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Abstract: In low-altitude, GNSS-denied scenarios, Unmanned aerial vehicles (UAVs) rely on sensor
fusion for self-localization. This article presents a resilient multi-sensor fusion localization system
that integrates light detection and ranging (LiDAR), cameras, and inertial measurement units (IMUs)
to achieve state estimation for UAVs. To address challenging environments, especially unstruc-
tured ones, IMU predictions are used to compensate for pose estimation in the visual and LiDAR
components. Specifically, the accuracy of IMU predictions is enhanced by increasing the correction
frequency of IMU bias through data integration from the LiDAR and visual modules. To reduce the
impact of random errors and measurement noise in LiDAR points on visual depth measurement,
cross-validation of visual feature depth is performed using reprojection error to eliminate outliers.
Additionally, a structure monitor is introduced to switch operation modes in hybrid point cloud
registration, ensuring accurate state estimation in both structured and unstructured environments. In
unstructured scenes, a geometric primitive capable of representing irregular planes is employed for
point-to-surface registration, along with a novel pose-solving method to estimate the UAV’s pose.
Both private and public datasets collected by UAVs validate the proposed system, proving that it
outperforms state-of-the-art algorithms by at least 12.6%.

Keywords: Multi-sensor fusion; LiDAR-visual-inertial odometry; structure quantification; point-to-
surface alignment

1. Introduction

Unmanned aerial vehicle (UAV) navigation and localization systems must be stable
and accurate to complete various tasks. UAVs generally adopt the global navigation satellite
system (GNSS) as the core navigation technology. However, the open frequency bands of
GNSS satellite signals make them susceptible to interference, which can result in UAVs
failing to complete their planned missions or even return to base [1–4]. Multi-sensor fusion-
based localization techniques are essential for UAVs to achieve state estimation in low-
altitude, GNSS-denied scenarios. In multi-sensor fusion frameworks, UAVs are typically
equipped with light detection and ranging (LiDAR), cameras, and inertial measurement
units (IMUs) to collect multi-source information, achieving 6-degree-of-freedom (DoF) state
estimation [5,6].

In recent years, numerous UAV sensor fusion frameworks based on LiDAR, cameras,
and IMUs have been presented to achieve superior estimation accuracy in artificial en-
vironments, such as streets, campuses, and factories [7,8]. In these frameworks, LiDAR
is usually used as the core sensor due to its high-fidelity measurements and wide-range
sensing capabilities [9,10]. However, in unstructured environments like corridors, deserts,
and stadiums, the lack of LiDAR return points leads to insufficient constraints for pose
estimation. The challenges encountered in unstructured environments include the follow-
ing. (1) Irregular planes are difficult to represent accurately. Ground points in unstructured
scenes make up a relatively large portion of the LiDAR point cloud. The ground points
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can be fitted to similar planes due to minimal height differences. However, using planes
as primitives results in the loss of the ground’s uneven geometric properties. (2) Vertical
constraints are inadequate for UAV height measurement. Unstructured scenes have too
few LiDAR return points in the vertical direction, making the LiDAR module insensitive to
altitude changes.

To tackle the problems in unstructured scenarios, we propose the following measures.
(1) Select appropriate geometric primitives to represent irregular surfaces and adjust the
point cloud alignment model. (2) Use short-term prediction of the IMU vertical direction
instead of using the LiDAR module for height measurement. (3) Employ the IMU module
as the core of the system to output the final state, thereby mitigating the risk of failure in
the LiDAR or visual modules. This paper proposes a multi-sensor fusion-based odometry
and mapping framework that relies on the complementary advantages of LiDAR, cameras,
and IMUs, achieving low-drift and high robustness state estimation. The main contributions
of the proposed system are as follows:

• Improve the accuracy of short-term IMU predictions by increasing the frequency of
corrections from the LiDAR and visual modules. LiDAR pose frequency is boosted
by sweep segmentation to synchronize the LiDAR input time with the camera sam-
pling time.

• Devise an outliers rejection strategy of depth association between the camera image
and LiDAR points to select accurate depth points by evaluating the reprojection error
of visual feature points in a sliding window.

• Design a structure monitor to distinguish structured scenes and unstructured scenes
by analyzing the vertical landmarks. The environmental structuring is quantified to
switch the operating modes of the LiDAR module.

• Propose a novel point-to-surface model to register irregular surfaces in unstructured
scenes, achieving three horizontal DoF state estimation. The vertical 3-DoF state is
predicted by IMU relative measurement.

The paper is structured as follows. The related work of sensor fusion localization and
point cloud registration is presented in Section 2. The problem statement is presented in
Section 3. The details of the proposed system are illustrated in Section 4. Experimental
results on public and private datasets are provided in Section 5. Conclusions and future
work are given in Section 6. The notations are listed in Table 1.

Table 1. List of used notations with their descriptions.

Notations Descriptions

ti, tj Input time of camera image and LiDAR sweep
X Set of all states up to moment tn ∈ Tn
xi State at time ti
Ri, pi and vi Rotation matrix, position vector, and linear velocity at time ti
Ci, Li Observations of camera and LiDAR at time ti
Ii j Set of IMU measurements between moments ti and tj
r0, rIi j, rzic , rzil Residuals of prior, IMU preintegration, and visual and LiDAR feature
âB

k , ŵB
k Measurements value of accelerometer and gyroscope at time tk

aB
k , wB

k Acceleration and angular velocity of platform motion
g gravity
bak , bwk , ba, bw Biases and noise of accelerometer and gyroscope
∆R̄ij, ∆p̄ij, ∆v̄ij Preintegrated measurements for orientation, translation, and velocity
r⊤∆Rij

, r⊤∆vij
, r⊤∆pij

Preintegration error

∆RO
ij , ∆pO

ij , ∆vO
ij Prediction states from IMU

EC
ij , EL

ij IMU measurement errors with VIO and LIO
ΩC

ij , ΩL
ij Uncertain matrix of LiDAR and camera poses

Em Error of marginalized prior
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Table 1. Cont.

