28] and
industry logistics [29]. These self-driving vehicles use advanced sensors and navigation
systems to travel independently on roads and sidewalks. Additionally, robots such as
ADVs are being considered as a means for last-mile delivery in indoor environments [30].
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Thus, the combination of drones and ADVs represents an innovative frontier for delivery
operations, enhancing the efficiency and reach of last-mile delivery services.

Drones and ADVs both use electric power and offer higher energy efficiency compared
to traditional delivery methods such as trucks and vans, but they differ significantly in
payload capacity, range, and speed. In comparison, drones have lower payload capacity
and shorter range but operate faster [31], while ADVs can handle larger payloads and
longer distances [32] at slower speeds [28]. Although both systems have a minor impact on
traffic and are cost-effective, ADVs are less influenced by weather [33] and face fewer legal
concerns [31] compared to drones. Thus, the cooperation of drones and ADVs leverages
their respective strengths while mitigating their shortcomings. The possible mode of drone-
assisted robot logistics is shown in Figure 3. In this cooperation, drones and ADVs help
one another to complete the final delivery.
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Building on these potential advantages, a few studies have demonstrated promising
results in the collaboration between drones and ADVs for delivery purposes [34,35]. For
example, in the work of [34], drones and ADVs work together based on the predefined
mission and subtasks to complete the delivery, such as picking up the parcel, transporting
it to the destination, carrying it alone, and passing it to the other vehicles. The system
simulates the energy consumption of each possible scenario and selects the most efficient
option. The results demonstrated effective cooperation: when the ADV encounters ground
obstacles, the drone takes the package, crosses the obstacles, and passes it to the ADV
on the other side. Further work by the authors [35] showed that the improved system
continues to function effectively in a more complex environment.

Nevertheless, many challenges still remain to be solved in realizing drone-assisted
robotic logistics. Since both systems are autonomous, they require a more sophisticated
synchronization system to operate together effectively, given minimal human involve-
ment. These include how to synchronize the two autonomous systems, determining which
method should serve which customer based on their attributes, and navigating without
invading restricted areas in a real-world condition [28]. Additionally, ensuring robust
communication between drones and ADVs, developing reliable obstacle detection and
avoidance algorithms, and securing regulatory approvals are critical hurdles.

3. Methodology

To identify research trends and issues in the field of drone-assisted multimodal lo-
gistics, several key techniques, including TF-IDF, LDA, and Collapsed Gibbs Sampling,
were employed. Additionally, for a more detailed analysis, the topic distributions of each
document obtained from the LDA results were used to classify topics into hot and cold
topics. Furthermore, by identifying the dominant topic for each document, we examined
the changes in research subjects within D-ML.

TF-IDF was utilized to determine the significance of terms within the documents. LDA
was implemented as a generative probabilistic model to uncover the hidden topic structures
within the document collections. Collapsed Gibbs Sampling was applied to perform



Drones 2024, 8, 468 8 of 33

approximate inference in the LDA model. Furthermore, hyperparameter tuning was
conducted to optimize the performance of the LDA model, ensuring the most interpretable
and accurate topic identification. This section details the methodologies and processes
applied to achieve these objectives.

3.1. TF-IDF

TF-IDF is a statistical measure used to evaluate the importance of a word in a document
relative to a collection of documents (corpus). This method is particularly useful for
identifying keywords and important terms in documents [36]. TF-IDF helps in identifying
terms that are both significant within a specific document and relatively rare across the
corpus. TF-IDF is calculated as follows:

TF =
Number of times t appears in document d

Total number of terms in document d
(1)

IDF = log
Total number of documents

Number of documents with term t in it
(2)

TF-IDF = TF(t, d)× IDF(t) (3)

The TF-IDF value increases proportionally with the number of times a word appears in the
document but is offset by the frequency of documents containing the word, which helps
to adjust for the fact that some words appear more frequently in general. High TF-IDF
scores indicate words that are particularly important to the document’s content but are not
common enough to be considered stopwords.

3.2. LDA

LDA is a generative probabilistic model used for topic modeling [37]. It assumes that
documents are mixtures of topics and that topics are mixtures of words. The main goal
of LDA is to discover the hidden topic structure in a collection of documents. Figure 4
illustrates the structure of the LDA model.
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LDA starts with random probability distributions and iteratively refines these distri-
butions based on the observed data. It updates the topic distributions over words based on
the words observed in each document, ultimately determining the probability distribution
of each document over topics, the distribution of each topic over words, and the topic as-
signment for each word. Specifically, LDA computes the posterior distribution, where θd is
the topic distribution for a document, governed by parameter α; ϕk is the word distribution
for topic k, governed by parameter β; θd is the topic assigned to the word in document d;
and z(d, i) represents the ith observed word in document d.

This posterior distribution, which is multinomial, is calculated as follows [39]:

p(ϕ1:K, θ1:D, z1:D|w1:D) =
p(ϕ1:K, θ1:D, z1:D, w1:D)

p(w1:D)
(4)
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The numerator can be expanded as follows [39]:

∏K
k=1 p(ϕk|β)∏D

d=1 p(θd|α)
(
∏N

i=1 p(z1:D|θd)p(wd,i
∣∣ϕ1:K, zd,i)

)
(5)

This joint distribution accounts for all the random variables involved. The variables
ϕk and θd follow Dirichlet distributions conditioned on parameters α and β, respectively.
Since the denominator p(w1:D) is intractable to calculate directly, approximate methods
like collapsed Gibbs sampling are used.

3.3. Collapsed Gibbs Sampling

To implement collapsed Gibbs sampling for LDA, it is necessary to compute the
probability that a specific topic zd,i is assigned to word wd,i, conditioned on all other topic
assignments. Formally, the posterior to be computed is:

p(zd,i = j
∣∣z−i, w) (6)

Here, zd,i = j denotes the probability that topic zd,i is allocated to word wd,i, and z−i
represents all other topic assignments except for zd,i. By applying conditional probability
rules, the following equation is obtained:

p(zd,i = j
∣∣z−i, w) ∝

nd,k=j + α

∑K
k=1(nd,k + α)

×
vj,c=wd,i + β

∑C
c=1
(
vj,c + β

) (7)

In this equation, nd,k is the number of occurrences of topic k in document d, vj,c is
the number of times word c appears in topic j, α and β are hyperparameters associated
with the Dirichlet distribution, K is the number of topics, and C is the number of words in
the corpus.

The process for collapsed Gibbs sampling can be outlined as follows:

1. Randomly assign an initial topic to each word.
2. Starting from the first word (i = 1) of the first document (d = 1), perform the

following steps:
3. Calculate p(zd,i = j

∣∣z−i, w) by varying the topic j and select one of the K topics based
on the calculated probability.

4. Repeat the above step for each word until the last word (i = N) of the last document
(d = D) is reached.

5. Continue steps 2–4 until the topic assignments for each word stabilize.

3.4. Hyperparameter Tuning in LDA Model

Hyperparameter tuning is critical for optimizing the performance of the LDA model.
The primary hyperparameters considered in this study were the number of topics (K), the
hyperparameter α, which is related to document–topic distribution, and β, which is related
to the topic–word distribution. The tuning process was proceeded by running the LDA
model with different combinations of these hyperparameters and evaluating each model’s
perplexity and coherence scores.

