
Citation: Chen, H.; Huang, D.; Wang,

C.; Ding, L.; Song, L.; Liu, H.

Collision-Free Path Planning for

Multiple Drones Based on Safe

Reinforcement Learning. Drones 2024,

8, 481. https://doi.org/10.3390/

drones8090481

Academic Editors: Yongzhao Hua,

Jianglong Yu and Chao Sun

Received: 29 July 2024

Revised: 7 September 2024

Accepted: 9 September 2024

Published: 12 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Collision-Free Path Planning for Multiple Drones Based on Safe
Reinforcement Learning
Hong Chen 1, Dan Huang 2 , Chenggang Wang 2,*, Lu Ding 1, Lei Song 2 and Hongtao Liu 3

1 School of Electrical Engineering, Guangxi University, Nanning 530004, China;
221391003@st.gxu.edu.cn (H.C.); dinglu@gxu.edu.cn (L.D.)

2 School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China; huangdan@sjtu.edu.cn (D.H.); songlei_24@sjtu.edu.cn (L.S.)

3 92281 Branch, Zhucheng 262200, China; liuht_buaa@163.com
* Correspondence: cgwang-auv@sjtu.edu.cn

Abstract: Reinforcement learning (RL) has been shown to be effective in path planning. However, it
usually requires exploring a sufficient number of state–action pairs, some of which may be unsafe
when deployed in practical obstacle environments. To this end, this paper proposes an end-to-
end planning method based model-free RL framework with optimization, which can achieve better
learning performance with a safety guarantee. Firstly, for second-order drone systems, a differentiable
high-order control barrier function (HOCBF) is introduced to ensure the output of the planning
algorithm falls in a safe range. Then, a safety layer based on the HOCBF is proposed, which projects
RL actions into a feasible solution set to guarantee safe exploration. Finally, we conducted a simulation
for drone obstacle avoidance and validated the proposed method in the simulation environment. The
experimental results demonstrate a significant enhancement over the baseline approach. Specifically,
the proposed method achieved a substantial reduction in the average cumulative number of collisions
per drone during training compared to the baseline. Additionally, in the testing phase, the proposed
method realized a 43% improvement in the task success rate relative to the MADDPG.

Keywords: reinforcement learning; control barrier function; multiple agents

1. Introduction

Autonomous path planning presents a significant challenge, necessitating the agent
to determine an optimal route from the initial position to the target destination while
effectively avoiding obstacles [1]. Reinforcement learning (RL) has exhibited significant
and encouraging results in the domain of agent path planning [2–6]. Meanwhile, safe
control strategies are essential for agents in the real world. Since RL focuses on maximizing
long-term returns, unsafe behaviors may be explored during the learning process. One of
the main obstacles limiting the application of RL algorithms to real-world problems is the
lack of safety guarantees, where agents using RL may make decisions based on reward
signals, thus violating safety constraints. For example, a car control agent in autonomous
driving may drive at high speeds for high rewards; however, this is highly unsafe in real-
world deployments [7].

Recent studies have targeted the development of innovative RL algorithms, such as
actor–critic, for constrained Markov decision processes (CMDPs) [8–10]. While these meth-
ods are valued for their broad applicability and straightforwardness, they often require a
model, or aim to meet safety constraints only in a probabilistic manner [11]. Alternatively,
some approaches focus on guaranteeing safety by constructing control barrier functions
(CBFs) that can ensure safety. Typically, these safe controllers are devised by incorporating
a safety filter into a reference controller. The combination of CBFs and model predictive
control (MPC) has achieved significant results in the obstacle avoidance problem [12–14].
Certainly, controllers that integrate reinforcement learning with control barrier functions

Drones 2024, 8, 481. https://doi.org/10.3390/drones8090481 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8090481
https://doi.org/10.3390/drones8090481
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-6468-4956
https://orcid.org/0000-0002-9401-3798
https://doi.org/10.3390/drones8090481
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8090481?type=check_update&version=2

Drones 2024, 8, 481 2 of 19

exist [15,16]. However, these controllers typically do not explicitly account for the action
modifications by the CBF layer within the RL algorithm’s loss function, treating the CBF
and RL as two separate controllers.

In this paper, we address the safety challenges during multi-drone training by propos-
ing a new RL framework. Unlike previous RL controllers, our framework explicitly inte-
grates the CBF-modified actions into the loss function, thereby enhancing learning efficiency
and ensuring compliance with safety constraints. The primary contributions of this paper
are as follows.

(1) We propose a safe learning framework based on the multi-agent deep deterministic
policy gradient (MADDPG) method. This framework introduces a high-order control bar-
rier function (HOCBF) with a relative degree of two, specifically designed for multi-drone
systems. By leveraging safety constraints derived from the HOCBF, we have developed a
differentiable safety layer that is integrated into the policy network, formulating a differen-
tiable quadratic programming problem essential for safe action correction. This integration
enables end-to-end learning by backpropagating the effects of optimization.

(2) We validate the effectiveness of the proposed algorithm through a series of simula-
tion experiments. Using consistent hyperparameters and simulation environment settings,
our method demonstrates a significant reduction in collision rates during training com-
pared to the benchmark method. Moreover, it significantly improves task success rates
after convergence.

2. Related Work

Reinforcement learning has increasingly been applied to path planning due to its
robust adaptability and model-free nature. Q-learning algorithms are employed for path
planning in unknown environments, enhancing planning capabilities in such scenarios;
however, in large and complex environments, these algorithms exhibit low learning effi-
ciency and suffer from reward sparsity issues [17]. To address this, Marc-André et al. [18]
proposed a proximity-based reward system and integrated it with various optimization
techniques and algorithms for path planning tasks. By assessing the performance of these
methods through metrics such as the total completion rate of the maze and the average
training time, they demonstrated that the combination of reward systems and optimization
techniques significantly reduced training time. Amala et al. [19] presented a UAV path
planning approach based on Q-learning for dynamic obstacle avoidance. This method
integrated a shortest distance priority policy and was compared against algorithms like
A* and Dijkstra. Their experimental results showed that the proposed method effectively
decreased the distance UAVs needed to travel to reach their targets.