Notations Descriptions

erp
i Reprojection residual error of the visual feature zic
Cpo Constraint from the back-propagated LiDAR pose
TC Set of camera poses
S(pi) Smoothness of the LiDAR point pi
∥ri∥ The range of the point pi.
Fe

n, Fp
n Edge and plane points of n-th sweep

Fn All feature points of n-th sweep
Un Clustering results of n-th sweep
V i The weighted distance vector of the i-th sector
Cn Environmental structuring of n-th sweep
ŤL

k Initial LiDAR pose from prediction state
SFk Weighted point-to-feature distance
rp f Feature registration error
rpg Point-to-Gaussian surface error
W, N, Λ Covariance matrix, eigenvector matrix, and diagonal matrix
TL

n LiDAR pose at time tn
R(γn) Rotation matrix on yaw angle

J̃, H̃ Jacobian matrix and Hessian matrix by differentiating the projected point
f̃ j to the pose T̂L

n

2. Related Works
2.1. Sensor Fusion Localization System

Recently, significant efforts have been made in the field of sensor fusion localization.
Nguyen proposes VIRAL-fusion [11], which combines an IMU, an ultra wideband ranging
sensor, and multiple on-board visual-inertial and LiDAR-ranging subsystems to implement
an optimization-based comprehensive state estimator on UAVs. This estimator effectively
mitigates the problem of pose position drift and robustness in low-texture environments.
LIC-fusion2 [12] introduces a novel sliding-window planar feature tracking technique based
on online spatio-temporal calibration for efficient processing of 3D LiDAR point clouds.
A novel outlier rejection criterion is proposed in planar feature tracking to initialize feature
points belonging to the same plane for high-quality data correlation. Shao [13] proposes
a integrated LiDAR-visual-inertial framework that conducts coupling optimization in a
factor graph manner, enabling a refined system state. Lin [14] proposes a novel multi-
sensor fusion framework, called R3LIVE, that leverages the measurement strengths of
LIDAR, inertial, and visual sensors to enable real-time reconstruction of accurate, dense,
3D, RGB-colored maps of the surrounding environment. Zheng [15] proposes a fast LiDAR-
inertial-visual odometry system based on two tightly coupled direct subsystems: a VIO
subsystem and a LIO subsystem. The LIO subsystem registers new sweep points onto an
incrementally constructed point cloud map. The points on the map are also appended
with image patches, which are then used in the VIO subsystem to align the new image
by minimizing photometric errors. The system combines the advantages of sparse direct
image alignment and raw point direct alignment to achieve accurate and reliable attitude
estimation with low computational cost.

The aforementioned systems enable accurate state estimation in structured environ-
ments. However, in unstructured scenes, the LiDAR module with a point-to-plane model
cannot build a consistent surrounding map, and the overall system perhaps fails due to
LiDAR pose drift or map divergence. To tackle this problem, some researchers have utilized
the property of multi-sensor fusion, which involves discarding the output of the LiDAR
module and using other sensors’ poses as the system state. Zhang [16] introduces LiDAR-
visual-IMU odometry, which starts with IMU preintegration measurement and ends with
refined poses in a visual-inertial subsystem and LiDAR-inertial subsystem. Although the
system fails to greatly improve the state accuracy compared with the LiDAR subsystem,
the robustness is enhanced due to the coupling of the visual subsystem as a complement to
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the state estimation. Wisth [17] proposes VILENS, a factor graph-based odometry system
for legged robots. By tightly fusing LiDAR, cameras, IMUs, and leg odometry together,
reliable operation is achieved despite the fact that individual sensors can produce degraded
estimates. To minimize legged odometry drift, the system extends the robot’s state using a
linear velocity deviation term, which is estimated online by preintegrating measurement
with the visual, LiDAR, and IMU factors. The system exhibits excellent localization perfor-
mance and strong robustness in unstructured environments. Based on the above study, we
propose a method to compensate for LiDAR drift by combining short-term IMU predictions
with the pre-drift LiDAR pose for state estimation. The proposed system achieves synchro-
nization between LiDAR and camera by segmenting the LiDAR sweep, which improves the
accuracy of short-term IMU predictions by boosting the correction frequencies. In addition,
the undegraded LiDAR module is also used to constrain the pose estimation of the visual
module to improve the localization accuracy of the visual sub-module. In the case of LiDAR
failure, the visual-inertial module is employed to generate the final state.

2.2. Point Cloud Registration

The majority of existing work accomplishes point cloud alignment by sweep matching,
which involves using iterative closest point (ICP) and normal distribution transform (NDT)
algorithms to solve sweep-to-sweep or sweep-to-map transformations [18–20]. Point-to-
point, point-to-edge, point-to-plane, and point-to-probability model techniques are among
the geometric primitives that are employed in it. By fully considering the sparsity and
scene complexity of LiDAR point clouds, Cui [21] provides a linear keypoint representation
for 3D LiDAR point clouds, which minimizes keypoint-to-keypoint distance to efficiently
perform sweep-to-sweep alignment. Zhang [22] distinguishes plane and edge points by
calculating the local smoothness, and then minimizes the point-to-plane distance and point-
to-edge distance to achieve accurate point cloud alignment. On this foundation, Guo [23]
extracts edge and plane features by the principal component analysis (PCA) method, which
is employed in two-stage alignment to achieve, without loss of real-time performance,
improved odometry accuracy and consistent mapping.

Regularized planes are commonly used as geometric primitives for matching in the
above methods. However, uneven surfaces are widely found in unstructured and un-
developed environments. Still, utilizing a planar model for point cloud matching will
produce large random errors. Choi [24] presents a fast and generalized feature-based
LiDAR odometry method using local quadratic surface approximation and point-to-surface
alignment. Unlike most matching methods based on point-to-plane distances, the method
approximates the local geometry of the LiDAR scan as a quadratic surface to minimize
performance degradation due to the inconsistency of feature classes with the local geometry
of the map. Chen [25] presents a lightweight front-end LiDAR odometry solution that
uses a point-to-point probabilistic model in a generalized ICP-based direct point cloud
matching method to yield accurate state estimation in unstructured subterranean environ-
ments. Combining these two approaches, this paper approximates an uneven surface as
a Gaussian surface, which is formulated as a Gaussian probability function consisting of
neighboring points. The point-to-Gaussian surface distance is employed to point cloud
matching, achieving low-drift LiDAR odometry in unstructured scenes.