The perplexity score is calculated as follows [37]:

Perplexity = exp

(
−∑M

d=1 log p(wd)

∑M
d=1 Nd

)
(8)

where Nd is the number of words in document d, log p(wd) is the log probability of the
document d under the model. In the context of topic models, lower perplexity values
indicate a better model because they signify that the model is more effective at predicting
unseen documents.
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The coherence score measures the degree of semantic similarity between high-scoring
words in each topic, while the perplexity score assesses how well the model predicts a
sample. The coherence score is calculated as follows [40]:

Coherence = ∑i<j log
D
(
wi, wj

)
+ ϵ

D(wi), D
(
wj
) (9)

where D
(
wi, wj

)
is the number of documents containing both words wi, wj and D(wi) and

D
(
wj
)

are the number of documents containing wi and wj, respectively, and ϵ is a small
constant to prevent division by zero [41]. High coherence scores typically indicate that the
top words are semantically related, thus making them more comprehensible to humans.

The optimal hyperparameter combination for the LDA model can be determined using
perplexity and coherence scores. By evaluating the perplexity and coherence scores for
various combinations of K, α, and β, it is possible to observe how these scores change
with different K values for each alpha and beta combination. This approach allows for the
selection of the optimal K, α, and β for the LDA model. Typically, the optimal combination
of K, α, and β is selected when perplexity decreases and coherence increases, reflecting the
results of hyperparameter tuning.

Figure 5 illustrates an example of hyperparameter tuning. The first step in hyperpa-
rameter tuning is for the user to define the search space for the LDA hyperparameters,
namely K, α, and β. Once the search space is defined, an LDA model is constructed for
each combination, and the corresponding perplexity and coherence scores are recorded.
After storing the perplexity and coherence scores for all combinations, the results are visu-
alized, as shown in Figure 5. The combinations that demonstrate decreasing perplexity and
increasing coherence are explored, and one of the selected hyperparameter combinations is
chosen as the final result of hyperparameter tuning.
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3.5. Analysis of the Topic Proportion Changes

Using the results obtained from the LDA model, we can not only understand the
topics represented by each topic but also utilize the per-document topic proportions to
classify whether a topic is a rising hot topic or a declining cold topic over time. This
classification is achieved by analyzing the trend slopes of the average topic proportions
by year [42,43]. Additionally, by utilizing the topic proportions of each document, we can
understand the distribution patterns of topics over time by observing the changes in the
average proportions of each topic per year.
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3.5.1. Hot and Cold Topics

To classify hot and cold topics, we first calculate the annual average values of per-
document topic proportions (θd) obtained from the LDA model. We then examine the trend
slopes for each topic over time [42,43]. If the slope of the trend line is positive, the topic is
classified as a hot topic, indicating an increasing trend over time. Conversely, if the slope is
negative, the topic is classified as a cold topic, indicating a decreasing trend over time. The
annual average topic proportion can be calculated as follows:

θt,k =
1

Nt
∑

d∈Dt

θd,k (10)

where θt,k is the average topic proportion of topic k in year t, Nt is the total number of
documents in year t, Dt is the set of documents in year t, θd,k is the topic proportion of topic
k in document d.

This method allows for the identification of trending topics and provides insights into
the evolution of research interests over time.

3.5.2. Dominant Topic of Each Document

In LDA, each document is assumed to be composed of a mixture of topics. Conse-
quently, the θd obtained from the LDA results allows us to determine the topic distribution
for each document. In this study, the topic with the highest proportion in each document’s
topic distribution is considered the dominant topic for that document [44]. We then cal-
culate the dominant topic for each document and categorize them by subject to observe
changes in the number of representative topics over time. The dominant topic for each
document can be calculated using the following equation:

Td = arg max
k

θd,k (11)

where Td is the dominant topic for document d, and θd,k is the topic proportion of topic k in
document d.

By analyzing the changes in the number of dominant topics over time, we can gain
insights into the evolving trends within the subject areas.

4. Experimental Design

In this section, the data collection process for TF-IDF and LDA models is described,
including the search period, search database, and search queries. The collected data are
analyzed by categorizing them by year and subject, examining the changes in the number
of published papers over the years and across different subjects. Additionally, the prepro-
cessing steps for the collected data and the experiments for tuning LDA hyperparameters
are discussed, resulting in the selection of the optimal hyperparameter combination.

4.1. Data Description

Data were collected from Scopus, encompassing research articles published over the
past 20 years, from 2004 to 2023. To gather literature on multimodal logistics utilizing
drones, the search was categorized into studies on the use of drones in conjunction with
various transportation modes, including trucks and vehicles, ships, and robots. The search
keywords for each mode of transportation were: (truck OR vehicle) AND drone AND
(logistics OR delivery), ship AND drone AND (logistics OR delivery), robot AND drone
AND (logistics OR delivery). The data collection process is illustrated in Figure 6. Each
query was searched in Scopus, and duplicate records within each theme were removed.
The resulting dataset, referred to as Data 1 in Figure 6, consisted of 2035 rows. Data 1 was
then used to examine the changes in the number of publications over the years, as well as
the changes in the number of publications by subject and year, as shown in Figures 7 and 8.
Since there were overlapping records within each subject in Data 1, 181 duplicate rows
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were removed, resulting in a dataset of 1854 rows, referred to as Data 2 in Figure 6. Data 2
was then used for data preprocessing, as described in Section 4.2, for the LDA model. For
the analyses presented in Sections 5.4 and 5.5, which involved further analysis of the LDA
model results, the 181 deleted rows were restored, and further analysis was conducted on
the complete dataset of 2035 rows.
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necessary for the field of drone-assisted multimodal logistics to develop. A notable increase
in relevant publications began in 2015, with a significant surge observed in the most recent
year, 2023. Given the foundational nature of early research and the substantial growth in
later years, we chose to conduct a holistic analysis across the entire 20-year period. This
approach allows us to capture the full evolution of the field, providing a comprehensive
understanding of how drone-assisted multimodal logistics has developed over time.

The changes in the number of published articles by transportation mode over the
years are illustrated in Figure 8 below. Most of the published articles focused on the
integration of drones with trucks and vehicles, followed by studies on the integration of
drones with robots and ships. Given the inherent characteristics of drones, such as their ease
of application in inland transportation and their synergy with unmanned and automated
systems, it can be inferred that more research has been conducted on the integration of
drones with trucks, vehicles, and robots compared to that with ships.

4.2. Data Preprocessing

The data were preprocessed before being used in the LDA model. The preprocess-
ing steps were as follows: First, the data collected from each transportation mode were
examined for duplicate entries within each topic, and duplicates were removed to create a
comprehensive dataframe. For the LDA model, only the columns Title, Abstract, Author
Keywords, and Index Keywords were extracted.

Second, the extracted data were then tokenized using Python’s nltk package. To
facilitate the interpretation of results, all words were converted to lowercase, and tokens
that only consisted of numeric values were removed. Tokens consisting of a single character
were also excluded. Additionally, lemmatization was performed to prevent identical words
with different grammatical forms from appearing repeatedly in the results.

Lastly, English stopwords provided by the nltk package were removed. To prevent
search query terms from influencing the TF-IDF keyword analysis, the search query terms
and their related terms were also excluded. The excluded terms, along with the English
stopwords, were as follows: “truck”, “vehicle”, “vehicles”, “robot”, “robots”, “ship”,
“ships”, “drone”, “logistics”, “delivery”, “drones”, “uav”, “uavs”, “unmanned”, “aerial”.