To address the path planning challenges of mobile robots in dynamic environments, Li
et al. [20] proposed an enhanced version of the twin delayed deep deterministic policy gra-
dient (TD3) algorithm. This improvement targeted the low success rate and slow training
speed issues associated with the original TD3 algorithm in such settings. Their experimen-
tal results demonstrated that the enhanced TD3 algorithm exhibited superior performance
in generating effective path plans for mobile robots within continuous action spaces. Wang
et al. [21] introduced a DDPG algorithm incorporating multiple judging delays to mitigate
the overestimation problem inherent in the DDPG algorithm, with added noise to enhance
robustness. The simulation results demonstrated that the proposed algorithm achieved
high convergence speed and stability. Significant research has been conducted on multi-
UAV path planning. Westheider et al. [22] presented an innovative multi-agent information
path planning method based on DRL for UAV cooperation in adaptive terrain monitoring
scenarios. Their method employs a fleet of UAVs and integrates a novel network element
representation to facilitate efficient path planning within a 3D workspace. Addressing the
challenges of multi-UAV path planning in complex environments, Si et al. [23] developed a
multi-agent DRL (MADRL) framework. This framework models the path planning problem
as a partially observable Markov decision process and extends it to multi-agent scenarios
using the proximal policy optimization algorithm. By meticulously designing the state

Drones 2024, 8, 481 3 of 19

observation space, action space, and reward function, this framework ensures collision-free
path planning for multiple UAVs. Although reinforcement learning has achieved consider-
able success in path planning, many existing studies often neglect safety considerations
during the training phase.

Currently, numerous methods exist for ensuring the safety of RL, including La-
grangian approaches such as proximal policy optimization with Lagrangian constraints
(PPO-Lag) [24] and multi-agent PPO-lag (MAPPO-lag) [10]. A common feature of these
approaches is the utilization of constrained neural networks, where a loss function incorpo-
rating both cost and value is used to refine the evaluation network. However, these methods
do not ensure that all actions remain within the safe set during the training phase; safety is
only guaranteed upon convergence. Additionally, balancing the weights assigned to cost
and value parameters presents a significant challenge. Dalal et al. [25] proposed a safe filter
for model-free reinforcement learning that involves directly adding a safety layer to the
policy, constructing a quadratic programming problem to analytically resolve the correction
formula for each action. Sheebaelhamd et al. [26] extended this approach to a multi-agent
system with their soft-MADDPG framework, addressing infeasibility issues through soft
constraints. The experiments demonstrate that this soft formulation significantly reduces
constraint violations, ensuring safety even during the learning process. However, the
constraints for this safety layer are derived from a constraint network obtained through
pre-training, which requires violating constraints during training, contrary to the original
intention of safety. Elsayed-Aly et al. [27] proposed a centralized shielding framework for
MARL, but its practical application presents challenges. Its scalability is constrained by the
centralized shielding itself, and communication limitations further restrict its applicability.

To ensure the safety of RL and enhance exploration efficiency, CBFs have been incorpo-
rated with existing model-free RL algorithms, as demonstrated in [16]. CBFs, which act as
Lyapunov-like functions, extend safety guarantees [28]. The experiments in [16], conducted
on an inverted pendulum and an auto-following task, show that this approach improves
learning efficiency and ensures safety throughout the learning process when compared
to other state-of-the-art methods. However, the modifications to the actions by the CBF
layer are not explicitly included in the loss function of the RL algorithm in [16]. Instead, the
CBF layer is treated as part of an unknown transformation function, which may impede
learning when the agent adopts aggressive behaviors to avoid violating safety constraints.
Although Refs.[15,17] explored the integration of CBFs with RL, their focus was primarily
on single-agent systems. Multi-agent CBFs were introduced in [18], with different CBFs
designed for each agent. Cheng et al. [29] proposed robust multi-agent CBFs to address
uncertainties in both agents and their environments, ensuring safety with high probability
in scenarios involving multiple uncontrolled and uncertain agents. However, despite the
contributions of [18,29] to multi-agent safety, each agent is treated as an isolated entity,
lacking inter-agent coordination.

The integration of CBFs with various control strategies and learning algorithms has
proven to be a promising approach for enhancing the safety and reliability of dynamic sys-
tems. In this paper, we adopt a centralized training and distributed execution framework in
MADRL to achieve multi-drone path planning. To address the initial safety challenges dur-
ing reinforcement learning training, we integrate a distributed and differentiable high-order
CBF layer with the actor network, ensuring safety constraints for each drone.

3. Problem Definition and Necessary Theory
3.1. Problem Description

As illustrated in Figure 1, the environment contains N quadcopters (depicted as blue
drones), with each drone’s position denoted by pi

d = (xi
d, yi

d), i = 1, . . . , N. Additionally,
there are M circular obstacles (gray circles), each with a radius of rk

obs and positions denoted
by pobs = (xk

obs, yk
obs), i = 1, . . . , M. Each drone has a corresponding target point located at

ptar = (xi
tar, yi

tar), i = 1, . . . , N. The objective for each drone is to navigate to its assigned
target point while avoiding collisions with both static obstacles and other drones. The

Drones 2024, 8, 481 4 of 19

mission of an individual drone is considered complete when its distance to the target is
less than a specified threshold ζrange. The overall mission is considered successful when all
drones reach their designated target points without any collisions.

Figure 1. The scenario of multi-drone path planning.

3.2. Drone Dynamics Model

When the drone is assumed to be flying at a constant altitude, it can be modeled as
moving in a two-dimensional plane. As noted in [30], the aerodynamic force in the vertical
direction can be decomposed into components along the x and y axes to control acceleration
in both directions. Therefore, the dynamics of the drone are

ṗd = v, v̇ = u. (1)

As shown in Figure 2, where p = [xd, yd] represents the position in the two-dimensional
plane, u = [ax, ay] denotes the force acting in the x and y directions, and v = [vx, vy] denotes
the velocity vector of the drone.

Figure 2. Schematic of drone‘s motion.

