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Abstract: The capabilities of AUV mutual perception and localization are crucial for the development
of AUV swarm systems. We propose the AUV6D model, a synthetic image-based approach to enhance
inter-AUV perception through 6D pose estimation. Due to the challenge of acquiring accurate 6D pose
data, a dataset of simulated underwater images with precise pose labels was generated using Unity3D.
Mask-CycleGAN technology was introduced to transform these simulated images into realistic
synthetic images, addressing the scarcity of available underwater data. Furthermore, the Color
Intermediate Domain Mapping strategy is proposed to ensure alignment across different image styles
at pixel and feature levels, enhancing the adaptability of the pose estimation model. Additionally, the
Salient Keypoint Vector Voting Mechanism was developed to improve the accuracy and robustness
of underwater pose estimation, enabling precise localization even in the presence of occlusions. The
experimental results demonstrated that our AUV6D model achieved millimeter-level localization
precision and pose estimation errors within five degrees, showing exceptional performance in complex
underwater environments. Navigation experiments with two AUVs further verified the model’s
reliability for mutual 6D pose estimation. This research provides substantial technical support for
more complex and precise collaborative operations for AUV swarms in the future.

Keywords: Autonomous Underwater Vehicles (AUVs); 6D pose estimation; underwater perception;
environmental adaptation; synthetic underwater images

1. Introduction

In GNSS-denied underwater environments, achieving precise situational awareness
and positioning presents a critical challenge for Autonomous Underwater Vehicles (AUVs).
Accurate perception and localization are vital in multi-vehicle coordinated operations
and tight formations to ensure precise task execution and the maintenance of formation
integrity. Traditional approaches primarily use acoustic localization techniques [1] or
acoustic communication devices [2]. Approaches based on acoustic methods have been
extensively studied for various tasks, such as docking [3], tracking [4], long-duration
cooperative navigation [2], collision avoidance [5], collaborative detection [6], and the
maintenance and reconfiguration of tight formations [7]. However, the precision of acoustic
equipment is related to its size, which often makes high-precision acoustic equipment
cumbersome [8]. Moreover, acoustic localization usually provides only 3D positional data
and has a low update rate [9]. In contrast, vision-based methods offer advantages at a
near distance, including precise recognition and real-time localization, while providing
6-DOF pose information [10]. This study proposes the AUV6D model, a vision-based 6D
pose estimation framework for AUVs, aimed at enhancing the execution of collaborative
operations and ensuring precise formations in dynamic underwater environments.
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While significant advances have been made in object pose estimation using single RGB
images in terrestrial environments, underwater 6D pose estimation still faces two major
challenges. First, unlike detecting 2D bounding boxes [11], pose estimation requires 6D
pose data, which cannot be manually labeled. Currently, true object poses are extremely dif-
ficult to obtain in underwater environments, and hardly any public dataset exists for AUV
visual localization, as demonstrated in Figure 1 [12]. Second, the underwater environment
presents special challenges due to lighting variations and extensive light scattering and re-
flection, far exceeding those in terrestrial settings. Underwater images exhibit background
variability and substantial differences in color tones and lighting effects [13]. Despite the
existence of excellent underwater image processing [14,15] and domain adaptation tech-
niques [16,17], these techniques face challenges in achieving effective adaptation from the
source domain to unknown target domains. There is an urgent need for an underwater pose
estimation dataset that can be used for single-scene training and multi-scene application.
Such a dataset would enhance the adaptability and robustness of visual pose estimation in
complex and variable underwater environments.

Figure 1. Swarm navigation of “TS-MINI” AUVs. Five TS-MINI AUVs, developed by the Shenyang
Institute of Automation, Chinese Academy of Sciences, are performing a surface mission.

To solve these challenges, the AUV6D model for inter-AUV 6D pose estimation is
introduced. Synthetic data are used as the source domain, while real underwater images
serve as the target domain. The realism of synthetic images is enhanced during training,
and feature extraction is standardized during inference. This approach ensures that the
model, trained solely on synthetic data, is capable of accurately estimating 6D poses
of underwater objects across diverse and complex environments. This is demonstrated
through the following contributions.

(1) Generating Synthetic Underwater Images: A comprehensive dataset of underwater
simulated images with pose data and object masks was created. A self-supervised Cy-
cleGAN with Mask-Cycle Consistency Loss, referred to Mask-CycleGAN, was employed
to ensure the realism of 2D object projections. This approach maintains high fidelity and
structural consistency before and after the projection of 2D objects. The simulated im-
ages were transformed into realistic underwater synthetic images using Mask-CycleGAN.
These synthetic images were then used to train the 6D pose estimation model, effectively
addressing the scarcity of existing underwater datasets.

(2) Color Intermediate Domain Mapping: During training, synthetic underwater
images are first generated by Mask-CycleGAN and then transferred to a defined Color
Intermediate Domain (D,¢) for training the pose estimation network. This process employs
grayscale world white balance based on the B channel of the RGB spectrum to ensure
consistent color histogram distributions within the domain. For underwater pose esti-
mation, the integration of color mapping and feature extraction layers at the network’s
head ensures that various unknown real underwater images align in both pixel and fea-
ture dimensions with the training set images. This approach facilitates low-complexity
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domain alignment, thereby enhancing the model’s adaptability and robustness in diverse
underwater environments.

(3) 6D Pose Estimation Network Based on Salient Keypoint Vector Voting: A pose
estimation method suitable for underwater environments is proposed, which utilizes a
fully convolutional network combined with salient keypoints and directional vectors for
voting. This method primarily leverages the shape and structural features of targets, such
as centroid points, structural feature points, and bounding boxes on symmetry planes
as keypoints. Directional vectors for each pixel are calculated, and voting is performed
to determine the positions of the keypoints. This approach enhances the accuracy and
robustness of underwater pose estimation and effectively handles occlusions.