4.3. LDA Model Hyperparameter Tuning

In this study, for tuning hyperparameters of the LDA model, K was set from 1 to
30, α was set from 0.1 to 0.5, and β was set from 0.01 to 0.05. After exploring a total of
750 combinations to observe the changes in coherence and perplexity values, the optimal
combination of hyperparameters was chosen. Figure 9 illustrates a perplexity and coherence
score of the optimal combination of α and β. The dotted lines in Figure 9 indicate the
selected K value.
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The upper graph of Figure 9 illustrates the perplexity scores of varying the value
of K, while the lower part depicts the coherence scores of varying the value of K. This
comprehensive analysis allowed us to identify the optimal combination of hyperparameters
that yields the highest coherence and the lowest perplexity, ensuring the most interpretable
and accurate topic model. The optimal combination of hyperparameters was determined
to be K = 20, α = 0.3, β = 0.02.

5. Results and Analysis

In this section, the core keywords for each subject identified through TF-IDF are
examined, and the differences in key terms across subjects are compared to analyze the
characteristics of the papers in each subject area. Furthermore, using the results of the opti-
mal hyperparameter combination selected from the hyperparameter tuning in Section 4.3,
various research topics under the theme of D-ML are explored through the outcomes of the
LDA model.

For more analysis, first, 20 topics are classified according to the characteristics of
each topic. Secondly, the topic distribution for each document, obtained from the LDA
model results, is averaged by year. Based on the sign of the trendline slope of the yearly
average distribution values for each topic, the 20 topics are classified as hot topics or cold
topics, providing a new perspective for analysis. Additionally, the topic with the highest
probability in the topic distribution for each document is considered the dominant topic of
that document. The changes in the number of dominant topics by year for each subject are
analyzed to understand the trends and shifts in topics over time.

All experiments were conducted on an Apple M1 Pro with 16 GB RAM, utilizing
the following versions of Python and associated packages: python: 3.9.13, pandas: 2.0.3,
numpy: 1.25.0, scipy: 1.10.1, matplotlib: 3.8.2, nltk: 3.7, wordcloud: 1.9.2, gensim: 4.1.2,
pyLDAvis: 3.4.0.

5.1. Identification of Prominent Keywords for Each Subject Based on TF-IDF Analysis

The collected literature was categorized into three subjects: drone–truck/vehicle,
drone–ship, and drone–robot. To identify the most distinctive keywords for each sub-
ject, TF-IDF values were calculated, excluding common terms frequently encountered in
academic papers. These excluded terms include “problem”, “system”, “research”, “pa-
per”, “analysis”, “approach”, “based”, “model”, “application”, “data”, and “study”. This
exclusion allows for a focused analysis of the keywords that are most indicative of each
specific topic.

Drone–truck/vehicle subject: The analysis reveals that the most prominent keywords
in this subject are “network”, “routing”, “algorithm”, and “optimization”. The prevalence
of these terms indicates that research in this area predominantly focuses on routing and
network optimization, particularly in the context of drones and vehicles, with a strong
emphasis on the development of optimization techniques and algorithms. Additionally,
keywords such as “last”, “mile”, “parcel”, “urban”, “traveling”, and “salesman” highlight
a significant focus on last-mile delivery, parcel transportation, and urban logistics. The
presence of terms like “military”, “medical”, “health”, “disaster”, “energy”, “environment”,
and “security” suggests that this subject is explored across various application domains,
setting it apart from the other two subjects.

Drone–ship subject: The key terms identified in this subject include “routing”, “simu-
lation”, “optimization”, “algorithm”, “supply”, and “chain”. The prominence of “routing”
indicates that the primary research focus is on routing issues involving the integration
of drones with ships. The higher TF-IDF value for “simulation” compared to “optimiza-
tion” or “algorithm” suggests a preference for simulation-based methodologies over exact
optimization approaches in this field. The distinct appearance of “supply” and “chain”
underscores the critical role of ships within the global supply chain, particularly in the
context of international logistics.
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Drone–robot subject: In this subject, the analysis highlights keywords such as “au-
tonomous”, “technology”, “network”, “control”, “algorithm”, “COVID”, “19”, “pandemic”,
“machine”, “learning”, “artificial”, and “intelligence”. The increased prominence of “au-
tonomous”, “technology”, and “control” suggests that research within this domain is
primarily concerned with the integration of drones into robotic automation, with a par-
ticular focus on control mechanisms and technological advancements. The inclusion of
“COVID”, “19”, and “pandemic” reflects the recent surge in interest in drone–robot collabo-
ration driven by the need for contactless delivery solutions during the COVID-19 pandemic.
Additionally, the combination of “algorithm” with “machine”, “learning”, “artificial”, and
“intelligence” indicates a growing emphasis on artificial intelligence (AI)-based algorithms
to optimize operations in this subject area.

5.2. Discovering Topics

By using the pyLDAvis package in Python, as referenced in [45], the results obtained
from pyLDAvis are illustrated in Figure 10. When a topic is selected from the top of
Figure 10a, detailed information regarding that topic is displayed as shown in Figure 10a,b.
Figure 10 provides an example of the results when Topic 1 is selected.

In Figure 10a, the size of the circle representing the selected topic indicates the pro-
portion of that topic within the corpus. For instance, as shown in Figure 10a, Topic 1 has
the largest circle among the 20 topics, suggesting that it occupies the largest proportion
within the corpus. Furthermore, its non-overlapping position with other topics on the
graph implies that Topic 1 is likely contextually independent from the other topics.

Figure 10b provides the top 30 keywords that constitute the selected topic, enabling
the assignment of labels to each topic based on these results. The ranking of keywords
can be adjusted using λ slider at the top of Figure 10b. When λ = 1, the keywords
are ranked according to the word distribution (ϕk) of the topic, and the red bars are
displayed in descending order based on their width. The bar chart in Figure 10b can
be interpreted as follows: the blue bars represent the frequency of the keywords across
the entire corpus, while the red bars represent the frequency of the keywords within
the selected topic. Therefore, by examining the proportion of the red bar relative to the
blue bar, one can identify the key terms for the selected topic. In Topic 1, the terms
“problem”, “algorithm”, and “routing” show the highest relevance. However, for the terms
“programming”, “integer”, and “heuristic”, the red bars occupy almost the entire width of
the blue bars, indicating that these three terms appear almost exclusively in Topic 1 and are
therefore significant in interpreting Topic 1.

Each topic was named based on the top 15 keywords visualized by pyLDAvis. Table 1
below shows the top 15 keywords for each topic, along with the assigned topic name. As
explained earlier in Section 4.2, the texts were preprocessed through lemmatization using
the Python nltk package before being applied to the LDA model. Consequently, words
in their lemmatized forms, such as “ha” and “wa”, appear in the results in Table 1. This
outcome is closely related to the lemmatization rules employed by the WordNetLemma-
tizer() in the nltk package. When performing lemmatization, the nltk package utilizes
the WordNet database, which includes verbs, nouns, and other parts-of-speech (POS), to
convert plural forms to singular and past tense forms to present tense. During this process,
it often follows general rules such as removing “-s” or “-es” for pluralization and “-ed”
or “-d” for past tense conversion [46]. Therefore, incomplete forms like “ha” and “wa”
appear in Table 1. Additionally, the WordNetLemmatizer() in the nltk package defaults to
treating words as nouns unless the user accurately tags the part of speech for each word in
advance. As a result, words such as “using”, “used”, and “based” are recognized as nouns
and consequently appear unchanged in the keywords listed in Table 1.
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Table 1. Top 15 keywords and the name of each topic.