3.3. Control Barrier Function

The control barrier function ensures the safety of the operation by defining a safety
set in the state space of the system and ensuring that the system complies with specific

Drones 2024, 8, 481 5 of 19

security constraints so that the system state remains within this set. Consider an affine
control system of the form

ẋ = f (x) + g(x)u, (2)

where x ∈ Rn, f : Rn → Rn and g : Rn → Rn×q are locally Lipschitz functions, and
u ∈ U ⊂ Rq (with U representing the control constraint set). The safe set is given by
C = {x ∈ Rn : h(x) ≥ 0}. If the time derivative of h(x) satisfies [28]

ḣ(x, u) =
∂h
∂x

(f (x) + g(x)u) ≥ −α(h(x)), (3)

where α is a class K function. This ensures that if the system starts within the safe set, it
will remain there at all future times. In the environment shown in Figure 1, we require that
the drone does not collide with friends and obstacles. Take obstacles as an example, it is
required that at all times the distance between the drone and the obstacle is greater than a
safe distance (constant δobs > 0), i.e.,

∥pd − pobs∥2 ≥ δ2
obs. (4)

Let x := (pd, v) and h(x) = ∥pd − pobs∥2 − δ2
obs. Therefore, we can determine that the

set of control inputs that ensure the drone avoids collision with obstacles constitutes the
action safety set. For a dual-integrator drone system, Equation (3) can be expressed as
follows:

2(pd − pobs)
Tv︸ ︷︷ ︸

∂h(x)
∂x f (x)

+ 0︸︷︷︸
∂h(x)

∂x g(x)

×u ≥ −(∥pd − pobs∥2 − δ2︸ ︷︷ ︸
h(x)

). (5)

For simplicity, we set α(·) as the identity function. As indicated by Equation (5),
the control input u does not explicitly appear in the constraint, making it challenging to
formulate a quadratic programming problem using the CBF constraint. Therefore, we
employ higher-order CBFs to address the issue of implicit control.

For high-order CBFs, the formulation involves the derivatives of the barrier function
up to the order corresponding to the system’s relative degree. For a system with the relative
degree r, the higher-order CBF condition can be expressed as follows [31]:

ψ0(x) = h(x),

ψ1(x) = ψ̇0(x) + α1(ψ0(x)),

ψ2(x) = ψ̇1(x) + α2(ψ1(x)),

:

ψr−1(x) = ψ̇r−2(x) + αr−1(ψr−2(x)),

(6)

so the higher-order CBF condition then becomes

ψ̇r−1(x, u) + αr(ψr−1(x)) ≥ 0, (7)

or more generally
Lr

f h(x) + LgLr−1
f h(x)u + S(h(x)) ≥ 0, (8)

where S(h(x)) = ∑r−1
i=1 L

i
f (αr−i ◦ ψr−i−1)(x). This formulation ensures that the higher-

order derivatives of the barrier function satisfy the required conditions to enforce safety
constraints for systems with higher relative degrees. In this paper, we consider the case
that αi is a linear function. In the given form, the HOCBF condition can be written as [31]

sup
u∈U

[
Lr

f h(x) + LgLr−1
f h(x)u + Kαηα(x)

]
≥ 0, (9)

Drones 2024, 8, 481 6 of 19

where Kα is a row vector and ηα(x) is defined as

ηα(x) :=

h(x)
ḣ(x)
ḧ(x)

...
h(r1)x)

 =

h(x)
L f h(x)
L2

f h(x)
...

Lr−1
f h(x)

, (10)

where L f and Lg denote Lie derivatives of the function h(x) with respect to f and g. Li
f h(x)

represents the i-th Lie derivative of h with respect to the vector field f , and LgLr−1
f h(x)

represents the Lie derivative of Lr−1
f h(x) with respect to g. For second-order drone systems,

assuming the functions α1 and α2 are linear for simplicity, we can express them as follows:

α1(h(x)) = k1h(x), α2(ḣ(x)) = k2ḣ(x). (11)

Thus, the HOCBF condition is simplified to

ḧ(x) + k2ḣ(x) + k1h(x) ≥ 0. (12)

By combining terms and expressing in matrix form, we obtain

ḧ(x) + K ·
[
h(x) ḣ(x)

]T ≥ 0, (13)

where K = [k1 k2].

4. Proposed MADDPG-CBF Algorithm for Multi-Drone Path Planning

According to Theorem 3 in [31], when h satisfies the conditions outlined in (9), the
system is forward-invariant within the safety set, and the control input u that meets the
constraints ensures system safety at any time t. We incorporated the CBF constraints into
the MADDPG algorithm to guarantee that the policy output from the RL process adheres to
safety guarantees, and into RL in order to make the policy output network satisfy the safety
constraints. It is necessary to make the process of optimizing and solving the security policy
differentiable with respect to the input of the network, i.e., the effect of the secure policy on
the reward function can be propagated back to the input in the reverse direction; therefore,
we make use of a differentiable QP (DiffQP) [32] (in simulation, corresponding to python’s
qpth package), and by combining HOCBF with DiffQP, we design the core architecture
of this paper—a multi-agent safe RL architecture. A safety layer comprising HOCBF is
employed to correct potentially unsafe actions of drones within the actor network. The
specific action correction formula is detailed in Section 4.3.

4.1. Multi-Agent Markov Decision Process

In MADRL, the Markov decision process (MDP) for single-agent scenarios is extended
to handle multiple agents interacting within a shared environment. The fundamental
process is illustrated in Figure 3.

The multi-agent MDP (MAMDP) can be expressed as a tuple ⟨S, {ai}N
i=1, A, ρ, {ri}N

i=1, γ⟩,
where S represents the global state space of the environment, and N is the number of agents.
Each agent i has an individual action space ai, and the joint action space A is defined as
A = a1 × a2 × · · · × aN . The state transition function ρ : S× A× S′ → [0, 1] represents the
probability of transitioning from the current state st ∈ S to the next state st+1 ∈ S′. The
reward function for the agent i is denoted as ri, and the discount factor for future rewards
is represented by γ ∈ [0, 1].

In an MAMDP, each agent i (for i = 1, . . . , N) selects its action ai as part of a joint
action a = (a1, a2, . . . , aN). Upon executing this joint action, the environment transitions
from the current state st to the next state st + 1 and provides a reward. Each agent then

Drones 2024, 8, 481 7 of 19

updates its strategy based on the received reward and the observed state transition. This
iterative process of action selection, state transition, and reward feedback continues as
agents aim to maximize their cumulative return. Through repeated interactions with the
environment, agents seek to refine their strategies to achieve optimal performance.

Figure 3. Multi-agent Markov decision process.