(4) Navigation Experiment Validation: To verify the effectiveness and stability of the
AUV6D model in practical applications, we utilized the “TS-MINI” AUVs (from Shenyang
Institute of Automation, CAS), each equipped with five cameras in the bow section. These
cameras cover the upward, downward, leftward, rightward, and forward directions, cap-
turing real-time images of the surrounding AUVs. Experiments were conducted in various
water bodies and complex scenarios to evaluate the model’s performance. The results
indicated that the AUV6D model surpasses existing methods in localization precision and
environmental adaptability, successfully locating objects even when targets were occluded.
Furthermore, navigation experiments with two “TS-MINI” AUVs demonstrated the capa-
bility of the AUV6D model for mutual 6D pose estimation during inter-AUV navigation,
with evidence that the relative 6D pose trajectories measured by each AUV closely match.

2. Related Work

In recent years, significant progress has been made in 6D pose estimation technol-
ogy for AUVs using vision-based methods. However, challenges and limitations remain.
This section reviews the related research, including underwater pose estimation using
visual markers, deep learning-based pose estimation methods, and advancements in data
generation and style transfer.

2.1. Visual Marker-Based Underwater Pose Estimation

Researchers have proposed various methods for underwater pose estimation using
visual markers. For instance, one study introduced a method for guiding multiple AUVs
using Aruco codes, which achieved high-precision localization [18]. Another study im-
proved visual marker technologies, enhancing the localization accuracy and robustness
of underwater robot swarms [19]. Additionally, another study achieved high-precision
target localization through monocular vision and low-cost optical beacons [20]. However,
visual marker methods face several practical challenges, such as the difficulties of long-term
attachment, potential occlusion, and long-distance recognition.

2.2. Deep Learning-Based Pose Estimation

Deep learning-based pose estimation techniques have been widely applied in terres-
trial environments, with two primary methods suitable for 6D pose estimation using AUVs:
template-based and keypoint-based approaches.

(1) Template-Based Methods: CAD models are used to create a multi-view template
database that is then matched against query images. SO-Pose [21] estimates the 6D pose
directly using self-occlusion information, while YOLOG6D [22] integrates object detection
with pose estimation, training on and inferring solely from RGB data. GDR-Net [23]
performed 6D pose estimation through a geometry-guided direct regression network.
Although these methods are good at handling occlusions and diversity, they heavily rely on
object shape, exhibiting poor adaptability to environmental changes, resulting in insufficient
robustness in practical applications.

(2) Keypoint-Based Methods: Pose estimation is performed by detecting and matching
significant points [24] to enhance the precision of pose estimation by a pixel-level voting
network, and HybridPose [25] combined keypoints with symmetry information to perform
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well in occluded scenes. The Real-Time Seamless Single Shot 6D Object Pose Prediction
method [26] can significantly increase the inference speed. MFPN-6D [27] combines CSPNet
and MFPN for efficient single-stage pose estimation. The Keypoint-Graph-Driven Learning
Framework [28] can improve the estimation performance in multi-object scenarios, and
Keypoint-Guided Efficient Pose Estimation [29] can enhance the robustness of micro-aerial
vehicles. However, these methods face challenges in underwater environments due to the
scarcity of target texture features and instability of features during navigations.

2.3. Data Generation and Style Transfer

Due to the challenges in acquiring training data from underwater environments,
researchers have turned to synthetic data for training purposes. DeepURL [30] generates
virtual data using simulation software and employs CycleGAN [31] for image style transfer.
Traditional CycleGAN faces issues with the authenticity and controllability of generated
images, prompting some studies to propose improvements [32,33]. ROV6D [10] enhanced
the diversity and realism of data generation through multi-scene rendering techniques.
WaterGAN [34] uses unlabeled real underwater images to generate a substantial volume
of synthetic data, supplementing the deficiencies of real data. Although these methods
significantly enhance the diversity and realism of synthetic data, the quality and consistency
of images generated in unknown environments still require improvement, limiting the
model’s generalizability and effectiveness in practical applications.

3. Methodology

The AUV6D model was designed to enable 6D pose estimation and improve envi-
ronmental adaptability among AUVs. The visual system of the “TS-MINI" AUV and its
cooperative localization methods are shown in Figure 2. The architecture of the visual lo-
calization system is illustrated in Figure 3. The methodology involves generating synthetic
underwater images, applying Color Intermediate Domain Mapping, and constructing the
pose estimation model.

Figure 2. Schematic of the “TS-MINI” AUV and swarm localization. The left image shows a “TS-
MINI” AUV sailing at the water surface, with five cameras positioned at the front, top, bottom, left,
and right to capture images of the nearby AUVs. The arrows represent the camera views in these
directions. The right image illustrates the data collection method used within the swarm and defines
the three-dimensional coordinate system.
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Figure 3. Architecture of the Underwater Autonomous Vehicle visual localization system based on
the AUV6D model. (a) Images of AUVs collected in underwater environments are used as input data.
(b) The AUVs’ position and orientation are determined by the visual localization algorithm, whose
results are indicated by blue boxes. (c) Images are mapped to the Color Intermediate Domain and
features are extracted. (d) Multi-view AUV simulation images, corresponding labeled data, and mask
images are generated. (e) Realistic images generated by Mask-CycleGAN are labeled and mapped
to the Color Intermediate Domain as training data, together with real underwater images that are
also mapped to the same domain. M,.f(G4(I)) represents the synthetic image transformed into the
Color Intermediate Domain from the simulation style. (f) The architecture of the pose estimation
model includes feature extraction layers, convolutional layers, residual blocks, and upsampling
layers, with skip connections for feature transmission. (g) Key points of the target are estimated using
the extracted features through vector voting. The RT matrix of the target is calculated using the PnP
algorithm, which is derived from the pixel coordinates of the keypoints and their corresponding
3D coordinates.