# of Topic Keywords Topic Description

1

Problem, algorithm, routing, time,
optimization, programming, model,

customer, solution, integer, heuristic, cost,
salesman, traveling, route

Routing problem Drone–truck/mothership routing

2

Network, communication, system, mobile,
application, control, data, wireless,

information, time, construction, real,
technology, computing, based

Communication network
Communication system between

drones and other
transportation modes

3
Health, medical, emergency, human, time,

care, study, wa, covid, blood, hospital,
technology, pandemic, response, service

Health care Pharmaceuticals transportation

4
System, technology, service, supply, use,

transport, model, time, process, based, chain,
solution, ha, autonomous, using

Service supply chain Last-mile delivery, inventory
management with drones

5

Network, communication, routing, ad,
protocol, hoc, based, energy, packet, learning,

wireless, delay, data, performance,
reinforcement

Communication protocol Protocol security of drones

6
Technology, last, mile, city, urban, emission,

transportation, service, system, autonomous,
smart, supply, cost, impact, sustainable

Urban logistics/last-mile
delivery Drone-assisted parcel delivery

7

Application, research, technology, review,
challenge, literature, military, industry,

future, ha, system, operation, development,
use, study

Research/application review
Reviews of drone technology,

drone-integrated routing,
drone-assisted delivery methods

8
System, station, battery, location, algorithm,

charging, last, mile, model, optimization,
area, demand, time, data

Battery charging Charging station, charging
scheduling of drone

9
Model, system, decision, based, learning,

method, detection, task, agent, multi,
making, algorithm, control, used, using

Learning-based decision Drone navigation,
path optimization

10

Detection, learning, system, based, noise,
autonomous, machine, navigation, using,

signal, vision, network, deep,
positioning, landing

Drone-based detection Object detection algorithms,
drone surveillance/monitoring

11
System, control, autonomous, path, swarm,
based, cost, algorithm, collision, planning,

time, ha, paper, using, application
Swarm Drone swarm application

12
Aircraft, flight, system, air, urban, airspace,
wing, UAS, operation, control, traffic, low,

landing, fixed, mobility
Aircraft/airspace Airspace regulations/policies

13

Security, internet, attack, authentication, IoT,
data, thing, blockchain, secure, service,

application, user, privacy,
based, communication

Security Security issues of drone

14

System, traffic, urban, air, network,
transportation, control, management, design,

operation, public, surveillance, model,
planning airspace

Traffic/transportation Drone delivery, drone
traffic density

15
Model, image, plant, application, using, used,

system, service, design, monitoring,
management, ha, wa, product, work

Manufacturing plant Utilization of drones in logistics
within manufacturing plants
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Table 1. Cont.

# of Topic Keywords Topic Description

16
System, sensor, data, control, human,

sensing, using, operator, remote, motor, time,
mapping, camera, flight, driving

Sensor/sensing Drone sensor
technology/application

17
Control, controller, system, risk, analysis,
data, method, safety, wa, study, approach,
performance, barrier, management, based

Control/controller Drone control system

18

Trajectory, wind, propeller, analysis, system,
flight, aerodynamic, condition, numerical,

application, efficiency, package, field,
generation, time

Trajectory/propeller Drone trajectory
planning/optimization

19
Disaster, humanitarian, relief, flight, battery,

transportation, time, assessment, mode,
system, cost, service, analysis, risk, hybrid

Disaster/humanitarian Relief supplies, blood,
medicine delivery

20
Energy, consumption, optimization, service,
area, colony, bee, parcel, study, congestion,
ground, transportation, cost, system, ant

Energy consumption Drone battery consumption
management

Topic 1: Routing problem. The routing problem of drones has predominantly been
studied in conjunction with trucks. A notable example of such integrated routing problems
involving drones and trucks/vehicles is the Flying Sidekick Traveling Salesman Problem
(FSTSP), and various studies have proposed different algorithms to solve FSTSP. For
instance, in [19], a heuristic algorithm was proposed to solve the FSTSP in which a drone is
loaded in the truck and launched from the truck to deliver to eligible customers. Routing
problems are being solved not only in the drone–truck/vehicle subject but also in the drone–
ship subject. For example, in the work of [47], the Mothership-Drone Routing Problem
(MDRP) is addressed when the drone departs from the mothership, visits a target location,
and then returns to the mothership for refueling.

Topic 2: Communication network. A communication network encompasses all types
of data transmission networks, including ad-hoc networks, which can be used without need-
ing prior configuration or being fixed in a single location [48]. There are two types of wire-
less networks, which are Wireless Ad-Hoc Networks (WANETs) and Mobile Ad-Hoc Net-
works (MANETs). MANETs are defined as networks where mobile devices autonomously
form a network without relying on fixed infrastructure. Specifically, MANETs can be
further categorized into Vehicular Ad-Hoc Networks (VANETs), which are a specialized
form of MANETs designed for predefined roads [49]. VANETs encompass three main com-
munication methods: Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and hybrid
communication [50]. Furthermore, there are extensions such as Drone-assisted VANETs,
which integrate drones into VANETs [51], and Flying Ad-Hoc Networks (FANETs), which
are a specific type of MANET and VANET that facilitate ad-hoc networking among UAVs.

Topic 3: Health care. Drones can handle a wide variety of items, from frequently used
parcels to small-scale goods, as long as loading weight constraints are observed. Among
the various items that drones can handle, pharmaceuticals are particularly noteworthy.
Drones are appealing for medical deliveries due to their swift response times and their
capability to traverse otherwise inaccessible terrain [52]. Drones can be utilized not only
for the transportation of pharmaceuticals but also for delivering lab specimens to hospitals.
Additionally, they can be employed as dedicated drones for responding to medical emer-
gencies, such as being equipped with integrated Automated External Defibrillators (AEDs)
and tools for Cardiopulmonary Resuscitation (CPR) assistance [53,54].

Topic 4: Service supply chain. Service supply chains can be broadly categorized into
Service Only Supply Chains (SOSCs), which consist purely of services such as telecommu-
nication and tourism, and Product Service Supply Chains (PSSCs), which consider both
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physical products and significant service elements. Logistics service providers fall under
the PSSCs category [55]. In PSSCs, drones are utilized not only for last-mile delivery but
also for various applications such as inventory management within warehouses [56,57]
and warehouse inspection [58,59].

Topic 5: Communication protocol. A communication protocol comprises rules that
facilitate information exchange between multiple entities in a communication system,
leveraging a channel or physical medium to transmit data [60]. Various communication
protocols have been proposed for different communication networks. For example, the
Micro Air Vehicle (MAV) Link protocol, an open-source communication protocol, was
released in 2009 [61]. Security is paramount in communication protocols due to their role
in data transmission and information exchange, prompting extensive research to enhance
protocol security [50,62]. This need for secure communication protocols is particularly
evident in the context of drones, which are susceptible to security attacks [63–65].

Topic 6: Urban logistics/last-mile delivery. Drones, characterized by their ability to
operate without the constraints of road infrastructure, are not affected by traffic congestion.
This makes them an innovative transportation method for urban logistics, particularly for
last-mile delivery [66], where drones are gathering significant attention.

Topic 7: Research/application review. As a key technology of Industry 4.0, drones play
a significant role in the logistics sector [67], and various review studies have been conducted
from different perspectives. There are reviews focusing solely on drones themselves [68,69],
as well as reviews on drone-integrated routing [70] and optimization for the integration
of drones with trucks [14], drone-assisted delivery methods [10], and drones in disaster
management [71].