4.2. Multi-Agent Deep Deterministic Policy Gradient

MADDPG is a representative algorithm in MADRL that extends the DDPG algorithm
to multi-agent systems. It efficiently handles continuous action spaces, offering advantages
over stochastic strategies. The MADDPG framework employs a network architecture that
combines centralized evaluation with decentralized execution. In this architecture, each
agent utilizes its own actor and critic networks. In MADDPG, each agent determines its
optimal policy by maximizing cumulative rewards. For agent i, this can be expressed
as follows:

π∗ = arg max ∑
t
E(st ,uRL

t)∼ρπ
[r(st, uRL

t)], (14)

where st represents the current state at time t, and uRL
t denotes the action taken by the

agent in the current state. The state transition probability distribution is denoted by ρπ

and r(st, uRL
t) represents the reward value provided by the environment for the given

state–action pair. The MADDPG algorithm employs an actor–critic method, where the
Q-value network is parameterized by θ and the policy network is parameterized by by ϕ.
Consequently, the loss function for the Q-value network can be formulated as follows:

JQ(θ) = E(st ,uRL
t)∼DR

[
1
2
(Qθ(st, ut)− (r(st, uRL

t) + γEst+1∼p[Vθ̄(t+1)]))
2], (15)

where
Vθ̄(st) = EuRL

t ∼πϕ
[Qθ̄(st, uRL

t)]. (16)

The replay buffer is denoted byDR, and θ̄ represents the parameters of the target Q-network.
Consequently, the policy loss can be expressed as follows:

Jπ(ϕ) = Ext∼DR [EuRL
t ∼πϕ

[−Qθ(st, uRL
t)]]. (17)

Drones 2024, 8, 481 8 of 19

4.2.1. Action Space

In this paper, we consider the continuous action space of the drone, represented as
a 2D velocity vector (([vx, vy]), allowing the drones to move with variable velocities in
any direction. Additionally, to ensure the mission control aligns closely with real-world
conditions, as detailed in the drone dynamics model in Section 3.2, the model output is

ui =

[
ai

x
ai

y

]
, (18)

where ai
x, ai

y denote the acceleration of the drone in the x and y directions. The correspond-
ing velocity can be obtained through the following velocity formula:

vi
t =

[
vi

x,t
vi

y,t

]
=

[
vi

x,t−1 + ai
x · ∆t

vi
y,t−1 + ai

y · ∆t

]
, (19)

where vi
x and vi

y represent the speed of the drone in the x and y directions, respectively,
and ∆t represents the time interval.

4.2.2. State Space

The state space of the drone provides valuable insights based on the agent’s observa-
tion model, enabling the agent to perceive its environment and make informed decisions.
In multi-drone path planning, the width and length of the mission scenario are set as lwidth
and llength, respectively. The state information of the drone itself is set as

ouavi =

[
xi

lwidth
,

yi

llength
,

νi
x

νmax
,

νi
y

νmax

]
, (20)

where xi and yi represent the horizontal and ordinate values of the i-th drone, respectively.
vmax is the maximum speed set for a drone. For the i-th drone, the information of other
drones is

oteameri =

[
xi − xj

lwidth
,

yi − yj

llength

]
, i ̸= j. (21)

The target information obtained by it is

otarget i
= [di,tar, θi] =

∥∥∥(xk

tar, yk
tar

)
−

(
xi, yi)∥∥∥

2∥∥∥lwidth + llength

∥∥∥
2

, arctan
yk

tar − yi

xk
tar − xi

, (22)

where xk
tar and yk

tar represent the horizontal and ordinate values of the target k respectively,
and di,tar and θi represent the distance and relative azimuth vectors between the drone and
all targets, respectively. The target information obtained by it is

oobstaclei = [di,obs] =

∥∥∥(xk

obs, yk
obs

)
−

(
xi, yi)∥∥∥

2∥∥∥lwidth + llength

∥∥∥
2

, (23)

where xk
obs and yk

obs represent the horizontal and ordinate values of the obstacle k, respec-
tively. di,obs represents the distance vector between the drone and all obstacles. Finally, for
the i-th UAV, its observation information is

Oi =
[
odrone , oteamer , otarget , oobstacle

]
. (24)

Drones 2024, 8, 481 9 of 19

Due to the partial observability of the problem, observations from a single drone do
not fully capture the true state of the environment. To ensure the stability of MADRL, we
define the observation set as the state of the training environment for all drones, where

S =
[
O1, O2, · · · , ON

]
. (25)

4.2.3. Reward Function

Rational reward design is crucial for reinforcement learning. In single-agent path
planning, the agent only needs to consider its relative distance to the target. However,
in multi-agent path planning, each agent must account for the uncertainty introduced by
other team members to achieve efficient multi-path planning with minimal cost. Therefore,
designing effective reward features is critical to ensure the successful attainment of multiple
goals. In this section, we design the reward function to address different environmental
factors. (1) For targets, the reward function includes a distance reward ri

distance and an
arrival reward ri

reach ; (2) for team members, it incorporates a safety reward ri
safe, team to

maintain collision-free interactions, including collision penalties and a synergy reward
ri

team . (3) For obstacles, the reward function includes a collision penalty ri
safe, obs to ensure

avoidance of collisions.

ri
distance = −

(∥∥∥(xi
tar, yi

tar)− (xi, yi)
∥∥∥

2

)
, (26)

ri
reach =

{
1,
∥∥(xi

tar, yi
tar

)
−

(
xi, yi)∥∥

2 ≤ ζrange,
0, else ,

(27)

ri
safe, team =

{
−1,

∥∥∥(xj
obs, yj

obs

)
−

(
xi, yi)∥∥∥

2
≤ δsa f e, j ̸= i,

0, else ,
(28)

ri
team =

{
5, ∑

Ntargets
k=1 min

(
1, ∑

Nagents
i=1 ri

reach

)
= Ntargets ,

0, else ,
(29)

ri
safe, obs =

{
−1,

∥∥∥(xk
obs, yk

obs

)
−

(
xi, yi)∥∥∥

2
≤ δobstacle,

0, else ,
(30)

where ri
distance denotes the negative of the Euclidean distance to the nearest target; ζrange is

used to judge whether the agent completes the task or not; δsa f e and δobstacle denote the safe
distance to friendly agents and obstacles, respectively. The reward function for agent i can
be formulated as follows:

ri
agent = β1ri

distance + β2ri
reach + β3ri

safe,team + β4ri
team + β5ri

safe,obs , (31)

where β1–β5 are constants, which are used to balance the weights among various rewards
and ensure that the agent converges in a positive direction. β1–β5 are all positive. In the
subsequent experiments, all parameters are set to 1.