3.1. Generation of Synthetic Underwater Images

Generating realistic underwater images with accurate pose labels is a significant chal-
lenge for 6D pose estimation. To solve this, a simulation environment was developed using
Unity3D, producing a dataset of simulated images with detailed pose labels and target
object masks. However, the complex effects of underwater light propagation cause signifi-
cant discrepancies between simulated and real images, leading to the poor performance of
models trained directly on simulated images.

To address this issue, a Cycle Generative Adversarial Network was used for image
transformation. CycleGAN employs a cycle consistency loss, allowing the model to map
between simulated and real underwater images. However, the issues of authenticity
and controllability still remain [10,32,33]. Therefore, Mask-Cycle Consistency Loss was
introduced, leading to the development of Mask-CycleGAN, as shown in Figure 4. This
method focuses on target object details during generation, ensuring structural and visual
consistency and realism in the generated images.
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Figure 4. Mask-CycleGAN training and generation process. (a) Learning two mapping functions,
G: A— Band F: B— A, along with two discriminators, D 4 and Dp. The cycle consistency loss
incorporates Mask-Cycle Consistency Loss. (b) Using only generator G for image transfer, simulated
images are converted into the target style images.

During training, mask images are introduced to make the generator focus more on the
details within the target object structures. The loss function of Mask-CycleGAN includes
Generative Adversarial Loss and Cycle Consistency Loss, defined as follows:

gg‘gy/;/(c, DB/ A, B) = EbNPdgm(b) [11’1 DB(b)] + E”"Pdata(”) [ln(l — DB(G(LI)))], (1)

Zeye(G F) = Egpo @ [I1F(G(a) = ally] + Epep,,, (0 [[IG(E(D)) = B[ |1], @

Here, E denotes the expectation, and pj,¢,(b) and p,,(a) represent the data distribu-
tions of the target and source domains, respectively. G is the generator, F is the reverse
generator, Dp is the discriminator, and A and B are the source and target domain images,
respectively. ||-||; denotes the L1 norm.

The introduced Mask-Cycle Consistency Loss is defined as

gmad/i—ﬁyﬁ :| |M © (A - G(F(A)))|

1, (3)

where M is the mask image generated from simulation. G(F(A)) is the image generated
from source domain A to the target domain B and back to the source domain A. ® denotes
element-wise multiplication.

The total loss function is

Le 79,94 = Loan(G,Dp, A, B) + Loy y(F,Da, B, A)

4
+/\musk cyc (Acycgﬁye(c P) + /\maskgmadfi o,z,m) ( )

where Aygsk—cyer Amask, and Aeyc are weight parameters used to balance the different
loss components.

The objective of Mask-CycleGAN is to learn two cycle mapping functions, G: A — B
and F : B —+ A, along with two discriminators, D4 and Dp. By incorporating Mask-Cycle
Consistency Loss, the differences in target regions between the generated and original
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images are focused on, ensuring consistency and realism in structure and appearance, and
facilitating the transformation of simulated images into realistic underwater images.

Experimental Validation: To verify the effectiveness of the Mask-Cycle Consistency
Loss, a comparison was conducted between the style transfer results of CycleGAN and
Mask-CycleGAN using simulated images, as shown in Figure 5:

(d)

Figure 5. Comparison of image generation results. (a) The input simulated image. (b) Image
generated by CycleGAN lacking realism. (c) Image generated by CycleGAN with insufficient
structural controllability. (d) Image generated by Mask-CycleGAN.

The experimental results demonstrate that Mask-Cycle Consistency Loss, by integrat-
ing generative adversarial loss, cycle consistency loss, and mask consistency loss, not only
enhances the realism of the generated images but also ensures the consistency of object
poses before and after style transfer. The inclusion of Mask-Cycle Consistency Loss sig-
nificantly improved both the detail realism and pose consistency of the generated images,
confirming its efficacy in image generation. This provides high-quality data support for the
subsequent training of pose estimation models.

3.2. Image Style Alignment Based on Color Intermediate Domain

To improve the underwater pose estimation model’s environmental adaptability, a
Color Intermediate Domain Mapping strategy was proposed. Traditional image style
transfer techniques produce images with a uniform style, resulting in poor adaptability
across varying underwater environments. The Color Intermediate Domain Mapping
strategy, by standardizing color histograms and adjusting the white balance based on the
blue channel, mitigates color discrepancies, and enhances consistency at the pixel and
feature levels.

3.2.1. Definition of the Color Intermediate Domain

The Color Intermediate Domain is established through the following principles.

(1) Uniformity of Channel Color Distribution: Uniformity is achieved through his-
togram matching, ensuring consistency in color distribution across different images. This
method involves adjusting each channel’s histograms to match the average histogram of a
reference image set, eliminating color discrepancies.
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(2) Overall Style Normalization: Based on the theory of grayscale white balance,
images are brought to a uniform color balance. This theory assumes that the average of
all colors in a natural scene should be neutral (gray), meaning the means of the red, green,
and blue channels are equal. White balance adjustments correct color deviations caused by
lighting changes, resulting in a more consistent overall image style.

(3) Blue Channel as the Benchmark: The blue channel is chosen for adjustment. Due
to its shorter wavelength, blue light has the strongest penetration ability and the least
absorption, leading to higher intensity values in underwater environments. It remains
more stable in deep water or areas minimally affected by natural light, making it an ideal
benchmark for white balance adjustments.