3. Problem Statement

The state variables are represented by the following in the proposed system:

Xn = {xi}i∈Tn
= {Ri, pi, vi, bwi , bai}i∈Tn

. (1)

where Xn represents the set of all states. Ri, pi, and vi denote the orientation, the transla-
tion, and the motion velocity of the UAV at moment ti, respectively. bwi and bai are the
IMU biases.

The camera observations at time ti are represented as Ci, which include the extracted
feature point, zic, from the images. The measurement data from the LiDAR are represented
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as Li, which include the salient points, zil , to be matched. IMU measurements between
adjacent camera sampling moments ti and tj are represented as Iij. The UAV state is
estimated by minimizing the sum of squared observation residuals, as follows:

Xn = arg min
Xn

(−lnP(Xn|Zn)) = arg min
Xn
∥r0∥2

+ ∑
(i,j)∈Tn

∥∥∥rIij

∥∥∥2
+ ∑

i∈Tn

∑
c∈Ci

∥rzic∥
2 + ∑

i∈Tn

∑
l∈Li

∥∥rzil

∥∥2.
(2)

where r0 is the prior error. rIij, rzic , rzil represent the residuals of the associated measure-
ments. Residuals are functions of the state variables and observations, quantifying the
mismatch between the observations and the estimated values under the current state and
prior constraints.

4. Proposed Method
4.1. System Overview

The goal of our proposed system is to estimate the UAV state and construct the
surrounding map. The intrinsic parameters of these sensors are assumed to be known.
The extrinsic parameters between the three sensors have been calibrated to share a common
coordinate system, with the IMU frame designated as the primary coordinate system.
The camera and LiDAR frames are considered sub-coordinate systems. The definitions of
these coordinate systems are illustrated in Figure 1. According to the figure, C, L, and B
represent the coordinate systems of the camera, LiDAR, and IMU, respectively.

X

Y

Z

TCBTCB

TLBTLB

TBWTBW
X

Camera 

Coordinate

LiDAR

Coordinate

IMU

Coordinate

Y

Z

World

Coordinate

Figure 1. The schematic diagram of coordinate transformation. TCB and TLB represent the external
parameter from camera and LiDAR to IMU. TBW represents the transformation from the body frame
to the world frame.

An overview of our system is illustrated in Figure 2. The IMU and visual modules
provide prior poses and constraints to the LiDAR module, which is the main component
of the system that uses motion estimation from coarse to fine. Initially, the camera input
frequency reconstructs a LiDAR sweep to guarantee synchronized transmission between
various sensors. Then, using cross-validation to assess the projection errors of visual
feature-associated LiDAR points under various perspectives, the depth of visual features
with large approximation errors and measurement noise is eliminated by outliers rejection.
By utilizing temporal synchronization, the vision module receives the LiDAR pose from the
previous instant, which helps to provide a position consistency constraint that enhances
the accuracy of the camera pose estimation. To reduce the drift of the feature-based
LiDAR module in scenes with fewer features, a direct point cloud registration method with
IMU-constrained point-to-Gaussian surface error is proposed to be incorporated into the
pose estimation.
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Camera Input

System Overview

IMU Module

LiDAR Input

IMU Input

LiDAR-Camera 

Correction

IMU Preintegration

LiDAR-inertial Module

Feature Extraction

Factor Graph 

Optimization

Sweep Aggregation

Visual-inertial Module

Depth 

Association

Outlier 

Rejection
Motion 

Estimation
Feature 

Triangulation
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Tracking

Structure Monitor

Is Structured?

Hybrid Registration
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feature Alignment

3-DoF Point-to-

surface Alignment
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Camera 

Pose

LiDAR 

Pose

w/ depth

w/o depth Output State

Position Consistency 

Constraint

Figure 2. Pipeline of the proposed system. The proposed system is divided into the IMU module,
the visual-inertial module, and the LiDAR-inertial module. Modules with red borders are highlighted
in this paper. In detail, the LiDAR-inertial module provides depth measurements for visual features
by aggregating recent multi-frame sweeps. Moreover, the motion estimation of the visual-inertial
module is constrained by the back-propagated pose from the LiDAR-inertial module at the previous
moment. The visual-inertial module provides the initial guess for the LiDAR-inertial module’s point
cloud matching. The camera pose and LiDAR pose are fed into the IMU module and form the
measurement residuals with IMU preintegration, followed by minimizing the measurement residuals
in the factor graph optimization to estimate the final state.

4.2. Imu Module with High Frequency Correction

In this module, the LiDAR point cloud and camera image are synchronized to imple-
ment the transmission between the LiDAR module and the visual module. IMU measure-
ments between two consecutive frames are integrated to align with the LiDAR point cloud
and camera image.

4.2.1. Time Synchronization Based on Sweep Segmentation

Temporal interpolation techniques are used in most existing research on sensor time
synchronization and are effective for matching data between sensors with noticeably differ-
ing frequencies [26]. However, when using sensors with resembling input frequencies (e.g.,
LiDAR and camera), errors can arise because of the large gaps between their sample periods.

To solve the problem of information lag caused by different sampling rates among
sensors, a LiDAR sweep reconstruction algorithm controlled by camera input frequency
is adopted to avoid ambiguous transmission between the LiDAR module and the visual
module. Specifically, image acquisition time serves as the starting point for reconstructing
the LiDAR sweep, which is motivated by the continuous sampling nature of LiDAR. This
synchronization allows for simultaneous processing of camera images and LiDAR sweeps,
avoiding interpolation or approximation operations during LiDAR and visual information
fusion. This not only facilitates the transfer of enhanced depth and backward propagated
poses from LiDAR to the camera but also provides higher frequency corrections to the IMU
bias to improve the accuracy of IMU short-term predictions.

4.2.2. IMU Kinetic Model

Let the timestamps of two consecutive frames, Fi and Fj, be denoted as ti, tj. The mea-
surements of the accelerometer and gyroscope during the time interval are described as:

âB
k = aB

k − g + bak + na, ŵB
k = wB

k + bwk + nw. (3)

where measurements between clock times ti and tj are denoted by the k = 1, 2, . . . , n index.
Motion measurements include gravity, g, motivation, aB

k , and angular velocity, wB
k . These

measurements are interfered with biases bak , bwk and measurement noise na, nw.