4.3. Proposed MADDPG-CBF Algorithm

In this subsection, we present the safety layer based on the differentiable CBF-QP.
Combining inequality (13) for drones with a relativity of 2, CBF-QP takes the form

u∗sa f e(x) = argmin
(u,ϵ)∈Rq+1

1
2
(u− uRL)TH

(
u− uRL

)
+ K2

ϵϵ2

s.t. ḧ + K · [h ḣ]T ≥ −ϵ

umin ≤ u ≤ umax,

(32)

Drones 2024, 8, 481 10 of 19

where ḧ is affine in u. The slack variable ϵ ∈ R ensures the feasibility of the QP. The term
(Kϵ > 0) is a larger weighting factor used to minimize safety violations. K is a gain matrix.

We use the QP solver to carry out the solution of (31), so it takes the form

ū∗(x) = argmin
ū=[u,ϵ]⊤∈R3

1
2

ū⊤Qū + q⊤ū

s.t.Acbf
1 ū ⩽ bcbf

1

Au
2 ū ⩽ bu

1 ,

(33)

where

Q =

1 0 0
0 1 0
0 0 Kϵ

, q =

[
−uRL

2×1
0

]
, (34)

the constraint parameters are

Acbf
1 = [−LgL f h(x)

1×2
,−1], bcbf

1 = L2
f h(x) + K · [h ḣ]T

Acbf
2 =

[
−I2×2 0

0 0

]
, bu

2 =

[
umax2×1

0

]
.

(35)

The HOCBF-based optimization process illustrated in Figure 4 minimally adjusts
the RL policy to ensure system safety. Naively combining the actions of actor networks
with CBF-QP, as discussed in [16], is problematic. Specifically, the training of the RL
policy does not consider the effects of CBF-QP, and the final action performed in the
environment is a modified safe action generated by the CBF layer. However, the updates
in Equations (15) and (17) are generally based on potentially unsafe RL actions. This is
equivalent to the safety layer being part of the transition dynamics with respect to the RL
algorithm. Consequently, significant changes in the output of the safety layer often occur
near unsafe states, which can complicate the learning process.

Figure 4. Safety correction schematic. At time step t, the RL agent outputs a potentially unsafe control
uRL

t , which is then rendered safe by the CBF controller.

In Figure 5, the action correction procedure is distributed and embedded into the actor
network of each agent to ensure individual safety, leveraging each agent’s own observation
state, which ensures scalability. In order to make the safe actions more efficiently trained for
the RL controller, we propose explicitly considering the output of the safety layer in the RL
loss, significantly improving learning performance. We utilize a differentiable version of
the safety layer to backpropagate through the QP, thereby explicitly interpreting the output
of the QP in the RL loss. We employ the differentiable optimization framework introduced
in [32,33], which utilizes KKT conditions and matrix operations to compute the gradient
efficiently, and the computed gradient directly affects the tuning of each parameter in the
optimization process, allowing the RL network to be progressively optimized and improve
performance.

Drones 2024, 8, 481 11 of 19

Figure 5. A diagram of the proposed framework. The safety layer is integrated into the actor network.

Thus, we can explicitly obtain the safe operation updates in (36) and (38) and back-
propagate these updates in an end-to-end manner via the CBF-QP, such that the loss of the
MADDPG is given by the following equation:

JQ(θ) = E
(st ,u

sa f e
t)∼DR

[
1
2
(Qθ(st, usa f e

t)

− (r(st, usa f e
t) + γEst+1∼p[Vθ̄(st+1)]))

2],
(36)

where
Vθ̄(st) = E

usa f e
t ∼πϕ

[Qθ̄(st, usa f e
t)], (37)

and
Jπ(ϕ) = Est∼DR [Eusa f e

t ∼πϕ
[−Qθ(st, usa f e

t)]], (38)

where usa f e
t is derived from (32). In summary, the MADDPG-CBF algorithm proposed

in this paper integrates a differentiable CBF layer with an actor network to ensure safety
during training and directly impact the learning process. The complete MADDPG-CBF
algorithm is outlined in Algorithm 1.

Drones 2024, 8, 481 12 of 19

Algorithm 1 MADDPG-CBF

1: Initialize
2: for episode = 1 toM do
3: Reset the environment and receive the initial state s = {o1, o2, . . . , oi, . . . , oN}.
4: for t = 1 to T do
5: for all drone i do
6: In actor-network, get action ui = πϕ(oi) + N(action, noise)

7: Obtain safe action usa f e
i (oi) from (32)

8: end for
9: Execute usa f e

1 , . . . , usa f e
N , receive rewards r1, . . . , rN , and next state s′

10: Store experiences (s, usa f e
1 , . . . , usa f e

N , r1, . . . , rN , s′) in DR
11: end for
12: for all drone i do
13: Randomly extract m samples (sk, usa f e

k , rk, s′k)
14: Update the critic network according to Equation (36).
15: Update the actor-network according to Equation (38).
16: end for
17: Soft update target networks by θ′ ← τθ + (1− τ)θ′, ϕ′ ← τϕ + (1− τ)ϕ′

18: end for

5. Experiment and Result Analysis
5.1. Experimental Setup

The experimental platform is a two-dimensional plane in the shape of a square, with
each side measuring 2 km. There are two obstacles in the plane, each with a radius of
robs = 0.2 km. The drone has a radius of 0.1 km. It is assumed that the drone and obstacles
are randomly placed in the scene while ensuring that the initial distances between the
drone and each obstacle exceed the safety distance. Each target point in the scene can be
seen as a mass point; for each drone, in the case of no collision, when the distance between
the center of mass and the target point is less than 0.01 km, this can be seen as a successful
completion of the task. Table 1 lists the key parameters for the environment and drones.

Table 1. The parameter settings for the agent platforms in the multi-drone environment.

Drone Parameter Symbol Value

Initial velocity v0 0 km/s
Boundary length lwidth, llenth 2 km
Maximum velocity vmax 0.05 km/s
Maximum acceleration amax 0.01 km/s2

Safe distance for drone δsa f e 0.2 km
Safe distance for obstacle δobs 0.3 km

In the DRL-based multi-drone framework, both the actor and critic networks utilize a
two-layer perceptron architecture. The actor network, along with its target network, consists
of fully connected layers with the following dimensions: 22× 128× 64× 2. Similarly, the
critic network and its target network are structured with fully connected layers of size
24 × 128 × 64 × 1. To observe drone movements more effectively, the environment is
configured not to terminate upon collision. Instead, it only resets when the agent exceeds
the maximum number of steps allowed per episode. The Adam optimizer is used to update
the neural network parameters after the replay buffer accumulates the designated batch
size. For a comprehensive overview of the network hyperparameters, refer to Table 2.