The specific implementation steps are as follows:

Calculation of the Average Histogram for the Reference Image Set

For the RGB channels of the image set in the target style domain of Mask-CycleGAN
{1, I, ..., I}, compute the average histogram for each channel:

ref_l n i ref_l n i ref_l n i
Hy' = =Y iy Hr He' = Yy Ho, Hy' = =) i Hi, ()

White Balance Adjustment Based on the Blue Channel
Adjust the red and green channels based on the blue channel to eliminate color distortions:

scalegr = @, scaleg = @, (6)
HR e
R" =R’ -scaleg, G" = G’ -scaleg, B” = B/, (7)

where R’, G/, and B’ represent the pixel values of the red, green, and blue channels after
histogram matching; g, g, and pp represent the average values of the red, green, and
blue channels; and scaler and scale; are the adjustment ratio coefficients for the red and
green channels relative to the blue channel.

Finally, the Color Intermediate Domain D, is defined as

Dref = {I ’ HR(I) = Hgf,HG(I) = Hgf,HB(I) == Href, HR” = pG// = },LB// }, (8)

The Color Intermediate Domain ensures image consistency and alignment by matching
the RGB channel color histograms to the intermediate domain histograms and adjusting
the red and green channels based on the blue channel for white balance.

3.2.2. Generating the Synthetic Image Training Set in the Color Intermediate Domain

The proposed strategy aimed to generate a synthetic image dataset suitable for estimat-
ing the 6D pose of targets in unknown underwater environments. The Mask-CycleGAN
generator G, transforms the original images I into realistic underwater images G4 (I).
Subsequently, the mapping function M, is applied to map these realistic underwater
images G4 (I) into the Color Intermediate Domain H,,¢. This mapping function ensures
consistency in color and lighting characteristics across all images by matching the RGB
channel histograms and adjusting the white balance based on the blue channel. The final
synthetic images in the Color Intermediate Domain are given by

Imapped = Mref (GA(I>/ Href)/ )

As shown in Figure 6, this strategy harmonizes simulated images and various styles of
underwater images into a uniform style. After training the pose estimation network with
the synthetic images mapped to the Color Intermediate Domain, real underwater images
input into the network are processed through image color mapping and feature extraction
layers. This ensures that various real images in unknown underwater environments align
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with the style of the training set images in terms of pixel and feature dimensions, thereby
enhancing the accuracy of cross-scenario pose estimation.

Simulated (Partial)

Underwater 2

Underwater 4

Figure 6. Color mapping of simulated and various real underwater images into the intermediate
domain. The left side displays the original images, which include simulated images, images from
Water Area 1, Water Area 2, Water Area 3, Water Area 4, a swimming pool, low light conditions,
illuminated conditions, and dim lighting conditions. The right side shows the results after mapping
to the intermediate domain.

3.3. Pose Estimation Network Based on Salient Keypoint Vector Voting

In non-underwater environments, keypoint-based methods are widely used for six-
degrees-of-freedom (6-DoF) pose estimation due to their precision and robustness. How-
ever, in underwater settings, the propagation effects of light significantly weaken the target
texture features. Additionally, the cylindrical structure of Autonomous Underwater Vehi-
cles (AUVs) lacks distinctive features, which makes the keypoint localization complicated.
Furthermore, rotation and changes in angle can create ambiguities in two-dimensional
projections, and using external 3D bounding box corners may lead to significant errors
due to the AUV’s shape. The elongated cylindrical structure of the AUV and its nearly
horizontal navigation posture make it likely for its head or tail to exceed the field of view.
Potential underwater obstacles further increase localization complexity. Therefore, a pose
estimation network based on Salient Keypoint Vector Voting was proposed, incorporat-
ing the shape and contour features of the AUV to address these challenges, ultimately
enhancing keypoint localization and 6D pose estimation accuracy.

3.3.1. Definition of Keypoints

In 6DoF pose estimation for AUVs, keypoints are selected based on criteria including
low ambiguity during rotation and movement, high visibility, and distinctiveness. As
shown in Figure 7, 13 keypoints were identified and categorized as follows.
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Figure 7. Definition of keypoints. This figure displays the keypoints selected for the 6DoF pose
estimation of an AUV, marked from py to p1p.

Salient Feature Points: Four salient feature points (ps, po, p10, and p11) were selected
on the model’s symmetrical xoy plane to reduce ambiguity from different viewpoints.

Centroid: The centroid of the model, p1,, was selected.

Extrapolated Rectangle Points on Planes: The four corners of extrapolated rectangles
on the model’s xoy and yoz plane were chosen.

xoy plane: po, p1, p2, and p3.

yoz plane: p4, ps, ps, and py.

Given that the AUV exhibits minimal roll during navigation, making the xoz plane
projection mostly linear, vertices from this plane were not selected.

To ensure that the keypoints have salient features on the 3D model, the sharpness of
each candidate point is computed, which was defined as

s = o, (52) = (5) + (5 a
P)= qu}\ll?;(,r) ox ay 0z !

dzg 0dzq dzq
Ty and 7
represent the gradients of point g in the x, y, and z directions, respectively. The point with
the highest sharpness was selected as a salient keypoint.

where N(p,r) denotes the set of points within a radius r of point p, and

3.3.2. Vector Voting Model

The AUV6D model utilizes a fully convolutional network architecture, accepting an
image with dimensions of H (height) x W(width) x 3 (color channels) and outputting
a tensor with dimensions of H x W x (K x 2 4 C), representing vector fields and class
probabilities, where K represents the number of keypoints and C represents the number
of object classes. The backbone employs a pre-trained ResNet-18, modified by removing
subsequent pooling layers and incorporating dilated convolutions and convolutional layers
after reaching feature map dimensions of H/8 x W /8. Unit vectors and class probabilities
are derived via 1 x 1 convolutions.

Semantic segmentation and keypoint detection are concurrently executed. Each pixel
emits a semantic label and a directional vector to the 2D keypoints, facilitating the genera-
tion of keypoint hypotheses and their localization through a weighted average.