Drones 2024, 8, 487 7 of 20

In this work, a discrete-time IMU preintegration method is employed to obtain the
relative motion within the time interval

[
ti, tj

]
[27]. The preintegrated measurements for

orientation, ∆R̄ij, translation, ∆p̄ij, and velocity, ∆v̄ij, in the IMU frame are given by:

∆R̄ij = R⊤i Rj
.
=

j−1

∏
k=i

exp[(ŵk − bwi )δt],

∆v̄ij = R⊤i (vk − vi − gδt) .
=

j−1

∑
k=i

∆Rik(âk − bai )δt,

∆p̄ij = R⊤i

(
pj − pi − viδt− 1

2
gδt2

)
.
=

j−1

∑
k=i

(
∆vikδt +

1
2

∆Rik(âk − bai )δt2
)

.

(4)

where δt is the time interval between adjacent IMU measurements. The preintegration

error in the IMU frame rIij =
[
r⊤∆Rij

, r⊤∆vij
, r⊤∆pij

]⊤
is naturally converted from (6):

r⊤∆Rij
= log(∆R̄(bwi ))R

⊤
i Rj,

r⊤∆vij
= R⊤i (vj − vi − g∆tij)− ∆v̄ij(bwi , bai ),

r⊤∆pij
= R⊤i (pj − pi − vi∆tij −

1
2

g∆t2
ij)− ∆p̄ij(bwi , bai ).

(5)

The relative states of the other sensors are predicted by the IMU preintegration mea-
surements within the time interval between consecutive frames. Superscript O represents
the target sensor frame including the LiDAR frame and camera frame. Then, the prediction
state can be expressed as follows:

∆RO
ij =

(
RO

i

)⊤
RB

j
.
= ∆R̄B

ij

∆vO
ij =

(
RO

i

)⊤(
vO

j − vO
i − gδt

) .
= RO

B ∆v̄B
ij

∆pO
ij =

(
RO

i

)⊤(
pO

j − pO
i − vO

i δt− 1
2

gδt2
)

.
= RO

B ∆p̄B
ij

(6)

where RO
B is the rotation matrix in the external parameter between the target frame and the

IMU frame. The solved relative states are leveraged to the feature tracking process in the
visual module and the distortion elimination process in the LiDAR module.

IMU odometry error is triggered by slowly varying random drift in the accelerometer
bias, bai , and gyroscope bias, bwi . IMU measurement biases are jointly corrected using the
LiDAR and visual poses. Additionally, the system state is optimized using multiple IMU
measurement residuals, which are equivalent to the errors

{
EC

ij , EL
ij

}
between the IMU mea-

surements and poses from the visual and LiDAR modules. The state estimation problem in
Equation (2) is converted to minimize the IMU measurement residuals, as follows:

Xn = arg min
Xn

∑
(i,j)∈Tn

(EC
ij )
⊤ΩC

ij E
C
ij + (EL

ij)
⊤ΩL

ijE
L
ij + Em. (7)

where Ωij is the uncertainty matrix of LiDAR and visual poses, which can be calculated
based on the sensor measurement noise. Em is the marginalized prior, consisting of states
and observations before the oldest state in the sliding window. The factor graph is shown
in Figure 3.
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Xk Xk+1 Xk+2 Xk+3

Fk Fk+1 Fk+2 Fk+3

Fk−n Fk Fk−n+1 Fk+1 Fk+2Fk−n+2

Fk−n Fk

IMU 
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LiDAR 
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LiDAR
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Optimization
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Camera 

Frame

LiDAR-inertial Odometry 

Constraint

Figure 3. Factor graph of the system. The IMU module is constrained by LiDAR and visual modules,
and ultimately outputs a refined system state.

4.3. Visual Module with Position Consistency Constraint

The visual-inertial module is implemented based on the LiDAR module assistance.
In this module, the point reprojection method is designed to remove outliers of depth
points. The position from LiDAR back-propagation is incorporated into visual-inertial
optimization, achieving a refined camera pose.

4.3.1. Depth Association by Outliers Rejection

By utilizing external parameters between LiDAR and camera, the multiple LiDAR
sweeps are projected on the image plane to generate depth map. Each feature depth is
associated with three adjacent points on a unit sphere frame. The depth value is typically
solved by spherical interpolation [28]. However, points with large incident angles of LiDAR
will produce deviation. Therefore, the relative poses in the sliding window are leveraged
to cross-cut evaluate the projection errors of depth points under different perspectives.
In detail, the 3D landmark of the visual features zic and zjc with depths di and dj in frames
Fi and Fj can be defined as PC. The reprojection residual error related to PC between frames
Fi and Fj in the sliding window can be written as:

rC(zic) = erp
i (PC, xi) =

[
b1
b2

]
(PC − πc(zjc)),

zjc = RC
B(R

Bj
W(RW

Bk
(RB

Cdiπ
−1
c (zic) + tB

C) + tW
Bk
) + t

Bj
W)− tC

B

(8)

where π−1
c (·) is the back projection function. RC

B and tC
B are the rotation matrix and

translation vector of the transformation between camera frame and IMU frame. RW
B and

tW
B represent poses in the world frame. b1 and b2 are two orthogonal bases that span the

tangent plane of zjc.
The depth of projected points from different perspectives is used to quantify the depth

association:
τi = exp(−β · erp

i (PC, xi)). (9)
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where the corresponding projection points are considered outliers if τ is greater than the
preset threshold. β is a decay coefficient that has been manipulated. The average depth
value of the interior projected points is calculated as the final depth value. In addition,
the visual features will be removed if the number of depth measurements is below a
certain threshold. The final features with modified depth are further utilized to update the
visual map.

