Multi-Robot Path Planning Algorithm for Collaborative Mapping under Communication Constraints
Abstract
:1. Introduction
- A multi-robot path planning framework and algorithm implementation tailored for collaborative mapping tasks are proposed. This algorithm introduces loop closure constraints at the planning stage, ensuring robots can meet at optimal positions to maintain map completeness and efficient mapping while also stabilizing inter-robot loop closure detection.
- Communication improvement methods at the planning level are presented. By designing a communication strategy, we ensure that robots can maintain stable communication over long periods under conditions of a limited communication range, facilitating effective data exchange.
- Experimental validation based on multi-scale maps is presented. Experiments have demonstrated the effectiveness of the path planning algorithm and its compatibility with collaborative mapping algorithms.
2. Related Work
2.1. Multi-Robot Cooperative Localization and Mapping
Methods | Sensors | Platform | Data Interaction | Data Association | Navigation |
---|---|---|---|---|---|
DOOR-SLAM [16] | Stereo | UAV | Decentralized | NetVLAD descriptor [12] | |
Kimera-Multi [17] | Stereo, IMU | UGV | Decentralized | Bag-of-words | |
COVINS [18] | Mono, IMU | UAV | Centralized | Bag-of-words | |
[19] | Stereo, IMU, GPS | UAV | Centralized | Bag-of-words | ✓ |
DiSCo-SLAM [20] | Lidar, IMU | UGV | Decentralized | Scan Context descriptor [13] | |
LAMP 2.0 [21] | Lidar | UGV | Centralized | Flexible selection | |
Swarm-SLAM [22] | Stereo, Lidar | UGV | Decentralized | Scan Context descriptor | |
DCL-SLAM [23] | Lidar, IMU | UGV | Decentralized | LIDAR-Iris descriptor [14] | |
RDC-SLAM [24] | Lidar | UGV | Decentralized | DELIGHT descriptor [25] | |
MRSLAM [26] | Lidar, IMU | UGV | Decentralized | RING++ descriptor [27] | |
[8] | Lidar, IMU, GPS | UGV | Decentralized | Scan Context descriptor | ✓ |
2.2. Multi-Robot Path Planning
3. System Architecture
3.1. Prior Information Processing
3.2. Mathematical Modeling
3.3. Genetic Algorithm Framework
Algorithm 1 Genetic algorithm for multi-robot path planning |
Require: Road network graph , loop edges B, number of robots R, population size P, maximum generations Ensure: Optimal multi-robot path planning scheme 1: Initialize population with chromosomes representing path allocations for R robots 2: for do 3: for each chromosome do 4: Compute fitness considering: - Total path coverage - Path length equality among robots - Communication link stability based on loop edges B 5: end for 6: Selection operation: Employ a rank-based selection to choose parent chromosomes 7: Crossover operation: Use ordered crossover to create offspring from parents 8: Mutation operation: Introduce mutations into the offspring to enhance diversity 9: Replace the least fit chromosomes in with new offspring 10: If any chromosome meets the desired fitness threshold, then break 11: end for 12: return Optimal chromosome representing the path allocation scheme |
4. Experimental Results
4.1. Experimental Setup
4.2. Performance and Convergence of Genetic Algorithm on Different Scale Maps
4.3. Comparison with MSTC*
4.4. Communication Performance Test
4.5. Path Planning with Mapping
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Chen, X.; Lu, H.; Xiao, J. Distributed and Collaborative Monocular Simultaneous Localization and Mapping for Multi-Robot Systems in Large-Scale Environments. Int. J. Adv. Robot. Syst. 2018, 15, 3. [Google Scholar] [CrossRef]
- Foster, A.J.I.; Gianni, M.; Aly, A.; Samani, H.; Sharma, S. Multi-Robot Coverage Path Planning for the Inspection of Offshore Wind Farms: A Review. Drones 2024, 8, 10. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, K.; Ok, K.; Tran, L.; Allen, D.; Roy, N.; How, J.P. Search and Rescue Under the Forest Canopy Using Multiple UAVs. Int. J. Robot. Res. 2020, 39, 1201–1221. [Google Scholar] [CrossRef]