Drones 2024, 8, 481 13 of 19

Table 2. The detailed parameter settings of drone training.

Parameter Symbol Value

Replay buffer DR 100,000
Max episode M 10,000
Max step T 100
Learning rate la, lc 0.005
Discount factor γd 0.95
Soft update rate τ 0.01

5.2. Results Analysis

We evaluate the performance of the proposed algorithms using three key metrics: the
average reward, the average cumulative number of collisions during the training phase,
and the average cumulative number of collisions in the testing phase after convergence. We
benchmark four distinct DRL strategies: MADDPG, IDDPG (where IDDPG uses distributed
training), IDDPG-CBF, and MADDPG-CBF. IDDPG-CBF and MADDPG-CBF can correct po-
tentially dangerous actions in the actor network using formula (32). In addition, we analyze
the performance of the drones under unsafe initialization (UI) and safe initialization (SI).

For simplicity, we present only the average reward in the SI, as depicted in Figure 6.
The average reward is computed as the mean reward of three agents. Interestingly, we
observe a similar trend in all algorithms, which are not affected by constraints. Compared
to IDDPG and MADDPG, both IDDPG-CBF and MADDPG-CBF achieve higher rewards
at the final stage of convergence, indicating that the addition of the safety layer enhances
reward acquisition. MADDPG-CBF outperforms IDDPG-CBF because centralized training
enables agents to choose more optimal actions from a global perspective, resulting in
greater reward feedback.

Figure 6. An illustration of the average reward per drone during training. We note that higher
rewards are obtained by adding a safety layer.

Figure 7 shows the average number of cumulative collisions per drone during the
training period. As expected, a large number of collisions were observed in the MADDPG
and IDDPG algorithms both in the UI and SI states, due to unsafe exploration in the
early stages. In contrast, the average cumulative number of collisions in the IDDPG-CBF

Drones 2024, 8, 481 14 of 19

and MADDPG-CBF algorithms is greatly reduced and even tends to zero, indicating that
incorporating CBF constraints can effectively reduce unsafe exploration, thereby validating
the effectiveness of our algorithm. Figure 8 shows the average number of cumulative
collisions per drone during the test simulations. It is worth noting that even during the
convergence phase, IDDPG-CBF and MADDPG-CBF have far fewer collisions than their
base methods.

(a) Unsafe Initialization (b) Safe Initialization

Figure 7. An illustration of the average cumulative number of collisions per drone throughout the
training period for both UI and SI.

(a) Unsafe Initialization (b) Safe Initialization

Figure 8. An illustration of the average cumulative number of collisions per drone throughout the
test period for both UI and SI.

During the testing phase, we observed the trajectory plots of each drone in SI for a par-
ticular round under the same random seed, as shown in Figure 9. It is evident that all three
drones exhibit anomalous trajectories in the IDDPG and MADDPG algorithms, particularly
in the folded portions of the graph. These anomalies are due to sudden changes in trajecto-
ries caused by mutual collisions between the drones. Although all drones eventually reach
their target points, these anomalous trajectories indicate a failure in mission completion.
Although no anomalous trajectories were observed in the IDDPG-CBF, two drones still
failed to reach the target point. This is also considered a mission failure. In contrast, in the
MADDPG-CBF algorithm, none of the drones displayed abnormal trajectories, effectively
avoiding the risk of collisions with obstacles and other team members, and successfully
reaching their target points.

Drones 2024, 8, 481 15 of 19

1

Figure 9. Trajectory paths of drones in a specific testing round. The green dots represent the target
points of each drone.

To thoroughly analyze the maneuvering decisions of the drones throughout the pro-
cess, we selected drone 1 as the primary object of study. We plotted several critical metrics
including the barrier functions (where h1 = ∥p1

d − p2
d∥

2 − δ2
sa f e, h2 = ∥p1

d − p3
d∥

2 − δ2
sa f e,

h3 = ∥p1
d − p1

obs∥
2 − δ2

obs , h4 = ∥p1
d − p2

obs∥
2 − δ2

obs), distance to the target, output ac-
tions, and positional variations during a specific round. This approach enables a deeper
understanding of drone 1’s decision-making process in obstacle avoidance and target con-
vergence, providing a clearer evaluation of its trajectory planning and control actions.

As illustrated in Figure 10, during the initial phase of the mission (0–16 s), drone
1 accelerates in the x-direction to approach the target as swiftly as possible, as depicted
in Figure 10f. As the distance to the target decreases, drone 1 reduces the magnitude of
acceleration in the x-direction and adjusts the y-direction acceleration to achieve a smooth
and low-speed approach to the target (16–30 s). At T = 30 s, drone 1 has reached the target
as shown in Figure 10e. However, the proximity of drone 2 introduces a potential collision
risk. In response, drone 1 adjusts its accelerations in both x- and y-directions to avoid a
collision with drone 2 and subsequently returns to the target position once the risk has been
mitigated. The specific changes in position and control actions during the interval from
35 s to 45 s are detailed in the schematic diagrams of Figure 10e–g. Throughout the process,
drone 1 consistently maintains a significant safe distance from the two fixed obstacles. As
a result, the analysis of the obstacle functions h3 and h4 is not extensively emphasized.

Drones 2024, 8, 481 16 of 19

We can see that it can also effectively apply safety corrections for cooperative obstacle
avoidance between multiple drones when a single drone reaches a target point.

Finally, to explore the impact of the proposed safety layer on the success rate of the
task. Under SI, we conducted 100 rounds of tests. The success rates, along with their 95%
confidence intervals, are shown in Table 3. In these tests, any collision was regarded as a
task failure.

(a) The variation curve of the barrier function h1, where the black dashed line indicates the zero
boundary, serving as the safety limit for h1 to h4.

(b) The variation curve of the barrier function h2.

(c) The variation curve of the barrier function h3.

(d) The variation curve of the barrier function h4.

(e) The variation curve of the drone-target distance, with the black dashed line indicating a threshold
where ζrange = 0.01. The drone is considered to have successfully reached the target when the
distance is below this threshold.

Drones 2024, 8, 481 17 of 19

(f) The variation curve of acceleration, with the black dashed line indicating the maximum and
minimum acceleration limits.

(g) Variation in drone position.
Figure 10. Variation in control barrier functions, target distance, acceleration, and position change for
drone 1.

Table 3. A comparison of the success rates of the four algorithms was conducted over 100 test rounds.