4.3.2. Motion Estimation Assisted by LiDAR Odometry Back-propagation

The aims of the visual module are improving the robustness of the overall system and
providing an initial guess for the LiDAR module. In our work, the LiDAR point clouds
and visual images are synchronized and consistent. To improve the localization accuracy
of the visual odometry, the position consistency constraint is proposed by incorporating
backward propagated poses from the LiDAR module into the sliding window optimization.
The definition of the above constraint is as follows:

Cpo(TC
k ) =

∥∥∥[TL
k−1TC

L (T
C
k−1)

−1TC
k ]:t − (TC

k ):t

∥∥∥2
(10)

where Cpo(TC
k ) ensures that the location of the camera and the transformed LiDAR, using

the external parameters TC
L , are consistent at the k-th keyframe. TL

k−1 and TC
k−1 are the

6-DoF poses of LiDAR and the camera frame at the k− 1-th keyframe, respectively. ():t
represents the translation vector of the transformation matrix.

For each newly acquired camera keyframe, motion estimation is implemented by
jointly adjusting the camera poses TC = (TC

1 , · · · , TC
n ) and the 3D observations, C. This

process is formulated by minimizing the sum of the feature observation residual error,
rC(zkc), IMU preintegration error, rI, and constraint, Cpo, as follows:

(TC
k )
∗ = arg min

TC
k

{
rI ++ ∑

c∈Ck

∥rC(zkc)∥2 + Cpo

}
(11)

The IMU states and visual features of the regular frames and removed keyframes
are marginalized as prior to constrain the sliding window optimization [29]. In addi-
tion, if the LiDAR module fails completely, the visual pose is output as the final state to
ensure robustness.

4.4. Adaptive LiDAR Module with Hybrid Registration Mode

Existing feature-based LiDAR-inertial odometry may fail to work in geometrically
uninformative environments, pushing optimization toward divergence along weakly con-
strained directions. In this paper, the LiDAR module adopts a hybrid registration method,
which utilizes a feature-based approach to obtain the rough pose in high-level structured
scenes and performs the point-to-surface matching algorithm under IMU constraints in
unstructured scenes, achieving accurate and robust pose estimation.

4.4.1. Structure Monitor Based on Vertical Landmarks

After receiving a new sweep, the firstly performed feature extraction is employed to
divide the original point cloud into edge points, Fe

n, and plane points, Fp
n, according to the

smoothness of the local surface [30]. The set of total features is denoted as Fn at the n-th
frame. The smoothness, S(pi), of the LiDAR point pi is calculated as follows:

S(pi) =
1
|Bi|
∥∑j∈Bi ,j ̸=i(rj − ri)∥, rb < ∥ri∥ ≤ rm. (12)

where ∥ri∥ represents the range of the point pi. rb and rm are the blind distance and the
maximum distance of the return points, respectively. Bi is the set of consecutive points of
pi from the same scan. |Bi| is the number of points in Bi.
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The edge points are extracted if S(pi) greater than preset threshold, Sth. Then, all
edge points of the current sweep are projected onto the horizontal plane, which is divided
into Ns regions. The direction from the LiDAR origin to the edge points is used to allocate
the edge points on the horizontal plane. Assume the positions of the edge features in the
horizontal plane follow a Gaussian distribution. In each region, the 2D positions will be
used as samples for local kernel density estimation, iteratively moving in the direction
of increasing density. As a result, the sample points will eventually converge at the local
maximum density, and the points that converge to the same local maximum are considered
members of the same cluster. The final clustering result is the set of points in the region
with the highest density of edge points. Figure 4 illustrates the aforementioned aggregation
process. The Ns-dimensional vector is obtained by forming the results of all regions:

Un = [η1V1, η2V2, · · · , ηNs V Ns ]. (13)

where ηi is the normalized factor: ηi = Ni/Ntatal . Ni represents the number of points in
the i-th sector in the horizontal plane. Ntatal is the number of all points in the horizontal
plane. If Ni < Nth, ηi is set to zero, where Nth is the preset threshold of points number in
one sector. The weighted distance vector of the i-th sector can be calculated by:

V i =
Ni
∑

k=1
exp(−dh

k
σ2 ). (14)

where Ni is the number of points in the i-th sector in the horizontal plane. dh
k is the

horizontal range of the k-th point in the i-th sector. σ is the attenuation factor for adjusting
distance weights.

LiDAR origin

Horizon plane

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 ...

LiDAR Sweep

Sector vector

Principle point

Project

Edge 

points

Clustering points

Figure 4. The illustration of edge points aggregation. Different colored edge dots indicate different
ranges. Vertical observations are projected onto the segmented horizontal plane for clustering.

The environmental structure,Cn, is then quantified by the dispersion of the Ns-dimensional
vector. A greater degree of dispersion indicates a higher level of environmental structuring.
The details are illustrated by:

Cn = var(Un) =
1

Ns

Ns
∑

i=1
(ηiV i −

1
Ns

Ns
∑

j=1
ηjV j). (15)

The threshold Cth, used in this method to distinguish between environmental struc-
tures, can be empirically set to 5. The quantitative environmental structuring is used to
adjust the LiDAR module’s operating mode.
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4.4.2. Hybrid Point Cloud Alignment

The sparsity of LiDAR sweeps may lead to imprecise vertical constraints, especially
in open and unstructured environments, failing to estimate the altitude variables roll,
pitch, and z in point cloud alignment. To tackle these problems, we propose a hybrid
point cloud alignment strategy that performs two modes according to the output of the
structure monitor. In structured scenes, the point-to-feature model with distance weight
is minimized to solve the LiDAR pose. In unstructured scenes, a novel point-to-surface
model is generated to register the non-planar surface, achieving refined pose estimation.
The point cloud alignment strategy is shown in Algorithm 1.