- Parker, L.E. Distributed Intelligence: Overview of the Field and Its Application in Multirobot Systems. J. Phys. Agents (JoPha) 2008, 2, 5–14. [Google Scholar] [CrossRef]
- Saeedi, S.; Trentini, M.; Seto, M.; Li, H. Multiple-Robot Simultaneous Localization and Mapping: A Review. J. Field Robot. 2016, 33, 3–46. [Google Scholar] [CrossRef]
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 5135–5142. [Google Scholar]
- Lajoie, P.-Y.; Ramtoula, B.; Wu, F.; Beltrame, G. Towards Collaborative Simultaneous Localization and Mapping: A Survey of the Current Research Landscape. Field Robot. 2022, 2, 971–1000. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, D.; Hu, X.; Zhou, M.; Cao, Z. Autonomous Multi-robot Navigation and Cooperative Mapping in Partially Unknown Environments. IEEE Trans. Instrum. Meas. 2023, 72, 4508712. [Google Scholar] [CrossRef]
- Cramariuc, A.; Bernreiter, L.; Tschopp, F.; Fehr, M.; Reijgwart, V.; Nieto, J.; Siegwart, R.; Cadena, C. MapLab 2.0—A Modular and Multi-Modal Mapping Framework. IEEE Robot. Autom. Lett. 2023, 8, 520–527. [Google Scholar] [CrossRef]
- Dellenbach, P.; Deschaud, J.-E.; Jacquet, B.; Goulette, F. CT-ICP: Real-time Elastic LiDAR Odometry with Loop Closure. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 5580–5586. [Google Scholar]
- Xu, H.; Liu, P.; Chen, X.; Shen, S. D2 SLAM: Decentralized and Distributed Collaborative Visual-Inertial SLAM System for Aerial Swarm. IEEE Trans. Robot. 2024, 40, 3445–3464. [Google Scholar] [CrossRef]
- Arandjelovic, R.; Gronat, P.; Torii, A.; Pajdla, T.; Sivic, J. NetVLAD: CNN Architecture for Weakly Supervised Place Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 5297–5307. [Google Scholar]
- Kim, G.; Kim, A. Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D Point Cloud Map. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4802–4809. [Google Scholar]
- Wang, Y.; Sun, Z.; Xu, C.Z.; Sarma, S.E.; Yang, J.; Kong, H. LiDAR Iris for Loop-Closure Detection. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 5769–5775. [Google Scholar]
- Choudhary, S.; Carlone, L.; Nieto, C.; Rogers, J.; Christensen, H.; Dellaert, F. Distributed Trajectory Estimation with Privacy and Communication Constraints: A Two-stage Distributed Gauss-Seidel Approach. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 5261–5268. [Google Scholar]
- Lajoie, P.Y.; Ramtoula, B.; Chang, Y.; Carlone, L.; Beltrame, G. DOOR-SLAM: Distributed, Online, and Outlier Resilient SLAM for Robotic Teams. IEEE Robot. Autom. Lett. 2020, 5, 1656–1663. [Google Scholar] [CrossRef]
- Tian, Y.; Chang, Y.; Arias, F.H.; Nieto-Granda, C.; How, J.P. Kimera-multi: Robust, Distributed, Dense Metric-Semantic SLAM for Multi-robot Systems. IEEE Trans. Robot. 2022, 38, 2022–2038. [Google Scholar] [CrossRef]
- Schmuck, P.; Ziegler, T.; Karrer, M.; Perraudin, J.; Chli, M. COVINS: Visual-Inertial SLAM for Centralized Collaboration. In Proceedings of the IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Bari, Italy, 4–8 October 2021; pp. 171–176. [Google Scholar]
- Bartolomei, L.; Karrer, M.; Chli, M. Multi-robot Coordination with Agent-Server Architecture for Autonomous Navigation in Partially Unknown Environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 1516–1522. [Google Scholar]
- Huang, Y.; Shan, T.; Chen, F.; Englot, B. DiSCo-SLAM: Distributed Scan Context-Enabled Multirobot LiDAR SLAM with Two-Stage Global-Local Graph Optimization. IEEE Robot. Autom. Lett. 2022, 7, 1150–1157. [Google Scholar] [CrossRef]
- Chang, Y.; Ebadi, K.; Denniston, C.E.; Ginting, M.F.; Rosinol, A.; Reinke, A.; Palieri, M.; Shi, J.; Chatterjee, A.; Morrell, B. LAMP 2.0: A Robust Multirobot SLAM System for Operation in Challenging Large-Scale Underground Environments. IEEE Robot. Autom. Lett. 2022, 7, 9175–9182. [Google Scholar] [CrossRef]
