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Abstract: Inspired by hummingbirds and certain insects, flapping wing micro aerial vehicles
(FWMAVs) exhibit potential energy efficiency and maneuverability advantages. Among them, the
bi-directional motor-driven tailless FWMAV with simple structure prevails in research, but it requires
active pose control for hovering. In this paper, we employ deep reinforcement learning to train
a low-level hovering strategy that directly maps the drone’s state to motor voltage outputs. To
our knowledge, other FWMAVs in both reality and simulations still rely on classical proportional-
derivative controllers for pose control. Our learning-based approach enhances strategy robustness
through domain randomization, eliminating the need for manually fine-tuning gain parameters. The
effectiveness of the strategy is validated in a high-fidelity simulation environment, showing that for
an FWMAV with a wingspan of approximately 200 mm, the center of mass is maintained within a
20 mm radius during hovering. Furthermore, the strategy is utilized to demonstrate point-to-point
flight, trajectory tracking, and controlled flight of multiple drones.

Keywords: flapping wing micro aerial vehicle; hovering; flight control; reinforcement learning

1. Introduction

Bees and certain other insects are capable of hovering, while hummingbirds are the
only bird species capable of such sustained aerial behavior [1]. Mimicing the flight of
these biological flyers, flapping wing micro aerial vehicles (FWMAVs) is an attractive
solution for drones at the scale of centimeters or decimeters. At this scale, fixed wings
struggle to maintain high speeds for sufficient lift, and rotor-based forward flight suffers
from inadequate energy efficiency [2]. In contrast, flapping wing designs hold promise
for maneuverability within confined spaces and greater energy efficiency [3,4]. However,
as of now, due to manufacturing flaws, insufficient motor power density, limited control
methods, and other reasons [5,6], FWMAVs still struggle to emulate their counterparts
in nature.

In the past few decades, several research teams have achieved liftoff and to some
extent controlled flight of FWMAVs. Typically, researchers utilize crank-rocker mechanisms
to convert the unidirectional rotation output of motors into flapping motion of wings, as
demonstrated in projects such as Delfly and KUBeetle [7–9]. One limitation of this type of
aircraft is its inability to alter the flapping amplitude of wings, only being able to adjust the
flapping frequency, necessitating additional servo mechanisms to generate control torque.
Other researchers have employed high-frequency input power modulation, driving wing
flapping directly through piezoelectric or bidirectional motor rotation, as seen in projects
like Robobee and Purdue hummingbird robot [10–12]. This approach allows for easy
manipulation of wing kinematics, controlling the left and right flapping angles of wings
independently, thus generating control torque through instantaneous wing kinematics
modulation [13], without the need for additional mechanisms for control assistance.
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The flight control of FWMAVs presents significant challenges, including complex sys-
tem dynamics, severe underactuation, and limited control authority, among others [2,14].
Some researchers address these issues using classical feedback controllers. Karásek et al.
employ a biologically inspired Proportional-Derivative (PD) controller for pitch and roll
control of the Delfly Nimble, and a proportional and feedforward controller for yaw con-
trol [7]. Phan et al. use a PD controller for feedback control of the KUBeetle’s angular
velocity, with three servos used to minimize the error between the desired and measured
bodyrates [15]. These fixed-gain feedback architecture heavily relies on empirical engineer-
ing practices, involving trial and error for gain parameter tuning in both simulation and
real-world scenarios [2,15]. As for FWMAVs without crank-rocker, Chirarattananon et al.
propose a linear controller by sequentially adjusting parameters to accomplish increasingly
complex control tasks [16]. Zhang et al. design a nonlinear geometric controller that
theoretically ensures it is almost globally exponentially attractive and achieves attitude
stabilization control during the liftoff process [14].