Algorithm 1 Hybrid Point Cloud Registration

1: Input: Fk,Ck, TL
k−1, Ml

k−1, ∆RL
(k−1,k), ∆pL

(k−1,k)

2: Output: TL
k

3: While Fk ̸= ∅ do

4: ŤL
k ← InitialGuess

(
TL

k−1, TC
k−1, ∆RL

(k−1,k), ∆pL
(k−1,k)

)
5: if Ck > Cth then

6: SFk ← Point2FeatureDistance
(
Fk, Ml

k−1

)
7: rp f ←WeightedRegistrationError

(
SFk , w(Ml

k−1)
)

8: TL
k ← LiDARPose.minimize

(
rp f

)
9: else

10: rpg ← Point2GaussianError
(
Fk, Ml

k−1

)
11: λ(Fk(ŤL

k ))← ResidualErrorTransform
(
rpg

)
12: TL

k ← LiDARPose.minimize
(
λ(Fk(ŤL

k ))
)

13: end if
14: return TL

k
15: end

If Cn > Cth, the n-th sweep is considered structured. In this case, the j-th feature,
f L

j , in Fn is transformed from the m-th map point, PG
m, in the global frame by the pose TL

n ,
where TL

n = (RL
n , tL

n). The feature in the global frame is defined by:

PG
m = RL

nf L
j + tL

n . (16)

According to the widely used ICP method [31,32], the rigid transformation, T, between
the prior map, Ml , and the feature cloud, Fn, at the n-th frame can be solved by minimizing
the feature registration error, rp f (PG

m), including the weighted point-to-feature distance
SFi (f j, PG

m):

rL(zil) = rp f =
∑f L

j ∈Fi
w(PG

m) · SFi (f L
j , PG

m)

∑f L
j ∈Fi

w(PG
m)

,

SFi (f L
j , PG

m) = n⊤m
(

f L
j − PG

m

)
+ l∧m

(
f L

j − PG
m

)
.

(17)

where w(PG
m) = e−∥PG

m−c∥2
/σ2

is the weight, which declines as distance is gained. The pa-
rameter σ is chosen to exclude features that are more than 3σ distances from the feature
center, c, on the local map. SFi (f L

m, PL
m) is the distance function, where nm and lm represent

dominant vectors of the corresponding feature.
Typically, point cloud alignment with point-to-feature error yields consistent matching

results. However, in unstructured environments, edge points are insufficient to provide
adequate constraints, and the numerous surfaces cannot be accurately represented by
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regular planes. The point-to-Gaussian distance is modeled to provide a more generalized
representation with Gaussian mean and uncertainty. Figure 5 shows these two models in
different scenes.

Irregular surface

Point with 

uncertainty

Target point
Regular plane

Target point

Normal vector

Center point

(a) Point-to-plane distance (b) Point-to-surface distance

Figure 5. The model of the aligned point. (a) is the point-to-plane model that is employed in structured
scenes. (b) is the point-to-surface model with uncertainty for aligning irregular ground points.

Let the neighbor region of PG
m include a set of LiDAR points qi(i = 1, . . . , M). PG

m has an
uncertainty, ΣPG

m
, due to LiDAR measurement noise and position estimation errors. The un-

certainty model of an irregular surface is illustrated in Figure 5b. The Gaussian mean of PG
m

is set to its 3D position. The uncertainty is the inverse of the covariance, W, which is cal-
culated from the neighbor points and is expressed as W = 1/M ∑M

i=1(qi − PG
m)
⊤(qi − PG

m).
The cost function of the point-to-Gaussian surface is described as follows:

(TL
n)
∗ = arg min

TL
n

rpg(Ml ,Fn, TL
n) = arg min

TL
n

∑
j=1

(e⊤W−1e)j (18)

where the Mahalanobis distance between the target frame point and the corresponding
Gaussian surface point is minimized rather than the Euclidean distance.

The inverse matrix of covariance W−1 is composed of an eigenvector matrix, N, and a
diagonal matrix, Λ, formed by eigenvalues. So, we can calculate the point-to-surface error
by the decomposed W−1:

rpg(Ml ,Fn, TL
n) = ∑

j=1
(e⊤j NΛN⊤ej)

= ∑
j=1

e⊤j [v1, v2, v3]diag(λ1, λ2, λ3)[v1, v2, v3]
⊤ej

= ∑
j=1

λ1(e⊤j v1v⊤1 ej) + λ2(e⊤j v2v⊤2 ej) + λ3(e⊤j v3v⊤3 ej).

(19)

where λ1, λ2, λ3 are descending eigenvalues of W−1, and v1, v2, v3 are the corresponding
eigenvectors. Then, the standard least squares definition of the point-to-surface cost
function can be obtained:

rpg(Ml ,Fn, TL
n) = ∑

k=1
∑

i=1
λk(f̃ j(Ť

L
n)) = ∑

k=1
∑

j=1
λk

∥∥∥v⊤k (Ř
L
nf L

j + ťL
n − PG

m)
∥∥∥2

2
(20)

where ŘL
n and ťL

n are the rotation and translation part of the initial transformation, ŤL
n .

The initial pose, ŤL
n , can be jointly calculated by the previous pose, TL

n−1, and the prediction

state
{

∆RL
(n−1,n), ∆pL

(n−1,n)

}
from IMU. f̃ j is the transformed point from Fn by ŤL

n . Further,

the second-order Taylor expansion of the eigenvalue matrix λk(f̃ j(Ť
L
n)) is denoted by:

λk(f̃ j(Ť
L
n)) ≈ λk

(
f̃ j

)
+ J(f̃ j)δf +

1
2

δf̃⊤H(f̃ j)δf (21)

where J( f̃j) and H(f̃ j) are the Jacobian matrix and the Hessian matrix of λk(f̃ j(Ť)), respectively.
Additionally, due to the insufficient vertical constraints in unstructured scenes, the

point-to-surface model is modified for 3-DoF state estimation, that is, only the three hori-
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zontal DoF poses will be estimated. In this case, projecting the corresponding pose TL
n of f̃ j

on the tangent plane, we have:

TL
n = Ťn ⊕ δT =

(
R(γn)exp(δγ∧n ), tn|x,y + δt

)
R(γn) =

cos γn − sin γn 0
sin γn cos γn 0

0 0 1

 ≈ I +

0 −1 0
1 0 0
0 0 0

γn

f̃ j = R(γn)exp(δγ∧n )f
L
j + tn|x,y + δt

(22)

By differentiating the projected point f̃ j with respect to pose T̂L
n , we can obtain:

λ(ŤL
n ⊕ δT) ≈ λ

(
ŤL

n
)
+ JA︸︷︷︸

J̃

δT +
1
2

δT⊤A⊤HA︸ ︷︷ ︸
H̃

δT

A =
δf̃ j

δT
=

−(f L
j )
∧ −

0 −1 0
1 0 0
0 0 0

γn(f L
j )
∧ I

 (23)

The objective function of point cloud registration can be formulated by:

(H̃(TL
n) + µI)δT∗ = −J̃(TL

n)
⊤. (24)

where µ is employed to adjust the iterative process. Finally, we minimize the cost function
to refine pose TL

n by repeatedly calculating its second-order derivative using the Levenberg–
Marquardt (LM) approach.