- Lajoie, P.Y.; Beltrame, G. Swarm-SLAM: Sparse Decentralized Collaborative Simultaneous Localization and Mapping Framework for Multi-robot Systems. IEEE Robot. Autom. Lett. 2023, 9, 475–482. [Google Scholar] [CrossRef]
- Zhong, S.; Qi, Y.; Chen, Z.; Wu, J.; Chen, H.; Liu, M. DCL-SLAM: A Distributed Collaborative LiDAR SLAM Framework for a Robotic Swarm. IEEE Sensors J. 2023, 24, 4786–4797. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Y.; Chen, L.; Cheng, H.; Tu, W.; Cao, D.; Li, Q. RDC-SLAM: A Real-Time Distributed Cooperative SLAM System Based on 3D LiDAR. IEEE Trans. Intell. Transp. Syst. 2021, 23, 14721–14730. [Google Scholar] [CrossRef]
- Cop, K.P.; Borges, P.V.K.; Dubé, R. Delight: An Efficient Descriptor for Global Localisation Using LiDAR Intensities. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 3653–3660. [Google Scholar]
- Xu, X.; Lu, S. MR_SLAM. 2023. Available online: https://github.com/MaverickPeter/MR_SLAM (accessed on 13 September 2024).
- Xu, X.; Lu, S.; Wu, J.; Lu, H.; Zhu, Q.; Liao, Y.; Xiong, R.; Wang, Y. Ring++: Roto-translation-invariant Gram for Global Localization on a Sparse Scan Map. IEEE Trans. Robot. 2023, 39, 4616–4635. [Google Scholar] [CrossRef]
- Wurman, P.R.; D’Andrea, R.; Mountz, M. Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses. AI Mag. 2008, 29, 9–19. [Google Scholar]
- Li, J.; Sun, K.; Ma, H.; Felner, A.; Kumar, T.K.S.; Koenig, S. Moving Agents in Formation in Congested Environments. In Proceedings of the 19th International Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS ’20), Auckland, New Zealand, 9–13 May 2020; Carnegie Mellon University: Pittsburgh, PA, USA, 2020; pp. 726–734. [Google Scholar]
- Li, J.; Jin, S.; Wang, C.; Xue, J.; Wang, X. Weld Line Recognition and Path Planning with Spherical Tank Inspection Robots. J. Field Robot. 2022, 39, 131–152. [Google Scholar] [CrossRef]
- Wang, H.; Chen, W. Multi-robot Path Planning with Due Times. IEEE Robot. Autom. Lett. 2022, 7, 4829–4836. [Google Scholar] [CrossRef]
- Standley, T. Finding Optimal Solutions to Cooperative Pathfinding Problems. In Proceedings of the AAAI Conference on Artificial Intelligence, Atlanta, GA, USA,, 11–15 July 2010; AAAI Press: Palo Alto, CA, USA, 2010; Volume 24, pp. 173–178. [Google Scholar]
- Surynek, P. Towards Optimal Cooperative Path Planning in Hard Setups Through Satisfiability Solving. In Pacific Rim International Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2012; pp. 564–576. [Google Scholar]
- Sharon, G.; Stern, R.; Goldenberg, M.; Felner, A. The Increasing Cost Tree Search for Optimal Multi-Agent Pathfinding. Artif. Intell. 2013, 195, 470–495. [Google Scholar] [CrossRef]
- Matlekovic, L.; Schneider-Kamp, P. Constraint Programming Approach to Coverage-Path Planning for Autonomous Multi-UAV Infrastructure Inspection. Drones 2023, 7, 563. [Google Scholar] [CrossRef]
- Oh, H.; Kim, S.; Tsourdos, A.; White, B.A. Coordinated Road-Network Search Route Planning by a Team of UAVs. Int. J. Syst. Sci. 2014, 45, 825–840. [Google Scholar] [CrossRef]
- Tang, J.; Sun, C.; Zhang, X. MSTC*:Multi-robot Coverage Path Planning under Physical Constrain. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 5 June 2021; pp. 2518–2524. [Google Scholar]
- Frederickson, G.N.; Hecht, M.S.; Kim, C.E. Approximation Algorithms for Some Routing Problems. SIAM J. Comput. 1978, 7, 178–193. [Google Scholar] [CrossRef]
- Liu, S.; Liu, S.J.; Harris, N.; La, H.M. A Genetic Algorithm for MinMax K-Chinese Postman Problem with Applications to Bridge Inspection. In Proceedings of the International Conference on Structural Health Monitoring of Intelligent Infrastructure, St. Louis, MO, USA, 4–7 August 2019; pp. 882–889. [Google Scholar]
- Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An Open Urban Driving Simulator. In Conference on Robot Learning; PMLR: Cambridge MA, USA, 2017; pp. 1–16. [Google Scholar]
- LeBlanc, M.; Balsam, A. Chinese-Postman. Available online: https://github.com/supermitch/Chinese-Postman (accessed on 13 September 2024).