A vector voting approach was adopted to mitigate occlusion issues encountered
during AUV navigation. As depicted in Figure 8, directional vectors from each pixel to the
keypoints within the target contour are calculated, allowing for accurate localization of
occluded keypoints even under high obstruction or partial truncation.
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Figure 8. Vector voting diagram. Direction vectors pointing towards keypoints pg and ppg are
illustrated by green and blue arrows, respectively.

The directional vector voting model is mathematically expressed as

pPi—P
d = Pi"P_ 11)
7

where d; signifies the direction vector from pixel position p to keypoint p;, normalized to
maintain scale invariance.
The mathematical model for vector voting is defined as

1, if ||d—d;]| <e

0, otherwise ! (12)

Virr) = {

where V(p, p;) denotes the voting value of pixel p for keypoint p;, ||d — d;|| represents the
distance between direction vectors, and € is the voting threshold.

Each pixel casts a vote for all possible keypoint locations based on its directional vector,
and the position of each keypoint is determined through weighted averaging:

p— I Vip.pip
! Zp V(P,Pi) ’

where Y, V(p, p;)p represents the weighted sum of all votes and ), V(p, p;) denotes the
total number of votes.

To estimate keypoint positions more precisely, multiple location hypotheses are gener-
ated using directional vector voting. These hypotheses’ statistical characteristics are then
used to calculate the spatial probability distribution of the keypoints. During the RANSAC
process, a series of keypoint position hypotheses /; are generated, each associated with a
voting weight w;. The mean and covariance matrix of keypoint positions are determined
by weighted averaging:

(13)

_ Liwih;

Yiw '
where ) ; w;h; is the weighted covariance sum of all hypothesis locations and ) ; w; is the
total weight sum.

H (14)

s L wilhi — ) (hi — )"
k — Ew 7
1 1

where ¥ w; (hj — ) (b — )" is the weighted covariance sum of all hypothesis locations.

This approach not only yields estimated keypoint positions but also provides sta-
tistical information about their spatial distribution for subsequent uncertainty analysis
and optimization. The confidence in keypoint selection is determined by evaluating the

(15)
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consistency of votes, measured by variance; a lower variance indicates more consistent
results and more reliable keypoint positions. The confidence formula is

1

Ci=—>,
1+ 03

(16)

where o7 is the variance of the voting results.

Once keypoint positions are determined, pose estimation is conducted using these
points. An uncertainty-driven PnP algorithm is employed, minimizing the projection error
of keypoints in the image to estimate the object’s 6DoF posture. The mathematical model is
expressed as

E(Rt) =)

where R represents the object’s rotation matrix, f is the translation vector, 7t(-) is the
projection function that projects 3D points onto the 2D image plane, P; represents the 3D
keypoints, and p; represents their projections in the 2D image.

The loss function was designed to optimize the accuracy of keypoint positioning and
pose estimation. During training, a multi-task loss function considers both the keypoint
localization error and pose estimation error:

327‘121

where pft is the ground truth keypoint position, and A; and A, are the weight parameters for
balancing the keypoint localization and pose estimation errors. Continuous optimization
of this loss function, along with data augmentation techniques and an expanded training
sample, enhances the model’s generalization ability and accuracy.

p; — m(RP; +t)|2, (17)

P —pil + ME(R 1), (18)

4. Evaluation of Color Intermediate Domain Mapping Strategy

This experiment aimed to validate the impact of the Color Intermediate Domain
Mapping strategy on the similarity between synthetic images and various real underwater
images. A comparative experiment was designed to quantify the differences between
different training sets (Synthetic) and test sets (Real Images). The assessment included the
following categories of synthetic images: directly generated simulated images (Simulated),
images generated by CycleGAN lacking realism (CycleGAN IR), images generated by
CycleGAN with insufficient controllability (CycleGAN IC), images generated by Mask-
CycleGAN (Mask-Cycle), and synthetic images mapped to the Color Intermediate Domain
(Intermediate). The real images in the test set originated from five types of water bodies
and three additional operational conditions.

Four image quality assessment metrics were employed to quantify image similarity.

(1) Structural Similarity Index (SSIM) [35]: Measures the similarity of two images
in terms of brightness, contrast, and structural information. Higher values indicate
greater similarity.

SSIM(x,y) = (H% i p% N C1> (0326 + 0]3 + Cz) ,

(19)

where p; and p,, are the mean values of images x and y, 02 and 05 are the variances of x
and y, oyy is the covariance, and C; and C; are constants introduced for stability.

(2) Peak Signal-to-Noise Ratio (PSNR) [36]: Based on pixel differences and measures
image quality. Higher values indicate better quality.

2
MAX ) 20)

PSNR = 1010g10 (1\/ISE
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where MAX is the maximum pixel value and MSE is the mean squared error.

1 i, | -
MSE = — Y Y116 ) — KGi ) (21)

where (i, j) and K(i, j) representing the pixel values of two images, and m and n represent-
ing the width and height of the images, respectively.

(3) Gram Matrix Mean Squared Error (Gram MSE) [37]: Used to assess the similarity
of image styles. Lower errors indicate more similar styles.

Gij = Y, FiFix, (22)
where F represents the image feature matrix.

MSEiows = + Y0, (Geli) — Gy()?, 23)

where G, and G, are the Gram matrices of images x and y, and c is the number of channels.

(4) Fréchet Inception Distance (FID) [38]: Evaluates the difference in distribution
between generated and real images in high-dimensional space. Lower values indicate
closer distributions.

5 1/2
FID = [, — /] +Tr<Zr+Zf2<Zer) ) (24)

where i, and iy are the means of real and generated image features, X, and X are the
covariance matrices of real and generated image features, and Tr denotes the trace of
a matrix.