5. Experimental Results

The full system’s tests are conducted on an Intel Core i7-10700K CPU with 16 GB RAM.
In this section, the accuracy and robustness of the proposed system are evaluated in off-line
mode, and the runtime evaluation demonstrates that the proposed system can operate in
real time. The UAV localization accuracy is tested between the proposed algorithm and the
advanced algorithms in highly structured scenes. In robust testing, trajectory comparisons
for structurally weaker scenes with two advanced LiDAR-visual-IMU odometry methods
is performed. A public dataset and a private dataset are employed as test sets. The NTU-
VIRAL dataset is collected by equipping the UAV with sensors such as 3D rotating LiDARs,
global shutter cameras, IMUs, and ultra wideband ranging units [33]. This dataset records
multiple sequences under several challenging indoor and outdoor conditions. In this
experiment, nine outdoor sequences from NTU-VIRAL are used for localization accuracy
evaluation. In addition, we acquire a campus sequence of the low-altitude environment
for testing location accuracy, and construct a high-precision 3D map. Three structurally
different outdoor scenes are captured using LiDAR, a pinhole camera, and IMU: grove,
beach, and desert. The platform and the private dataset are shown in Figure 6.
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(b)
Start

End
Forward

(c) Start

ForwardEnd

LiDAR

IMU

On-broad PC

Camera

D-GPS Mobile Station

(a) (d)

(e)

Start

Start

End

End

Forward

Forward

Figure 6. The platform is used for research and collection of the private dataset. The UAV in (a) is
equipped with a GPS mobile station, LIDAR, on-board computer and pinhole camera. The world
frame is defined as the first IMU frame. Satellite photographs (b–e) show four scenes. The orange
curves represent the ground truth of these sequences as determined by the GNSS/IMU position-
ing system.

5.1. Structure Monitor Evaluation

In this section, a vertical observation-based structural monitor is employed to quantify
the structure of different scenarios. The sequences from both public and private datasets
are quantified separately, as shown in Table 2. A data sequence is defined, structured if its
quantitative result exceeds 5; otherwise, it is regarded as unstructured. As shown in Table 2,
the quantitative results indicate that all sequences in the public dataset and the campus
sequence in the private dataset were collected in structured environments, whereas the
grove, beach, and desert sequences reflect unstructured environments. The quantitative
results of the unstructured scenes are show in Figure 7. In the structured environments,
localization accuracy is the primary concern, while, in unstructured scenes, the focus shifts
to ensuring stable system operation.

Table 2. Quantitative structuring on public and private datasets.

Data rtp1 rtp2 rtp3 sbs1 sbs2 sbs3 tnp1 tnp2 tnp3 Camp Grove Beach Desert

Result 5.21 5.53 5.39 6.03 5.86 5.15 6.84 6.67 5.51 6.30 4.13 2.26 0.04

(a) (b) (c)

QS:4.35 QS:1.12 QS:0.01

Figure 7. The qualitative structures of the private dataset are shown. (a–c) are grove sequence,
beach sequence, and desert sequence, respectively. Cubes are salient edge points. The QS stands for
quantitative structure.
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5.2. System Localization Accuracy Evaluation

The evaluation results of localization accuracy are shown in Table 3. The localization
error is dictated by the root mean square error (RMSE) of translation estimation. As
shown in Table 2, the proposed method has higher localization accuracy than state-of-
the-art LiDAR-visual-IMU odometry in structured scenes such as rtp, sbs, and tnp data
sequences. In the NTU-VIRAL public dataset, the proposed system can maintain near-
optimal localization performance in most data sequence tests. However, its performance in
the rtp data sequence is slightly inferior to that of the LiDAR-IMU system. This is because
strong lighting variations interfere with the visual module’s localization accuracy, thus
increasing the translation error. Additionally, the LiDAR module is not affected by sensor
degradation in the rtp data sequence. Therefore, LiDAR-inertial odometry can obtain
better location results than LiDAR-visual-inertial odometry with optical noise interference.
Unlike other tightly coupled sensor fusion localization schemes such as FAST-LIVO and
mVIL-Fusion [34], the proposed system uses the output of the visual module only as the
initial value for the next pose estimation stage, making it less dependent on the visual
module. Even if the visual module fails, the proposed system can still deliver accurate
positioning. The real-time mapping results of rtp, sbs, and tnp are shown in Figure 8;
the proposed system provides structured point clouds and signs without distortion to
exhibit low-drift localization performance. The 3D point cloud map of the campus sequence
in the private dataset is shown in Figure 9, where static objects can all be recognized clearly.
In addition, Figure 10 illustrates the positioning error of the proposed system in the publicly
available NTU-VIRAL dataset, with a focus on annotating the minimum error, average
error, and maximum error between the proposed system and the ground truth trajectories.
Overall, in testing with the public dataset, our proposed system reduced localization errors
by 25.1%, 29.5%, 15.7%, 50.0%, and 55.8% compared with LIO-SAM, LVI-SAM, FAST-LIO2,
FAST-LIVO, and mVIL Fusion, respectively, after excluding the failure and mismatch of
each system.

(a) (b) (c)

Figure 8. Point cloud maps of NTU dataset are shown. (a–c) are rtp sequences, sbs sequences, and tnp
sequences, respectively.

(a)

(b)

(c)

(d) (e)

QS: 7.11

QS: 5.31

QS: 4.37

Figure 9. 3D bird’s-eye view map of the campus sequence. The quantitative structure of the three lo-
cations is emphasized as (a–c). Figure (d,e) show point cloud maps from a bird’s-eye perspective,
presenting the consistent map without point cloud divergence.
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Figure 10. Localization accuracy experiments are performed on the NTU-VIRAL dataset. The tra-
jectories’ errors are compared with the ground truths, which are provided by the public dataset.
Subfigures (a–i) represent the trajectory results for the rtp sequence, the sbs sequence, and the tnp
sequence, respectively. The “reference” in the subfigure is the ground truth of the UAV trajectory.
The heat map color of the estimated trajectories indicate the error level.