Algorithm Success Rate

IDDPG 37%± 7.19%
IDDPG-CBF 72%± 7.19%
MADDPG 40%± 7.19%

MADDPG-CBF 83%± 7.19%

Table 3 shows that the success rate of IDDPG-CBF is approximately 35% higher than
DDPG without collisions, while MADDPG-CBF achieves about 43% higher success rates
compared to the unconstrained MADDPG. Additionally, MADDPG-CBF outperforms
IDDPG-CBF by around 11%. These results demonstrate that the proposed method signifi-
cantly improves success rates over the baseline methods.

6. Conclusions

In this paper, we propose a model-free RL framework for the path planning of multiple
drones in a continuous action space. This framework incorporates a safety layer based
on a differentiable HOCBF to ensure safe actions. To validate the proposed method, we
conducted a simulation where multiple drones navigated from an initial position to a target
position while avoiding collisions and obstacles. The results demonstrate that our algorithm
significantly reduces the number of collisions during training, with the average cumulative
number of collisions per drone being approximately 1/800 of IDDPG and MADDPG.
Additionally, the success rate of the task in the testing phase is 43% higher compared to
MADDPG, with collisions being absent. These results indicate that the proposed method
effectively facilitates drone path planning and obstacle avoidance, ensuring safe operation.
In future work, we will extend this approach to 3D space to enhance practical applicability.

Author Contributions: Conceptualization, D.H. and C.W.; methodology, C.W. and L.S.; software,
H.C.; validation, H.C.; formal analysis, C.W.; investigation, H.C. and C.W.; resources, L.S. and H.L.;
data curation, C.W.; writing—original draft preparation, H.C. and C.W.; writing—review and editing,
C.W. and L.D.; visualization, C.W.; supervision, L.S. and C.W.; project administration, D.H.; funding
acquisition, L.S. All authors have read and agreed to the published version of the manuscript

Funding: This work was supported by the National Natural Science Foundation of China (62303316),
Science Center Program of National Natural Science Foundation of China (62188101), Fellowship of
China National Postdoctoral Program for Innovative Talents (BX20240224), Oceanic Interdisciplinary

Drones 2024, 8, 481 18 of 19

Program of Shanghai Jiao Tong University (SL2022MS010) and Joint Fund of Equipment Pre-Research
and Ministry of Education of China (8091B022235).

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare that they have no known competing financial interests
orpersonal relationships that could have appeared to influence the work reported in this paper.

References
1. Guo, Z.; Meng, D.; Chakraborty, C.; Fan, X.-R.; Bhardwaj, A.; Yu, K. Autonomous Behavioral Decision for Vehicular Agents Based

on Cyber-Physical Social Intelligence. IEEE Trans. Comput. Soc. Syst. 2023, 10, 2111–2122. [CrossRef]
2. Fu, G.; Gao, Y.; Liu, L.; Yang, M.; Zhu, X. UAV Mission Path Planning Based on Reinforcement Learning in Dynamic Environment.

J. Funct. Spaces 2023, 2023, 9708143. [CrossRef]
3. Khamidehi, B.; Sousa, E.S. Reinforcement-Learning-Aided Safe Planning for Aerial Robots to Collect Data in Dynamic Environ-

ments. IEEE Internet Things J. 2022, 9, 13901–13912. [CrossRef]
4. Ding, Q.; Xu, X.; Gui, W. Path Planning Based on Reinforcement Learning with Improved APF Model for Synergistic Multi-UAVs.

In Proceedings of the 2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD),
Rio de Janeiro, Brazil, 24–26 May 2023. [CrossRef]

5. Hu, J.; Yang, X.; Wang, W.; Wei, P.; Ying, L.; Liu, Y. Obstacle avoidance for uas in continuous action space using deep reinforcement
learning. IEEE Access 2022, 10, 90623–90634. [CrossRef]

6. Razzaghi, P.; Tabrizian, A.; Guo, W.; Chen, S.; Taye, A.; Thompson, E.; Bregeon, A.; Baheri, A.; Wei, P. A survey on reinforcement
learning in aviation applications. arXiv 2022, arXiv:2211.02147. [CrossRef]

7. Lefevre, S.; Carvalho, A.; Borrelli, F. A Learning-Based Framework for Velocity Control in Autonomous Driving. IEEE Trans.
Autom. Sci. Eng. 2016, 13, 32–42. [CrossRef]

8. Tessler, C.; Mankowitz, D.J.; Mannor, S. Reward constrained policy optimization 2018. arXiv 2018, arXiv:1805.11074.
9. Achiam, J.; Held, D.; Tamar, A.; Abbeel, P. Constrained Policy Optimization. In Proceedings of the 34th International Conference

on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 22–31.
10. Gu, S.; Kuba, J.G.; Chen, Y.; Du, Y.; Yang, L.; Knoll, A.; Yang, Y. Safe Multi-Agent Reinforcement Learning for Multi-Robot Control.

Artif. Intell. 2023, 319, 103905. [CrossRef]
11. Du, D.; Han, S.; Qi, N.; Ammar, H.B.; Wang, J.; Pan, W. Reinforcement Learning for Safe Robot Control Using Control Lyapunov

Barrier Functions. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK,
29 May–2 June 2023. [CrossRef]

12. Zeng, J.; Zhang, B.; Sreenath, K. Safety-Critical Model Predictive Control with Discrete-Time Control Barrier Function. In
Proceedings of the 2021 American Control Conference (ACC), New Orleans, LA, USA, 25–28 May 2021. [CrossRef]

13. Thirugnanam, A.; Zeng, J.; Sreenath, K. Safety-Critical Control and Planning for Obstacle Avoidance between Polytopes with
Control Barrier Functions. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA) 2022,
Philadelphia, PA, USA, 23–27 May 2022. [CrossRef]

14. Xue, H.; Lai, Y.H.; Sun, K. Human-like constraint-adaptive model predictive control with risk-tunable control barrier functions
for autonomous ships. Ocean. Eng. 2024, 308, 118219. [CrossRef]

15. Cohen, M.H.; Belta, C. Safe Exploration in Model-Based Reinforcement Learning Using Control Barrier Functions. Automatica
2023, 147, 110684. [CrossRef]

16. Cheng, R.; Orosz, G.; Murray, R.M.; Burdick, J.W. End-to-End Safe Reinforcement Learning through Barrier Functions for
Safety-Critical Continuous Control Tasks. Proc. Aaai Conf. Artif. Intell. 2019, 33, 3387–3395. [CrossRef]