Researchers also attempt flight control of FWMAVs through learning-based methods.
Chirarattananon et al. propose an iterative learning control algorithm, building upon the
Robobee platform, to achieve imitation of insect-like landing on vertical walls with the
aid of magnetic adhesion [17]. Fei et al. employ a hybrid strategy, combining adaptive
robust control with the Deep Deterministic Policy Gradient (DDPG) algorithm, to enable
FWMAVs to execute aggressive maneuvers like 180-degree yaw turns and 360-degree body
rolls [18,19]. Nozawa et al. utilize the Deep Q-Network algorithm to control the pitch angle
of a FWMAV [20], yet this control is discretized, capable only of maintaining the pitch
angle within a certain range. In fact, the aforementioned studies only use learning-based
methods to perform some specific tasks, while relying on classical feedback controllers to
achieve pose control tasks such as hovering.

The control issues of FWMAVs may benefit from insights gained through training
quadcopter flight using learning-based method. While many studies focus on high-level
decision-making [21,22], particularly trajectory planning, there are still some works utilizing
learning-based methods to perform low-level control. These works directly output motor
voltage commands for pose control, thereby eliminating the need for an additional classical
lower-level pose controller. Koch et al. propose a quadrotor low-level controller based on
reinforcement learning which can track the set values of angular velocity [23]. Molchanov et
al. train a stable low-level quadrotor controller that can drive the Z-axis of the drone’s body
coordinates vertically upward and minimize position and velocity errors from randomly
sampled initial conditions within a certain range in a short time [24].

In this paper, we choose a hummingbird-like bi-directional motor-driven tailless
FMWAV as the subject due to its simplicity, compactness, and potential maneuverability.
The goal is to develop a hover flight strategy capable of consistently maintaining the center
of mass of the FWMAV’s torso within a 50 mm diameter space during flight. Considering
the wingspan of this kind of FWMAV is about 200 mm, this positional error is acceptable.
The experiments are performed in a high-fidelity simulation environment, which has
complete system dynamics, including motor-driven wing dynamics and flapping flight
aerodynamics. We use reinforcement learning to train the hover strategy. The training
is conducted in 20 parallel environments, employing the widely-used Proximal Policy
Optimization (PPO) algorithm to ensure stability in policy updates. Reasonable state and
action spaces are selected, with particular emphasis placed on utilizing a sliding window
of historical states and actions to expand the state space, addressing asynchronous control
issues [25]. Boundary conditions and reward functions are designed through understanding
of the problem and iterative refinement. The final strategy is obtained through two training
sessions, each consisting of 50 million steps, with different boundary conditions set for
each training session. During the first training session, with larger boundary values, the
FWMAV primarily learns to maintain attitude stability. In the second training session,
boundary values are reduced to enhance the precision of the position control.
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Eventually, the trained policy can enable the FWMAV to hover at any set point in
space and additionally perform vertical, forward, and lateral flights, enabling point-to-
point flight from the initial position to distant target points. This policy effectively serves as
a low-level pose controller, while avoiding manual tuning of complex gain parameters. To
our knowledge, other FWMAVs in reality or simulation still rely on pose controllers similar
to traditional cascaded PD. As a demonstration of the policy’s versatility, trajectory tracking
along a circular path and the control of multiple drones are shown within the simulation.

The structure of this paper is as follows: Section 2 elaborates on the modeling of
FWMAVs and briefly introduces reinforcement learning method. Section 3 provides a
detailed description of the experimental intricacies of reinforcement learning training,
alongside the measurement of forces on the FWMAV in simulation. Section 4 presents a
analysis of training results, supplemented with demonstrations of several applications.
Finally, Section 5 concludes and points out future research directions.

2. Models and Methods

In this chapter, the fundamental model of our FWMAV is established, encompassing
the mechanical structure, wing actuation model, and aerodynamics. Subsequently, we
analyze the generation of control forces and torques, then outline the control challenges of
this type of drone. Finally, the reinforcement learning algorithm used for continuous action
control in this paper is briefly introduced.

2.1. Drone Model and Flapping Mechanisms

The bi-directional motor driven tailless FWMAV prototype implemented in our lab
is shown in Figure 1a. Corresponding SolidWorks model is shown in Figure 1b, where a
hollow carbon fiber frame is employed as the torso and two rigid thin sheets as the wings.
Note that the torso is vertical here, an orientation resembling that of a hummingbird during
flight, where it typically maintains a slight angle with the vertical direction, as opposed to
large-scale flapping-wing aerial vehicles or fixed-wing aerial vehicles.