Topic 8: Battery charging. One of the most essential elements in the operation of drones
is the battery. The weight and charging capacity of the battery not only affect the range
and duration of drone flights but also play a significant role in determining the overall
efficiency of drone operations. Drones necessitate essential facilities such as stations for
refueling and battery replacement. Consequently, various studies have been conducted in
this context, including the optimization of charging station networks [72,73], the scheduling
optimization of drone visits to charging stations [74], and the concurrent optimization of
drone flight mission planning and recharging [75].

Topic 9: Learning-based decision. Incorporating learning-based decision-making
algorithms into drones not only enhances drones’ ability to navigate complex environments
autonomously but also enables them to adapt to dynamic conditions and optimize their
flight paths in real time. In various aspects of drone operation, decision-making can be
enhanced using learning-based algorithms. For instance, Deep Reinforcement Learning
is used to avoid obstacles and navigate drones [76], and Logistic Regression and Linear
Discriminant Analysis are used to build UAV fault detection mode [77].

Topic 10: Drone-based detection. Drones must be designed to detect and avoid
obstacles, such as people and objects, in real time to ensure safe operation during flight.
This involves not only technical studies utilizing radar and lidar technologies [78,79]
but also research on real-time object detection algorithms, such as Convolutional Neural
Networks (CNNs) [80,81].

Topic 11: Swarm. Drone swarms offer the advantage of performing complex tasks
more efficiently and at a lower cost compared to single drones, especially in challenging
environments. These swarms can be utilized not only for cargo delivery [82,83] but also
for military and warfare applications [84], wildfire management, and city/asset moni-
toring [85,86]. However, to ensure the stable operation of drone swarms, it is crucial to
establish a reliable network communication system [85]. Additionally, controlling [86]
and routing [87] of the drone swarms are emerging as significant challenges that need to
be addressed.

Topic 12: Aircraft/airspace. Although drones are actively researched for last-mile
delivery, their operational feasibility is influenced by airspace regulations and the develop-
ment of civil aviation policies. In the work of [66], a framework for evaluating the impact
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of UAV flight regulations and policies on last-mile delivery operations in urban and rural
areas is proposed. Additionally, Unmanned Aircraft Systems Traffic Management (UTM) is
crucial for drone delivery as it ensures the safe sharing of flight information and efficient
use of airspace for Beyond Visual Line of Sight (BVLOS) operations. Consequently, the
Federal Aviation Administration (FAA) and the European Union (EU) have released their
respective Concept of Operations (ConOps) for UTM (FAA ConOps) and for UAS targeting
a UTM concept called U-space (CORUS ConOps), respectively. These documents define
the structure of airspace and performance requirements for drone operations, considering
various factors such as drone traffic density and airspace access [88].

Topic 13: Security. As drones are increasingly utilized across various sectors and
drone technology advances rapidly, security issues such as cyber-attacks have concurrently
emerged [89,90]. The academic community is also focusing on these security concerns of
drones. For instance, in the work of [89], the security issues of drones are categorized into
four levels: hardware, software, communication, and sensor. Research utilizing blockchain
technology has emerged to address these security challenges associated with drones [91,92].

Topic 14: Traffic/transportation. As drones are increasingly utilized in various social
applications, their significance is growing. In the logistics sector, drones are gaining
attention as a novel method for parcel delivery, although limitations related to battery life
and capacity still exist. To address these limitations, a method where drones could travel by
riding on the roofs of public transportation vehicles was proposed [93]. Furthermore, for the
realization of the drone delivery concept, the design of urban airspace is necessary. Various
metrics, such as drone traffic density and traffic distribution patterns, can be employed for
this purpose [94,95].

Topic 15: Manufacturing plant. The use of drones extends to manufacturing plants
that produce lightweight products. For instance, drones are employed in the logistics flow
within factories that mass-produce lightweight items, particularly for transporting raw
materials or semi-finished products. Unlike traditional methods such as conveyor belts or
trucks that are confined to floor-level transport, and even the increasingly popular AGVs,
drones have the distinct advantage of utilizing 3-dimensional space for transport. This
capability allows drones to contribute to more efficient and productive logistics operations
within the factory [96].

Topic 16: Sensor/sensing. Drones, due to their capability of being remotely operated
without a pilot, can access virtually any location feasible for flight. Leveraging this charac-
teristic, numerous studies have explored the use of drones equipped with various sensors
for detection and monitoring across different domains. For instance, drones equipped with
Cadmium Zinc Telluride (CZT) sensors have been used for detecting nuclear and radio-
logical risks [97,98]. Drones can be equipped with electromagnetic spectrum sensors and
gamma-ray sensors for atmospheric observation. Additionally, they can utilize biological
sensors for detecting airborne microorganisms and chemical sensors for analyzing element
concentrations [99].

Topic 17: Control/controller. Drones can be operated primarily through a control
system or a Ground Control Station (GCS). In the control system method, the user monitors
and controls the drone via a camera installed on the drone. In the GCS-based method, the
drone is connected to a computer using software, allowing it to execute mission commands
uploaded by the user [63].

Topic 18: Trajectory/propeller. To ensure the safe operation of drones, it is crucial
to design the propellers, which are the most important component in drone flight, to
be stable and durable. Consequently, several studies have proposed propeller designs
that are deformable and produce less noise by mimicking nature [100,101]. Furthermore,
trajectory planning, along with charging and security, is one of the three key factors in
drone routing [102]. Designing an optimal path that maximizes energy efficiency within
the constraints of the drone’s limited battery capacity and flight time is a critical issue. To
address this, research has been conducted to track the drone’s trajectory [33] and predict the
flight time required to complete a planned trajectory using machine learning methods [103].
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Topic 19: Disaster/humanitarian. Drones are utilized for delivering emergency relief
supplies, blood, medicines, and essential goods to people stranded in hazardous areas
during disasters and natural calamities [104]. Particularly, drones have the advantage
of delivering necessary items without requiring direct human access to these dangerous
regions, as long as flight is feasible. Consequently, drones are gaining attention as a key
aspect of humanitarian logistics.

Topic 20: Energy consumption. For the efficient operation of drones, energy consump-
tion, along with battery capacity, is a crucial factor. Energy consumption is a significant
limitation for drone delivery operations to realize their full potential in offering rapid
delivery, lowering costs, and reducing emissions [105].

5.3. Classification of 20 Topics

According to the characteristics of each topic, 20 topics can be classified into applicable
domain fields, operational/technical elements, and research trend analysis, as shown in
Table 2.

Table 2. Classification of 20 topics.

Classification Topics

Applicable
domain fields

Urban/Supply chain
Topic 4 (Service supply chain), Topic 6 (Urban

logistics/last-mile delivery), Topic 14
(Traffic/transportation)

Medical/Humanitarian Topic 3 (Health care), Topic 19 (Disaster/humanitarian)
Indoor logistics Topic 15 (Manufacturing plant)

Operational/technical
elements

Energy/Battery management Topic 8 (Battery charging), Topic 20 (Energy consumption)

Communication/Networking Topic 2 (Communication network),
Topic 5 (Communication protocol)

Routing/Trajectory optimization Topic 1 (Routing problem), Topic 18 (Trajectory/propeller)
Security Topic 13 (Security)

Regulations Topic 12 (Aircraft/airspace)
Sensing/Detection Topic 10 (Drone-based detection), Topic 16 (Sensor/sensing)

Autonomous decision/Control system Topic 9 (Learning-based decision), Topic 11 (Swarm),
Topic 17 (Control/controller)

Research trend analysis Topic 7 (Research/application review)

The applicable domain fields can be further subdivided into logistics (Topic 4 (Service
supply chain), Topic 6 (Urban logistics/last-mile delivery), Topic 14 (Traffic/transportation)),
medical/humanitarian (Topic 3 (Health care), Topic 19 (Disaster/humanitarian)), and indoor
logistics (Topic 15 (Manufacturing plant)).