Map | Map Attributes | Map Size (m) | Number of Nodes | Number of Edges | Network Length (m) |
---|---|---|---|---|---|
Carla Town 10 | Small-scale Map | 170 × 200 | 13 | 18 | 1533 |
National Intelligent Vehicle Testing Area | Large-scale Map | 1000 × 600 | 20 | 30 | 5071 |
Map | Method | Max Subpath (m) | Max Reduction (%) | Avg Length (m) | Avg Reduction (%) | Total Length (m) |
---|---|---|---|---|---|---|
Carla Town10 | MSTC* | 1468 | – | 1304.6 | – | 3914 |
Ours | 746 | 49.2 | 740.6 | 43.2 | 2222 | |
Intelligent Vehicle | MSTC* | 3054 | – | 2831.3 | – | 8494 |
Testing Area | Ours | 1989 | 34.9 | 1858.6 | 34.3 | 5576 |
Group Test No. | Communication Constraint Group | Control Group | ||||||
---|---|---|---|---|---|---|---|---|
R1 and R2 SCT (s) | R1 and R3 SCT (s) | R2 and R3 SCT (s) | PE (m) | R1 and R2 SCT (s) | R1 and R3 SCT (s) | R2 and R3 SCT (s) | PE (m) | |
1 | 20 | 63 | 41 | 884 | 5 | 11 | 30 | 746 |
2 | 21 | 48 | 25 | 842 | 23 | 8 | 19 | 884 |
3 | 36 | 35 | 22 | 828 | 6 | 21 | 29 | 840 |
4 | 43 | 28 | 17 | 884 | 6 | 4 | 11 | 872 |
5 | 36 | 25 | 42 | 924 | 27 | 31 | 22 | 746 |
Average | 33.3 | 872.4 | 16.9 | 817.6 |
Metric | Duration (s) | Dist (m) | Min (m) | Max (m) | RMSE (m) |
---|---|---|---|---|---|
Robot1 | 218 | 596 | 0.19 | 0.44 | 0.33 |
Robot2 | 221 | 613 | 0.25 | 0.83 | 0.45 |
Robot3 | 239 | 635 | 0.13 | 0.56 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Li, J.; Shi, M.; Wu, T. Multi-Robot Path Planning Algorithm for Collaborative Mapping under Communication Constraints. Drones 2024, 8, 493. https://doi.org/10.3390/drones8090493
Zhou C, Li J, Shi M, Wu T. Multi-Robot Path Planning Algorithm for Collaborative Mapping under Communication Constraints. Drones. 2024; 8(9):493. https://doi.org/10.3390/drones8090493
Chicago/Turabian StyleZhou, Chengyu, Junxiang Li, Meiping Shi, and Tao Wu. 2024. "Multi-Robot Path Planning Algorithm for Collaborative Mapping under Communication Constraints" Drones 8, no. 9: 493. https://doi.org/10.3390/drones8090493
APA StyleZhou, C., Li, J., Shi, M., & Wu, T. (2024). Multi-Robot Path Planning Algorithm for Collaborative Mapping under Communication Constraints. Drones, 8(9), 493. https://doi.org/10.3390/drones8090493