In Table 1, the mean and variance of the different methods for the training set images
and eight real-world environmental images under four evaluation metrics are presented.
The results indicate that synthetic images mapped to the Color Intermediate Domain
achieved the best average results in terms of SSIM, PSNR, Gram matrix mean squared
error, and FID. Additionally, the Gram matrix mean squared error, which measures the
similarity of image styles, was significantly lower for these images compared to other
synthetic images. Except for the SSIM standard deviation, which was slightly higher than
that of simulated images, the variance in all the other metrics was the smallest for synthetic
images mapped to the Color Intermediate Domain, indicating a higher consistency and
stability across different environments.

Table 1. Results of various evaluation metrics for different methods.

Synthetic NSIS;IIYIT ssiMstd| T Slfdl}a}v%ea“ P ﬁ‘d GramiMea“ GramStd| FIDMean| FIDStd |

Simulated 0.3408 0.0736 14.9744 2.7336 0.0018 0.0019 34018 0.7189
CycleGAN IR 0.5203 0.1095 16,4843 3.4008 0.0014 0.0021 3.4789 1.0076
CycleGAN IC 0.5694 0.1198 20,0729 52012 0.0012 0.0026 2.5584 0.7462
Mask-Cycle 0.5053 0.1090 18.3925 13192 0.0012 0.0024 3.2607 0.8832
Intermediate 0.6433 0.0983 222661 25756 0.0002 0.0005 2.3593 0.6218

Red indicates the optimal value. 1 indicates higher is better, and | indicates lower is better.

As illustrated in Figure 9, the evaluation trajectory lines for synthetic images mapped
to the Color Intermediate Domain were positioned on the outer perimeter of the SSIM
and PSNR radar charts, consistently yielding the best results across all environments and
closely resembling a regular octagon. In the radar charts for the Gram matrix mean squared
error and FID, the trajectory lines were on the inner side, showing the most balanced shape.
These results indicate that the Color Intermediate Domain Mapping strategy effectively
reduces the gap between synthetic and real images, enhancing consistency and stability at
the pixel and semantic feature levels.
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Figure 9. Radar charts of four similarity metrics for five types of synthetic data across eight environ-
ments. Each subplot shows the performance of the different methods across various environments
in terms of (a) Structural Similarity Index (SSIM), (b) Peak Signal-to-Noise Ratio (PSNR), (¢) Gram
matrix mean squared error, and (d) Fréchet Inception Distance (FID).

Opverall, the Color Intermediate Domain Mapping strategy significantly enhanced the
similarity between synthetic images and various real underwater images, validating its
potential for image style transfer and environmental adaptability applications.

5. Pose Estimation Experiment
5.1. Validation of AUV6D in Dynamic Environments

The objective of this experiment was to evaluate the AUV6D model’s performance in
estimating 6D poses within dynamic underwater environments. The model was trained
exclusively on 10,375 synthetic images mapped to the Color Intermediate Domain, covering
the full spectrum of AUV poses encountered during typical navigation. During inference,
the model was tested on a diverse set of real underwater images, representing various
operational conditions, including different water bodies and lighting scenarios. All images
had a resolution of 640 x 480 pixels.

The model was tested across a range of challenging conditions, including Water Area
1, low-light and supplementary lighting conditions, a swimming pool, lit conditions in
Water Area 1, occlusion scenarios, and additional water bodies. Figure 10 illustrates the
pose estimation results across these environments, with the AUV’s position and orientation
represented by blue bounding boxes.
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Figure 10. Pose estimation results across various water bodies and conditions. The AUV’s position
and orientation are delineated with blue bounding boxes. Subplots (a—f) display the results under
the different conditions: (a) Water Area 1, (b) low-light and supplementary lighting conditions,
(c) swimming pool, (d) lit conditions in Water Area 1, (e) various occlusion scenarios, and (f) other
water bodies.

The findings indicate that the AUV6D model, trained solely on synthetic images from
the Color Intermediate Domain, successfully estimated the AUV’s pose across diverse
environments. These include significantly different image styles, such as swimming pools,
low-light conditions, supplementary lighting, and partial occlusions. The results demon-
strate the model’s robust adaptability to various environmental conditions, confirming its
efficacy in dynamic underwater scenarios.

5.2. Evaluation of Environmental Adaptability

To assess the environmental adaptability of the AUV6D model using the Color Inter-
mediate Domain Mapping strategy, four distinct models were trained on different datasets.
These datasets included original simulated images, CycleGAN-generated images, Mask-
CycleGAN-generated images, and synthetic images mapped to the Color Intermediate
Domain (referred to as the “Intermediate” dataset). The “Intermediate” dataset, created
through Mask-CycleGAN and subsequently refined via color mapping, was specifically
designed to improve adaptability in diverse underwater environments.

For each underwater scenario, 100 images were randomly selected, and the 6D pose
estimation results were visually inspected to assess localization success. Table 2 presents
the localization success rates of the AUV6D models trained on the four datasets.
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Table 2. Localization success rates of AUV6D models trained with different datasets across various
water conditions.

Pose Estimation Success Rate

Low Light Underwater

Underwater 1 Pool Underwater2  Underwater3 Underwater4 Low Light (Lit) 1 (Lit)
Simulated 0 0 0 0 0 0 0 0
CycleGAN 0.23 0 0 0.11 0.04 0 0.01 0.11
Mask-Cycle 0.94 0.02 0.31 0.81 0.19 0.07 0.10 0.76
Intermediate 0.98 0.62 0.94 0.92 0.82 0.75 0.68 0.83

As shown in Table 2, the model trained on simulated images failed to accurately esti-
mate poses in real underwater conditions. The CycleGAN-trained model showed moderate
performance in specific environments, such as Underwater 1, but failed in more complex
scenarios. In contrast, the Mask-CycleGAN-trained model exhibited higher success rates
in the target domain but struggled in other environments. The model trained on the
“Intermediate” dataset consistently achieved high success rates across all environments,
showcasing the robustness and adaptability of the AUV6D model when employing the
Color Intermediate Domain Mapping strategy.