The operational and technical elements are categorized into Energy/Battery management
(Topic 8 (Battery charging), Topic 20 (Energy consumption)), Communication/Networking
(Topic 2 (Communication network), Topic 5 (Communication protocol)), Routing/Trajectory
optimization (Topic 1 (Routing problem), Topic 18 (Trajectory/propeller)), Security (Topic 13
(Security)), Regulations (Topic 12 (Aircraft/airspace)), Sensing/Detection (Topic 10 (Drone-
based detection), Topic 16 (Sensor/sensing)), and Autonomous decision/Control system
(Topic 9 (Learning-based decision), Topic 11 (Swarm), Topic 17 (Control/controller)). Research
trend analysis includes Topic 7 (Research/application review).

Table 2 demonstrates that D-ML is being applied across various domains. The inclu-
sion of medical transportation and humanitarian logistics in the applicable domain fields
indicates that the integration of drones and multimodal systems is being considered not
only for urban/supply chains but also for a broader range of applications.

Furthermore, a variety of operational and technical elements required for the operation
of drones in conjunction with multimodal systems are included as topics. These range from
optimization and algorithm-related subjects, such as routing optimization and learning-
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based decision making, to regulations and engineering topics, including sensing, detection,
control, and energy management.

However, for the logistics involving drones within multimodal systems to become
more prevalent, research must go beyond individual topics and consider the integration
of multiple subjects. For instance, technical challenges remain in combining various
elements, such as optimizing routing and charging station networks while considering
drone regulations or establishing communication protocols that enhance security between
drones and multimodal modes. These integrated research efforts are essential for advancing
the field.

5.4. Identifying Hot and Cold Topics

A hot topic is defined as one where the trendline of the average yearly topic distribu-
tion per document has a positive slope, while a cold topic is one where the trendline has a
negative slope. Table 3 below presents the topics classified as hot or cold topics. The annual
average proportion values for each topic were calculated using Equation (10). Among the
total 20 topics, 14 were classified as hot topics and 6 as cold topics. Statistically significant
hot and cold topics were 10 and 1, respectively, all significant at the 0.05 level.

Table 3. Hot and cold topics.

Topic Type Topics Slope

Hot topics

Topic 1 (Routing problem) 0.0117 ***
Topic 4 (Service supply chain) 0.0044 ***

Topic 5 (Communication protocol) 0.0044 ***
Topic 10 (Drone-based detection) 0.0036 ***
Topic 9 (Learning-based decision) 0.0031 ***

Topic 3 (Health care) 0.0025 **
Topic 6 (Urban logistics/last-mile delivery) 0.0024

Topic 7 (Research/application review) 0.0024
Topic 13 (Security) 0.0023 ***

Topic 15 (Manufacturing plant) 0.0022 **
Topic 20 (Energy consumption) 0.0017 ***

Topic 19 (Disaster/humanitarian) 0.0014 **
Topic 18 (Trajectory/propeller) 0.0009

Topic 8 (Battery charging) 0.0003

Cold topics

Topic 14 (Traffic/transportation) −0.0165 **
Topic 11 (Swarm) −0.0049

Topic 2 (Communication network) −0.0033
Topic 16 (Sensor/sensing) −0.0027

Topic 17 (Control/controller) −0.0026
Topic 12 (Aircraft/airspace) −0.0011

** 0.001 < p-value ≤ 0.05; *** 0 ≤ p-value ≤ 0.001.

5.4.1. Hot Topics

The hottest topic was Topic 1 (Routing problem), likely due to the increasing impor-
tance of developing new frameworks for routing in various multimodal modes involving
drones. Among the multimodal modes set in this study (truck/vehicle, ship, robot), the
routing research for truck/vehicle and drones is the most actively conducted. This can
be attributed to the necessity of efficient routing strategies to optimize drone operations
within these modes.

The classification of Topic 4 (Service supply chain), Topic 6 (Urban logistics/last-
mile delivery), and Topic 15 (Manufacturing plant) as hot topics can be attributed to the
versatility of D-ML across the entire supply chain, as defined in Section 2. Specifically,
drones are increasingly recognized for their potential to enhance the efficiency of inland
transportation by overcoming road infrastructure limitations or congestion and enabling
3-dimensional delivery operations. This capability not only improves the effectiveness
of last-mile delivery and urban parcel distribution, which represent the final stages of
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the supply chain but also facilitates the transportation of raw materials and semi-finished
goods within manufacturing plants. These factors have driven significant attention towards
these topics, contributing to their classification as hot topics.

Particularly for Topic 6 (Urban logistics/last-mile delivery), the trend aligns closely
with recent industrial developments, where several logistics companies are actively build-
ing last-mile delivery systems utilizing drones [106,107]. This further underscores the
relevance of this topic in the current industrial landscape.

The classification of Topic 5 (Communication protocol) and Topic 13 (Security) as hot
topics can be attributed to the critical need to address various security challenges associated
with D-ML in order to facilitate its widespread adoption. Ensuring the secure operation
of drones in logistics systems is essential, and this has garnered significant attention from
the academic community. This is important because one of the obstacles hindering the
adoption of logistics drones is the threat to personal privacy and security concerns [33].
Similarly, security issues in drones are critical barriers that must be overcome to promote
the adoption of drones in the logistics sector. When implementing drones in logistics, it is
essential to enhance the security framework of the communication network due to the data
transmission involved. Re-examining this from a technological advancement perspective,
as explained in Section 5.2, several studies have proposed communication protocols to
enhance drone security [50,62–65]. For D-ML to be more widely adopted, particularly
in urban/last-mile delivery, where drone adoption is actively progressing, the potential
for massive data collection during deliveries to customers [33,108] requires that security
enhancements be considered in both the synchronous and independent modes of drone
delivery systems described in Section 2.1.

The classification of Topic 3 (Health care) and Topic 19 (Disaster/Humanitarian) as hot
topics can be attributed to the advantages of drone-based delivery. In medical emergencies
or disaster scenarios, the most critical factor is the speed of delivery when transporting
medical supplies, blood, or relief goods to affected areas. Drones offer the benefit of
bypassing road traffic and accessing areas that are otherwise unreachable due to disasters,
allowing for the rapid delivery of essential items, as explained in Section 5.2. This aligns
with the growing trend of utilizing drones for humanitarian logistics.

Topic 10 (Drone-based detection) and Topic 9 (Learning-based decision) have been
classified as hot topics due to the increasing ability to collect diverse data using drones
and the advancements in computing resources, which enable the application of complex
methodologies like machine learning, deep learning, reinforcement learning, and deep
reinforcement learning. The ability of drones to gather real-time data during operations
and to make real-time decisions based on this data is becoming central to the operation of
D-ML, thus increasing interest in these areas.

Finally, the classification of Topic 20 (Energy consumption) and Topic 8 (Battery charg-
ing) as hot topics is driven by the fact that drone energy consumption, battery charging,
and management are directly tied to the operational efficiency of D-ML, especially when
drones are integrated with trucks/vehicles, ships, and robots. These issues are critical for
the widespread adoption and expansion of D-ML, which has garnered significant atten-
tion from researchers. Since the operational efficiency of drone delivery is determined by
battery energy consumption, various research topics are emerging. These include the de-
velopment of VRP models considering drone energy consumption for drone delivery [109],
optimization of the charging station network for drone delivery [73], and the optimization
of charging station relocation for services where drones use public transportation to travel
near delivery areas before completing deliveries [110], similar to the synchronous mode
described in Section 2.1.