Table 3. Localization error on public and private datasets. (UNIT: Meter).

Data LIO-SAM LVI-SAM FAST-LIO2 FAST-LIVO mVIL-
Fusion Ours

rtp1 0.242 1 X 2 0.148 3 0.674 0.954 0.265
rtp2 0.177 X 0.195 0.861 0.673 0.201
rtp3 0.385 0.204 0.195 0.283 0.426 0.141
sbs1 0.214 0.215 0.223 0.351 0.213 0.114
sbs2 0.208 0.208 0.213 0.232 0.225 0.200
sbs3 0.179 X 0.210 0.210 0.193 0.175
tnp1 0.193 0.134 0.146 0.202 0.269 0.214
tnp2 0.192 0.180 0.169 0.124 0.229 0.168
tnp3 0.176 0.479 0.181 0.165 0.223 0.109

campus 0.466 1.641 0.457 0.395 - 4 0.312
grove 5.237 6.318 5.047 5.215 - 4.880
beach 0.453 6.449 1.171 2.159 - 0.241
desert X X X X - 10.87

1 underlined numbers are the sub-optimal results. 2 X means that the system failed to complete the full localization.
3 Bolded numbers are the best ones. 4 - means that the system is not applicable.
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5.3. System Robustness Evaluation

In this section, hierarchical unstructured scenarios are employed to test the localization
accuracy of the proposed system. The localization error is shown in Table 2. The difficulty
of grove, beach, and desert sequences increases progressively. The grove scene is the most
structured, with minimal brightness variation, making the environment relatively easier.
However, due to the grove sequence covering a distance of 983.5 m, the cumulative error is
relatively large. The beach scene covers only 137.3 m and, like the rtp sequence in the public
dataset, has strong visual interference. Due to its low level of structuring, the positioning
error is larger compared with the rtp sequence. The total distance of the desert sequence
is 988.3 m, with minimal changes in luminosity. However, the degree of structuring is
extremely low, and there is almost no vertical observation. As a result, pose estimation
can only rely on ground point clouds, leading to the complete failure of feature-based
LiDAR odometry methods. Despite this, our method with point-to-surface registration
can still maintain high accuracy in this scenario, ensuring that system localization does
not fail. Figure 11 shows the positioning trajectory of the proposed system compared with
FAST-LIVO and LVI-SAM in unstructured scenarios. Compared with these two state-of-the-
art methods, the proposed system is closer to the ground truth and has relatively smaller
positioning errors.
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Our method

(a) (b) (c)

GroundTruth
LVI-SAM
Fast-LIVO
Our method

GroundTruth
LVI-SAM
Fast-LIVO
Our method

Figure 11. Trajectory comparisons on the private dataset. Subfigures (a–c) are indicate the com-
parisons on the grove, beach, and desert sequences. As the degree of non-structuring increases,
the robustness of LVI-SAM and FAST-LIVO decreases. The proposed system can still maintain high
localization accuracy.

5.4. Runtime Evaluation

The runtime of the proposed method is evaluated in the grove sequence. As shown in
Table 4, the time consumption of the proposed system is divided into the visual module,
LiDAR module, and IMU module. The visual module includes the extraction and matching
of visual features, feature management, and data alignment, as well as image-based pose
solving. The LiDAR module includes preprocessing, feature extraction, structure monitor,
and hybrid point cloud tracking. The IMU module has an IMU measurement preintegration
section and factor graph optimization section. These three modules run in parallel mode.
According to the results in Table 3, the average running time of the vision module, LiDAR
module, and IMU module is 48.1 ms, 39.17 ms, and 0.425 ms, respectively, which is lower
than the acquisition time of the camera and LiDAR. Overall, the experimental results
demonstrate that the proposed system can operate in real time.
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Table 4. Time consumption on each component. (UNIT: MILLISECOND)

Component Median Mean Std

Visual module
Feature tracking 17.11 17.26 5.16

Feature management 17.22 18.31 4.39
Pose estimation 13.19 12.53 5.33

LiDAR module

Preprocessing 9.49 11.61 3.92
Feature extraction 1.15 1.29 1.72
Structure monitor 0.15 1.56 3.67

Hybrid point registration 22.55 24.71 17.43

IMU module Preintegration 0.143 0.151 0.360
Factor graph optimization 0.280 0.274 0.311

6. Conclusions

This article presents a sensor fusion system coupling LiDAR, cameras, and IMUs
to reduce trajectory error and ensure robust operation of UAVs. The visual module is
supported by LiDAR measurements and pose to estimate feature depth and visual pose.
The estimated feature depth is validated by calculating the reprojection error using corre-
sponding 3D observations within a sliding window in the visual module, which helps to
remove outliers. Additionally, the LiDAR pose is back-propagated to constrain visual pose
estimation, achieving an enhanced camera pose of the UAV. The LiDAR module employs
a structure monitor to switch matching modes in various environments. In unstructured
environments, we use Gaussian probability-based uncertainty to model irregular surfaces.
This uncertainty is then decoupled into eigenvalues and eigenvectors, and a pose estimation
objective function is constructed to achieve accurate localization. Finally, the IMU measure-
ment errors with the LiDAR and visual modules are used to construct the odometry factor,
which is incorporated into the factor graph optimization to complete the state solution of
the UAV. Experimental results with UAVs demonstrate that the proposed system outper-
forms state-of-the-art algorithms by averagely reducing localization errors by at least 15.7%.
In unstructured scenarios, the algorithm proposed in this paper leads the other control
algorithms by at least 12.6%, effectively improving the localization accuracy of UAVs in
unstructured environments. The system runs about 48.525 ms per frame, which meets the
task requirements for real-time work. In future research, we will explore a sensor fusion
architecture on UAVs that integrates satellite navigation and full-domain place recognition
for long-term localization, aiming to maintain system accuracy and robustness.
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