5.3. Evaluation of 6D Pose Estimation
5.3.1. Pose Accuracy Analysis

To assess the 6D pose estimation accuracy of the AUV6D model, a ground truth dataset
with 6D pose labels was required. A 50 cm x 50 cm Aruco marker board was installed on
the AUV, and the marker’s pose was determined using the PnP algorithm. True poses of
the AUV within the images were derived using pose calibration techniques, resulting in
the dataset depicted in Figure 11. Images were captured at a resolution of 640 x 480 pixels
within a distance range of 2 to 5 m. Due to the Aruco marker tied to it, the AUV lost
its navigation capability. Therefore, the AUV was suspended and towed underwater to
capture these images in this experiment.

Figure 11. Ground truth dataset. The green box represents the true pose, and the blue box indicates
the estimated pose.

Errors in rotation and translation were calculated by comparing the poses estimated
by the AUV6D model to those in the ground truth dataset:

trace(RRT) — 1
Errory,: = arccos — | (25)
Errotirans =|t — t|, (26)

where R and R denote the actual and estimated rotation matrices, and t and £ denote the
actual and estimated translation vectors, respectively.
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The errors under all six degrees of freedom were analyzed, and the distributions of
rotational and translational deviations are illustrated in Figure 12 using box plots. The box
plots revealed that the deviations predominantly ranged as follows: X-direction deviations
were between 0.01 m and 0.04 m, Y-direction deviations were between 0.005 m and 0.025 m,
and Z-direction deviations were between 0.03 m and 0.20 m; roll errors were between
2.5 degrees and 13 degrees, pitch errors were between 2 degrees and 7 degrees, and yaw
errors were between 0.2 degrees and 3 degrees. The mean errors for all six axes are shown
in Table 3, with the X and Y directional errors averaging at the millimeter level, and
the pitch and yaw errors were less than 5 degrees. However, the Z-direction errors are
comparatively higher, with the largest errors in the roll direction, due to the high sensitivity
of the Z-axis and roll angle calculations in the PnP algorithm. Additionally, the AUV’s
elongated cylindrical structure leads to less noticeable displacement changes along the
X-axis, with limited feature changes around the X-axis.

0.40
0.35 30°
0.30

0.25

Error (m)
S
[~}
<

. i <+
&

s - K ¥

Roll Angle Pitch Angle

(a) (b)

Y Translation Z Translation

X Translation

Yaw Angle

Figure 12. Error box plots for the AUV6D model. (a) Translational error distribution across X-, Y-,
and Z-directions. (b) Euler angle error distribution across roll, pitch, and yaw.

Table 3. Mean errors in six-degrees-of-freedom pose estimation for AUV.

Translation X Translation Y Translation Z Roll Error (m) Pitch Error (m) Yaw Error (m)
Error (m) Error (m) Error (m)
0.0248 0.0168 0.1099 8.0653 4.5888 1.8232
5.3.2. Comparative Analysis of Methods
The AUV6D model was compared with mainstream methods such as DeepURL [30],
PVNet [24], and YOLO6D [26] in terms of localization accuracy and computational effi-
ciency. The experimental dataset comprised 10,375 synthetic images in the Color Intermedi-
ate Domain, which was evaluated against the ground truth dataset. The frame rates of all
algorithms were tested on an RTX 2080 graphics card, as summarized in Table 4.
Table 4. Comparison of different algorithms in terms of localization accuracy and computational efficiency.
Translation Error (m) Orientation Error (°) ADD FPS
DEEPURL 0.068 6.77° 57.16% 40
Intermediate + PVNET 0.186 14.55° 53.09% 37
Intermediate + YOLO6D 0.472 20.56 33.49% 54
AUV6D 0.051 4.83 62.63% 38

Red indicates the optimal value.

As shown in Table 4, the AUV6D model outperformed the current mainstream meth-
ods in terms of localization accuracy, exhibiting the smallest translation and rotation errors,
and achieving the highest ADD score, thus demonstrating its precision advantage. Al-
though its frame rate was slightly lower than that of YOLO6D, it was comparable to that
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of DeepURL and PVNet; overall, it displayed a high computational efficiency suitable for
high-precision localization and real-time computation in complex underwater environments.

6. Navigation Experiments

The practical application of the AUV6D model in underwater navigation was demon-
strated through a series of navigation experiments using “TS-MINI” AUVs. To assess the
absolute differences in 6D poses between the estimated and true values, a tow navigation
experiment was performed with a Aruco marker board installed on the AUVs. Additionally,
to verify the inter-AUV 6D pose estimation capability, two “TS-MINI” AUVs were used
for mutual pose estimation during autonomous navigation. The reliability of inter-AUV
localization was validated by comparing the mutual estimation results of the two AUVs.

6.1. Tow Navigation Experiment

In this experiment, one AUV equipped with a visual marker was towed along a prede-
termined trajectory, while another AUV captured footage. The AUV6D model estimated
the 6D pose of the towed AUV using the video data, and these estimates were compared
against the ground truth 6D poses provided by the visual markers. As depicted in Figure 13,
the trajectory estimated by the AUV6D model closely aligned with the actual trajectory,
with minimal translational and rotational errors. This validates the model’s accuracy in
estimating the pose and position of nearby AUVs, demonstrating its capability to provide
accurate and rich information for inter-AUV coordination.
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Figure 13. Comparison of tow navigation six-axis localization results with true trajectory. The left side
shows translational comparisons in the X-, Y-, and Z-directions, and the right side shows rotational
comparisons for roll, pitch, and yaw. The blue line represents the true values while the red line
indicates the estimated results.

6.2. Autonomous Navigation Experiment Using Two AUV

To further evaluate the localization accuracy and stability of the AUV6D model in
multi-AUV cooperative operations, an autonomous navigation experiment was conducted
using two AUVs from the “TS-MINI" series, specifically AUV12 and AUV14. These
two vehicles were selected as the platforms for this experiment.