5.4.2. Cold Topics

Topics classified as “cold” were not those with minimal presence in the corpus but
rather those exhibiting a marked decline in their frequency of occurrence over the observed
period [42]. The coldest topic was Topic 14 (Traffic/Transportation). The classification
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of Topic 14 (Traffic/transportation) as the coldest topic can be inferred as follows: In
the logistics field, the terms “traffic” and “transportation” are primarily used to refer to
linehaul operations. However, due to the loading weight constraints and operational
efficiency of drones, they are predominantly utilized for last-mile delivery or in urban
environments rather than for linehaul operations. Therefore, it is hypothesized that Topic
14 (Traffic/transportation) is classified as the coldest topic.

Although the other topics were not statistically significant, Topic 11 (Swarm) was
classified as a cold topic, following Topic 14 (Traffic/Transportation) with the next smallest
slope. This can be attributed to the economic burdens and technical limitations associated
with applying drone swarms to D-ML. For D-ML to be more widely adopted in the future,
the size of drone fleets must increase to enable operations over larger networks. This would
require significant advancements in drone swarm research. However, as the number of
drones increases, so do the technical and operational complexities, as well as the associated
economic costs. These factors likely contribute to Topic 11 (Swarm) being classified as a
cold topic, as it has not yet garnered significant attention.

5.5. Dominant Topic over the Years

The dominant topic can be inferred from the topic distribution generated for each
document by LDA. In other words, the dominant topic of a document is the topic with
the highest probability in the topic distribution of that document. After determining the
dominant topic for each document, the changes in topics over the years can be analyzed
by categorizing them by subject, as illustrated in Figure 10 below. Figure 11 presents the
number of published articles over the years, with the x-axis representing the years and
the y-axis representing the number of published articles. The color coding indicates the
dominant topic of each article. This visualization allows us to understand the number of
published articles on each D-ML topic from 2004 to 2023, as well as the changing trends in
the dominant topics of these articles.

5.5.1. Dominant Topics in the Drone–Truck/Vehicle Subject over the Years

Figure 11a illustrates the changes in the dominant topics of documents related to the
drone–truck/vehicle subject over the years. Among the three subjects, this subject has the
highest number of documents, and consequently, the distribution of dominant topics per
document is more diverse compared to Figure 11b. Although there were some papers as
early as 2004, their presence was minimal until 2014. From 2015 onwards, the number of
papers has been steadily increasing, reaching up to 2023. This indicates that among the
three subjects, research on the application of drones in truck/vehicle logistics has been the
most actively pursued.

Notably, 2015 was a significant year, as the FAA proposed regulations to integrate
small UAS (under 55 pounds) into the U.S. civil aviation system, addressing safety rules,
operator certification, and operational limits [111]. Additionally, it was the year of the first
government-approved use of UAS for transporting medical supplies [112]. This regulatory
support and milestone event likely contributed to the surge in research and publications in
this area.

Since 2015, the most prominent topic has been Topic 1 (Routing problem), consistently
increasing in number. Most other topics, except for Topic 1, have also seen a steady rise since
2015. This indicates that much of the research applying drones to truck/vehicle logistics
focuses on establishing the routing required for integrating drones with trucks/vehicles.
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Indeed, both synchronous and independent modes of drone-assisted truck logistics,
summarized in Section 2.1, involve routing studies. For instance, in the synchronous
mode, a model combining the Vehicle Routing Problem with Drones (VRPDs) and drone
speed selection in the synchronous mode [113] and a model for the humanitarian vehicle
routing problem with synchronized drones (HVRP-SDs) considering time-varying weather
conditions [114] have been introduced. In the independent mode, VRPD and its extended
models [115] and a model for the independent mode, which is divided into two echelons:
main depot-truck and truck–drone, have been developed [116]. In the work of [116], the
model considers the capacities of both drones and trucks and aims to minimize the total
return time to the depot for both drones and trucks after completing deliveries.
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Since the subject of drone–truck/vehicle logistics frequently involves the application of
drones in truck deliveries, particularly for last-mile delivery, many studies have integrated
various topics with Topic 1 (Routing problem). In addition to research focusing solely on
specific topics, such as Topic 8 (Battery charging) within the context of drone–truck/vehicle
logistics [110], numerous studies have explored these topics in conjunction with Topic
1 (Routing problem). For instance, drone–truck delivery by considering both Topic 1
(Routing problem) and Topic 20 (Energy consumption) has been examined [117]. Similarly,
the integration of Topic 1 (Routing problem) and Topic 9 (Learning-based decision) by using
deep reinforcement learning to solve the VRPD [118]. This pattern indicates that within
the drone–truck/vehicle domain, research predominantly centers around Topic 1 (Routing
problem) while integrating it with other topics, resulting in more specialized subtopics.

Therefore, future research should aim to combine a broader range of topics to more
comprehensively explore the complex dynamics of drone–truck/vehicle logistics. This
would facilitate a deeper understanding and optimization of the various facets involved in
this field.

5.5.2. Dominant Topics in the Drone–Ship Subject over the Years

Figure 11b illustrates the annual changes in dominant topics within the drone–ship
subject. Although the number of papers is relatively small, there is a continuous effort to
apply drones in maritime logistics. Until 2019, the presence of such papers was minimal, but
there was a significant increase in 2020. Considering the outbreak of COVID-19 during this
period, it can be inferred that as the virus spread globally, many port workers and others
were infected, leading to delays in operations due to medical treatment and quarantine.
This increase in human and operational risks within the maritime industry [119] highlighted
the need for unmanned and automated logistics systems utilizing contactless technologies
like drones.

Since 2019, notable topics within the Drone–ship subject have included Topic 1 (Rout-
ing problem), Topic 4 (Service supply chain), Topic 6 (Urban logistics/last-mile delivery),
Topic 8 (Battery charging), Topic 9 (Learning-based decision), and Topic 20 (Energy con-
sumption). As explained in Section 2.2, ships primarily transport cargo in containers in
large quantities, and thus, research has focused more on the integration of drones with
shore and hinterland logistics rather than between ships. For instance, a ship to shore
delivery model using the case of Trinidad [119] and a ship to shore trajectory planning
approach aimed at improving the efficiency of transportation systems by using drones to
deliver parcels to sea vessels [120] were proposed.

In the industry, several examples of integrating drones with ships can be found. Air-
bus, in collaboration with Wilhelmsen Ships Services and the Maritime Port Authority
of Singapore, has used drones to deliver packages to ships anchored offshore. Similarly,
Wilhelmsen Ship Service significantly reduced costs by transporting spare parts and docu-
ments via drones [121]. Beyond ship to shore deliveries, drones are also utilized for port
inspection tasks. For instance, a survey among port industry stakeholders has revealed that
approximately 52% of respondents believe it is feasible to introduce autonomous drones
for port inspections within the next three years [122]. Additionally, drones can be utilized
for port geography monitoring, inspection, and anticipatory risk monitoring [123].

Although research integrating drones and ships has not been extensively conducted,
it can be inferred that this is a field with high potential for synergy. Thus, further studies,
particularly those related to Topic 10 (Drone-based detection), Topic 13 (Security), and
Topic 16 (Sensor/sensing), are necessary to explore these applications comprehensively.