17. Emam, Y.; Notomista, G.; Glotfelter, P.; Kira, Z.; Egerstedt, M. Safe Reinforcement Learning Using Robust Control Barrier
Functions. IEEE Robot. Autom. Lett. 2024, 1–8. [CrossRef]

18. Borrmann, U.; Wang, L.; Ames, A.D.; Egerstedt, M. Control Barrier Certificates for Safe Swarm Behavior. IFAC-PapersOnLine 2015,
48, 68–73. [CrossRef]

19. Sonny, A.; Yeduri, S.R.; Cenkeramaddi, L.R. Q-Learning-Based Unmanned Aerial Vehicle Path Planning with Dynamic Obstacle
Avoidance. Appl. Soft Comput. 2023, 147, 110773. [CrossRef]

20. Peng, L.; Donghui, C.; Yuchen, W.; Lanyong, Z.; Shiquan, Z. Path Planning of Mobile Robot Based on Improved TD3 Algorithm
in Dynamic Environment. Heliyon 2024, 10, e32167. [CrossRef]

21. Wang, Y.; He, Z.; Cao, D.; Ma, L.; Li, K.; Jia, L.; Cui, Y. Coverage Path Planning for Kiwifruit Picking Robots Based on Deep
Reinforcement Learning. Comput. Electron. Agric. 2023, 205, 107593. [CrossRef]

22. Westheider, J.; Rückin, J.; Popović, M. Multi-UAV Adaptive Path Planning Using Deep Reinforcement Learning. In Proceedings
of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA, 1–5 October 2023.
[CrossRef]

23. Yang, S.; Zhang, Y.; Lu, X.; Guo, W.; Miao, H. Multi-Agent Deep Reinforcement Learning Based Decision Support Model for
Resilient Community Post-Hazard Recovery. Reliab. Eng. Syst. Saf. 2024, 242, 109754. [CrossRef]

24. Ray, A.; Achiam, J.; Amodei, D. Benchmarking safe exploration in deep reinforcement learning. arXiv 2019, arXiv:1910.01708.

http://doi.org/10.1109/TCSS.2022.3212864
http://dx.doi.org/10.1155/2023/9708143
http://dx.doi.org/10.1109/JIOT.2022.3145008
http://dx.doi.org/10.1109/cscwd57460.2023.10152811
http://dx.doi.org/10.1109/ACCESS.2022.3201962
http://dx.doi.org/10.1016/j.engappai.2024.108911
http://dx.doi.org/10.1109/TASE.2015.2498192
http://dx.doi.org/10.1016/j.artint.2023.103905
http://dx.doi.org/10.1109/icra48891.2023.10160991
http://dx.doi.org/10.23919/acc50511.2021.9483029
http://dx.doi.org/10.1109/icra46639.2022.9812334
http://dx.doi.org/10.1016/j.oceaneng.2024.118219
http://dx.doi.org/10.1016/j.automatica.2022.110684
http://dx.doi.org/10.1609/aaai.v33i01.33013387
http://dx.doi.org/10.1109/LRA.2022.3216996
http://dx.doi.org/10.1016/j.ifacol.2015.11.154
http://dx.doi.org/10.1016/j.asoc.2023.110773
http://dx.doi.org/10.1016/j.heliyon.2024.e32167
http://dx.doi.org/10.1016/j.compag.2022.107593
http://dx.doi.org/10.1109/iros55552.2023.10342516
http://dx.doi.org/10.1016/j.ress.2023.109754

Drones 2024, 8, 481 19 of 19

25. Dalal, G.; Dvijotham, K.; Vecerik, M.; Hester, T.; Paduraru, C.; Tassa, Y. Safe exploration in continuous action spaces. arXiv 2018,
arXiv:1801.08757.

26. Sheebaelhamd, Z.; Zisis, K.; Nisioti, A.; Gkouletsos, D.; Pavllo, D.; Kohler, J. Safe deep reinforcement learning for multi-agent
systems with continuous action spaces. arXiv 2021, arXiv:2108.03952.

27. ElSayed-Aly, I.; Bharadwaj, S.; Amato, C.; Ehlers, R.; Topcu, U.; Feng, L. Safe Multi-Agent Reinforcement Learning via Shielding.
In Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems 2021, Virtual, 3–7 May
2021; pp. 483–491.

28. Khalil, H.K. Nonlinear System; Macmillan Publishing Company: New York, NY, USA, 1992; pp. 461–483.
29. Cheng, R.; Khojasteh, M.J.; Ames, A.D.; Burdick, J.W. Safe Multi-Agent Interaction through Robust Control Barrier Functions with

Learned Uncertainties. In Proceedings of the 2020 59th IEEE Conference on Decision and Control (CDC), Jeju, Republic of Korea,
14–18 December 2020. [CrossRef]

30. Zhang, R.; Zong, Q.; Zhang, X.; Dou, L.; Tian, B. Game of Drones: Multi-UAV Pursuit-Evasion Game with Online Motion Planning
by Deep Reinforcement Learning. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 7900–7909. [CrossRef] [PubMed]

31. Xiao, W.; Belta, C. High-Order Control Barrier Functions. IEEE Trans. Autom. Control. 2022, 67, 3655–3662. [CrossRef]
32. Amos, B.; Kolter, J.Z. OptNet: Differentiable Optimization as a Layer in Neural Networks. In Proceedings of the 34th International

Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 136–145.
33. Jiang, Y.; Wang, C.; He, Z.; Song, L. A Differentiable QP-based Learning Framework for Safety-Critical Control of Fully Actuated

AUVs. In Proceedings of the 2024 3rd Conference on Fully Actuated System Theory and Applications 2024, Shenzhen, China,
10–12 May 2024; pp. 259–264.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/cdc42340.2020.9304395
http://dx.doi.org/10.1109/TNNLS.2022.3146976
http://www.ncbi.nlm.nih.gov/pubmed/35157597
http://dx.doi.org/10.1109/TAC.2021.3105491

	Introduction
	Related Work
	Problem Definition and Necessary Theory
	Problem Description
	Drone Dynamics Model
	Control Barrier Function

	Proposed MADDPG-CBF Algorithm for Multi-Drone Path Planning
	Multi-Agent Markov Decision Process
	Multi-Agent Deep Deterministic Policy Gradient
	Action Space
	State Space
	Reward Function

	Proposed MADDPG-CBF Algorithm

	Experiment and Result Analysis
	Experimental Setup
	Results Analysis

	Conclusions
	References