Experimental Setup: AUV12 and AUV14 navigated side by side in a 100 m-long
test water area, each equipped with five cameras covering the front, up, down, left, and
right directions. Figure 14 displays the overall setup. After deployment, both vehicles
entered each other’s visual field, submerged to a depth of 2.5 m, and proceeded under
depth-controlled navigation. During this phase, the left-side camera of AUV14 and the
right-side camera of AUV12 captured image data of each other, which were used as input
for mutual pose estimation by the AUV6D model.
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Figure 14. Experimental setup illustration. AUV12 and AUV14 during the coordinated navigation
localization experiment, with each AUV’s coordinate axis (X;) and origin (O) marked as refer-
ence points.

Given that the cameras were mounted on the heads of the AUVs, they appeared
off-center in each other’s video images during side-by-side navigation. As the navigation
progressed, AUV12 moved more slowly, gradually exiting the field of view of AUV14 while
AUV14 remained within the visual range of AUV12. At the end of the navigation, both
vehicles re-entered each other’s view. Figure 15 shows the sequence of images captured by
the two AUVs throughout the navigation.

Deployment Submerging Constant Depth Cruise Stern Exiting View

Constant Depth Cruise

Constant Depth Cruise

Reappearing in View Out of View Stern Exiting View

Figure 15. Image sequence captured during cooperative navigation of “TS-MINI” AUVs. (a) Sequence
of AUV14captured by AUV12, from deployment, submergence, and depth-controlled navigation to
the end of navigation. (b) Sequence of AUV12captured by AUV14, from deployment, submergence,
and depth-controlled navigation to disappearing from view and reappearing.

To validate the reliability of the AUV6D model’s inter-AUV pose estimation capability,
the mutual 6D pose estimation results of the two AUVs were compared throughout the
navigation process. This validation was achieved by ensuring the consistency of the
6D pose estimation results between the AUVs. Since each AUV’s 6D pose estimation
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values referenced their own coordinate systems, with the head as the origin (as shown
in Figure 2), the relative pose data of one AUV with respect to the other were inversely
related. Therefore, by reversing the six-degrees-of-freedom pose data of AUV14 relative to
AUV12, the consistency and overlap of the data trends can be directly compared to reflect
the reliability of mutual localization. A line chart of the mutual six-axis localization data
was plotted in this manner, as shown in Figure 16.
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Figure 16. Comparative chart of relative pose estimation during cooperative navigation (with AUV14
data inverted). The chart illustrates the six-degrees-of-freedom pose changes relative to each other
during cooperative navigation, including translational data in the X-, Y-, and Z-directions, and
rotational data for roll, pitch, and yaw. The blue line represents the pose of AUV14 relative to AUV12,
and the red line represents the pose of AUV12 relative to AUV14.

The results demonstrate that, during autonomous navigation, both AUVs were able
to consistently detect and estimate each other’s position and orientation across all six
degrees of freedom: the X-, Y-, and Z-directions, roll, pitch, and yaw. The trajectory curves
also clearly reflect the moment when AUV14 gradually moved out of AUV12’s field of
view, followed by its reappearance later in the navigation. A comparison of the mutual
pose estimation results showed high consistency between the two AUVs, with the six-
axis localization data exhibiting minimal deviation and remaining within acceptable error
margins. This consistency validates the AUV6D model’s ability to provide reliable and
accurate inter-AUYV localization information, further confirming its suitability for use in
multi-AUV swarm operations.

7. Conclusions

This study introduced the AUV6D model to address the challenges of inter-AUV 6D
pose estimation in dynamic underwater environments. To overcome the scarcity of real
underwater data, a comprehensive dataset of simulated underwater images was generated,
and Mask-CycleGAN was employed to transform these into realistic synthetic images. The
Color Intermediate Domain Mapping strategy was introduced to improve the model’s
adaptability across diverse underwater conditions, while the Salient Keypoint Vector Voting
Mechanism was developed to enhance the accuracy and robustness of pose estimation.

The experimental results demonstrated that the AUV6D model achieved millimeter-
level localization precision and maintained pose estimation errors within five degrees. The
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model adapted effectively to dynamic underwater environments, including variations in
lighting, water bodies, and occlusion scenarios.

While the AUV6D model has shown promising results, several limitations should
be acknowledged. The reliance on synthetic training data, despite the implementation of
the Color Intermediate Domain Mapping strategy, resulted in reduced success rates when
applied to environments with drastically different visual characteristics. Specifically, in
experimental scenarios like Pool and Low Light (Lit), the model’s performance decreased.
Additionally, the model’s behavior under extreme conditions, such as high-turbidity or
deep-sea environments, remains untested and warrants further investigation.

Future Applications: To enhance its real-world applicability, future research could
focus on developing lightweight architectures to reduce computational load and improve
the real-time deployment of the AUV6D model in underwater robotic systems. The model
could be extended to collaborative tasks in underwater robotics, such as target tracking,
underwater docking, cooperative exploration, and autonomous operations. These applica-
tions would broaden the model’s utility, enabling more complex multi-AUV operations in
challenging environments.

Theoretical Advancements: On the theoretical front, further research should focus on
enhancing the model’s adaptability to more complex environmental conditions, enabling it
to better adjust to varying scenarios as they arise. Additionally, investigating pose estima-
tion for unknown objects presents a promising avenue to increase the model’s versatility,
enabling it to handle a wider range of operational scenarios beyond predefined objects.

In conclusion, this research provides a robust foundation for improving inter-AUV
perception and localization. The methodologies and experimental validations presented in
this study underscore the potential of the AUV6D model to enhance formation accuracy
and collaboration in future AUV swarm deployments. Addressing the identified limitations
and exploring the proposed future directions will be essential to fully realizing the potential
of this approach in dynamic and challenging underwater environments.
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