5.5.3. Dominant Topics in the Drone–Robot Subject over the Years

Figure 11c illustrates the yearly trends in dominant topics within the drone–robot
subject. The first related paper appeared in 2013, and similar to the drone–truck/vehicle
domain, a diversification in topics has been observed since 2015.
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Notably, there was a significant surge in the number of publications in 2020. This
surge can be associated with the emergence of terms like “covid”, “19”, and “pandemic” in
the TF-IDF result and the onset of the COVID-19 pandemic in December 2019. It can be
inferred that the COVID-19 pandemic has heightened interest in unmanned delivery and
automation, leading to an increase in research on integrating drones with robots.

Since 2019, the most significant increase has been observed in Topic 1 (Routing prob-
lem). However, in the most recent year, 2023, its relative proportion has decreased, with
more research being distributed across other topics such as Topic 2 (Communication net-
work), Topic 4 (Service supply chain), Topic 6 (Urban logistics/last-mile delivery), and
Topic 9 (Learning-based decision). Additionally, in 2023, there has been a notable decline
in the proportions of Topic 3 (Health care), Topic 5 (Communication protocol), Topic 11
(Swarm), Topic 13 (Security), Topic 17 (Control/controller), Topic 18 (Trajectory/propeller),
Topic 19 (Disaster/humanitarian), and Topic 20 (Energy consumption). This indicates
that the most recent research on integrating drones with robots is predominantly focused
on PSSCs, urban logistics, and last-mile delivery, often leveraging AI algorithms such as
machine learning and deep learning.

Although a comparison of the number of papers on the drone–truck/vehicle subject
(Figure 11a) and the drone–robot subject (Figure 11c) indicates that more studies apply
drones to the truck/vehicle mode than integrating drones with robots, this does not neces-
sarily imply that the truck/vehicle mode is more suitable for drone applications. In less
densely populated areas, such as suburban regions, the synchronous or independent modes
of drone-assisted truck logistics are effective in reducing operational costs. Conversely, in
densely populated urban centers, using Autonomous Delivery Vehicles (ADVs) in conjunc-
tion with drones is more appropriate for cost reduction [116]. Therefore, it is essential to
consider the optimal operational strategy tailored to each specific context when integrating
drones with trucks/vehicles versus robots.

Although the relative importance of Topic 5 (Communication protocol), Topic 11
(Swarm), Topic 13 (Security), and Topic 20 (Energy consumption) has diminished recently,
there is still a need to enhance research on issues such as battery management in drone–
ADVs-integrated logistics systems, the formation of networks with larger drones (drone
swarms) and ADVs, and the establishment of robust real-time communication systems and
security protocols between drones and ADVs. In particular, further research is needed to
improve battery efficiency, optimize network formation processes, ensure communication
stability, and enhance security in these integrated systems.

6. Conclusions

In this paper, we proposed a unified and structured classification framework to sys-
tematically analyze research trends and topics in a wide range of D-ML studies using
TF-IDF, LDA, and Collapsed Gibbs Sampling techniques. We classified multimodality into
three categories: drone–truck, drone–ship, and drone–robot. Utilizing our proposed classi-
fication, we comprehensively reviewed and synthesized the extant research—comprising
2035 articles from 2004 to 2023—on D-ML.

Twenty key topics in general D-ML were derived and classified by their characteristics,
such as applicable domain fields, operational/technical elements, and research trend
analysis. The topic distribution, obtained from the LDA model results, was calculated
by year, and hot or cold topics were identified based on the trendline slope of the yearly
average distribution values for each topic. Additionally, we provided a deeper look at each
category to identify dominant topics by year and analyzed trends and shifts over time.
To the best of our knowledge, this is the first paper to propose a detailed classification
framework and review of D-ML using text mining methodologies.

In short, based on our proposed classification framework, we identified key topics
in the extant literature, conducted a comprehensive review of these topics, and provided
detailed discussions on the dominant themes within each category to infer future research
directions. Our key findings are summarized as follows:
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• Drone-assisted truck logistics

Current research trends: Current research in drone-assisted truck logistics focuses on
two operational modes: synchronous and independent. In the synchronous mode, trucks
and drones operate in tandem to complete deliveries, with trucks serving as mobile depots
from which drones are deployed. Key research areas include optimizing deployment
points, ensuring battery life, coordinating truck routes, and balancing load capacities. The
independent mode involves trucks and drones operating from a central depot, delivering
items independently but with coordinated scheduling. Studies in this mode explore efficient
allocation, route optimization, and the integration of drones into existing truck-based
systems to enhance delivery speed and efficiency.

Future research topics: Future research may focus on advanced optimization algo-
rithms for dynamic routing and scheduling, improved battery and energy management
systems, and the development of more robust coordination mechanisms between drones
and trucks. Additionally, addressing regulatory challenges, enhancing safety protocols, and
developing standardized communication systems between drones and trucks are critical
areas for future exploration. Investigating the environmental impacts and sustainability of
integrating drones with truck logistics also holds significant potential.

• Drone-assisted maritime logistics

Current research trends: Research in drone-assisted maritime logistics leverages
drones to enhance last-mile delivery from ships to coastal or remote areas. Key trends
include using drones for navigating congested port areas, improving loading and unloading
efficiency with innovative methods like the SPM, and facilitating ship-to-ship deliveries
without docking. Companies such as Maersk Tanker and the U.S. Navy have conducted
tests demonstrating the feasibility of drones for maritime logistics, emphasizing operational
efficiency and continuous operation benefits.

Future research topics: Future research should explore the integration of drones
with maritime logistics on a larger scale, focusing on enhancing drone capabilities for
longer distances and heavier payloads. Innovations in autonomous navigation systems,
robust communication networks for ship-to-shore and ship-to-ship interactions, and safety
certifications for maritime environments are crucial. Further studies on the economic
impacts, potential cost savings, and environmental benefits of drone-assisted maritime
logistics are also essential.

• Drone-assisted robot logistics

Current research trends: The integration of drones with ADVs represents a significant
frontier in logistics. Current research focuses on the synergies between drones and ground
robots, leveraging their respective strengths in payload capacity, range, and speed. Studies
explore synchronization mechanisms, efficient task allocation, and robust communication
protocols between drones and ADVs. Initial attempts have shown promising results, with
drones overcoming obstacles for ADVs and enhancing overall delivery efficiency.

Future research topics: Future research will likely address challenges in synchroniz-
ing drone and ADV operations, developing advanced obstacle detection and avoidance
algorithms, and securing regulatory approvals for integrated systems. Enhancing battery
efficiency, optimizing network formations, and improving real-time communication stabil-
ity between drones and ADVs are critical areas. Additionally, exploring the use of AI, such
as machine learning and reinforcement learning, for dynamic route optimization will be
vital for advancing drone-assisted robot logistics.

While we have proposed a coherent classification framework and identified evolving
research trends and issues in D-ML, further investigation is required to elucidate the
underlying factors driving these trends and issues. Although we briefly touched on this
within our paper, a deeper examination of pivotal industry events, key technological
advancements, and seminal papers that have contributed to the growing relevance of
D-ML would be beneficial. Additionally, based on these underlying factors, developing a
roadmap for future D-ML systems is essential. Our results primarily focus on technological
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and service aspects, but they are limited by regulatory disparities across countries, which
warrant further exploration.

Future research could benefit from employing more advanced topic modeling tech-
niques that build upon basic LDA, potentially yielding more refined and accurate results.
Additionally, if further in-depth analysis is conducted by incorporating detailed case stud-
ies for each mode of D-ML defined in this study or by including empirical data on 20 topics,
it is expected that the text-mining analysis results of this study will be substantiated.
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