Figure 1. Our FWMAV. (a) FWMAV in reality. (b) SolidWorks model. (c) Unified Robot Description
Format(URDF) model, with reference coordinate systems.

Two brushless direct current motors are employed to drive the wings separately,
enabling a symmetric flapping motion between the upstroke and downstroke phases
through gearsets and torsion springs. In addition, the wings undergo passive rotation about
the rotation axis due to forced vibration. Elastic components can function as energy storage
elements to preserve the kinetic energy, and a properly configured flapping frequency can
induce mechanical resonance, leading to a significant enhancement in the energy efficiency
of the entire system [12,26]. In an ideal situation, the kinetic and potential energies of
the mechanical components within the system can be conserved, with the majority of the
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motors’ work dedicating to overcoming system damping forces and aerodynamic drag
on the wings, without being utilized to counteract the inertia force resulting from the
high-frequency reciprocating motion of the wings [27].

To reduce the complexity in simulation, the Unified Robot Description Format(URDF)
model is simplified into five components: torso, two rods, and two wings, as shown in
Figure 1c. The mass and rotational inertia are systematically identified in reality and then
injected into the urdf file. The body coordinate system OXYZ is fixed on the torso. The
X′Y′Z′ coordinate system is at the right wing root. The Y′ axis points radially outward,
and the Z′ axis points opposite to the chordwise direction of the wing.

The wing can rotate around the rotation axis, with the rotation angle denoted as ψw.
The T-shaped rod, swinging together with the wing up and down around the stroke axis,
is referred to as the stroke motion, where the stroke angle is denoted as ϕw. The wing
actuation model can be expressed as follows [27]:

Kuu = Jsϕ̈w + Bs1ϕ̇w + Bs2|ϕ̇w|ϕ̇w + Ksϕw (1)

where u signifies the input voltage, Ku is the lumped input gain, Js denotes the total moment
of inertia, Bs1 and Bs2 stand for the combined linear and aerodynamic damping coefficients
respectively, Ks represents the torsional spring coefficient.

Calculating aerodynamic forces for FWAMVs typically assumes that these forces are
computed under quasi-steady aerodynamic conditions [28]. Transient aerodynamic phe-
nomena such as delayed stall, rotational circulation, and wake capture [29] in low Reynolds
number flight scenarios are indirectly expressed through the aerodynamic coefficient CF(α),
where α denotes the angle of attack of the wing.

To ensure clarity in the following aerodynamic discussions, we adopt Ellington’s
proposed insect wing parameters [30] to model the wing, as illustrated in Figure 2. In
this model, r is the radial distance, c(r) denotes the chord length, R is the wing span, and
S stands for the wing area. The mean chord length is calculated as c̄ = S/R. Physical
quantities with a hat ˆ are dimensionless, such as r̂k represents the dimensionless radial

distance of the k-th order central moment: r̂k =
(∫ 1

0 r̂k ĉ(r̂)dr̂
)1/k

, where r̂ = r/R.

Figure 2. The parameterized wing model and the actual wing.

The aerodynamic forces are calculated using Blade Element Theory (BET). Considering
a small chordwise strip of the wing located at a distance r from the wing root with an area
dS = c(r)dr , the relative airflow velocity is V = ϕ̇wr. For hovering or low-speed flight,
the velocity of the torso is relatively small and can be neglected. Dynamic air pressure is
q = (1/2)ρair V2. From the general form of aerodynamic force F = CF(α)qS, the differential
form and integral form with dimensionless parameters can be expressed as follows:dFaero = CF(α)(1/2)ρair (ϕ̇wr)2c(r)dr

Faero =
1
2

ρair ϕ̇2
wCF(α)c̄R3r̂2

2

(2)

In the simulation, only the normal force FN on the wing surface is considered because
it far exceeds the shear viscous forces acting parallel to the wing [29]. We have:

FN =
1
2

ρair ϕ̇2
wCN(α)c̄R3r̂2

2 (3)
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where the empirical formula for CN(α) can be found in [28]. By applying the spatial
resultant moment theorem, the point of application of force FN on the wing surface can be
determined, namely Y′cp = MZ′/FN and Z′cp = MY′/FN . M′Y and M′Z are the moments of
the aerodynamic force in the normal direction of the wing surface about the Y-axis and Z-
axis, respectively. They can both be calculated using the aforementioned BET approach [28]:

MY′ =
1
2

ρair ϕ̇2
wCN(α)dcp c̄2R3r̂2

2

MZ′ =
1
2

ρair ϕ̇2
wCN(α)c̄R4r̂3

3

(4)

where the dcp denotes the chordwise aerodynamic center coefficient [31].
As previously mentioned, while the motor actively drives the wing to perform the

stroke motion, the wing undergoes passive rotation. This effect is described using rotational
aerodynamic damping MY′ ,rd [28]:

MY′ ,rd =
1
8

ρair Crdψ̇w|ψ̇w|c̄−4R
∫ 1

0
ĉ(r̂)4dr̂ (5)

2.2. Generation of Control Force and Torque

In flight control systems, the concept of averaging theory is widely applied [10,11], al-
lowing the approximation of time-varying systems through their averaged values, provided
there is sufficient separation of time constants [32]. In FWMAVs, as long as the flapping
frequency f is sufficiently high, an averaged system can be used through a cycle-averaged
froce coefficient C̄F [29]. Specifically, if the amplitude of the stroke angle is Φm, the average
lift F̄L of a single wing can be represented as:

F̄L(Φm) =
1
2

ρair f 2ΦmC̄L c̄R3r̂2
2 (6)

where the detailed averaging analysis with time scale separation can be found in [13].
According to the wing kinematics modulation technique introduced by [13,33], below

we demonstrate how our twin-motor driven tailless FWMAV generates lift and control
torque solely through storke kinematic variations of its wings.

First, let the nominal amplitude be denoted as Φ0, corresponding to lift F0 = F̄L(Φ0).
Let the variation in amplitude be δΦ0, as shown in Figure 3a, then the variation in lift is:

δFZ = 2F̄L(Φ0 + δΦ0) − 2F̄L(Φ0) = ρair f 2C̄L c̄R3r̂2
2δΦ0 (7)

Second, as shown in Figure 3b, induce a difference in amplitude between the left and
right wings to generate the roll torque:

τX = F̄L(Φ0 + Φr)ycp − F̄L(Φ0 −Φr)ycp = ρair f 2C̄L c̄R3r̂2
2ycpΦr (8)

Third, altering the center surface of the stroke motion by an angle Φp to generate pitch
torque, as shown in Figure 3c, considering that Φp is quite small, yeilds:

τY = 2F̄L(Φ0)ycpsin(Φp) ≈ ρair f 2C̄L c̄R3r̂2
2 ycpΦ0Φp (9)

Last, utilizing the split cycle parameter δσ to generate the angular velocity difference
between left and right wings, thereby generating yaw torque, as shown in Figure 3d. Here,
we calculate τZ during the downstroke (with the upstroke following a similar process).
According to the process of calculating MZ′ in Equation (4) and the synthesis of spatial
moment vectors, after numerical approximation, the following holds:
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τZ =
1
2

ρair (
0.5

0.5− δσ
f )2Φ0C̄D c̄R4r̂3

3 −
1
2

ρair (
0.5

0.5 + δσ
f )2Φ0C̄D c̄R4r̂3

3

≈ 16ρair f 2C̄D c̄R4r̂3
3Φ0δσ

(10)

Through the aforementioned analysis, it is evident that δFZ ∝ δΦ0, τX ∝ Φr, τY ∝
Φp, τZ ∝ δσ. Sinusoidal voltage signals are applied to the left and right motors to achieve
these wing kinematics variations through four control parameters, ∆Ua, Ur, Up, and ∆σ,
corresponding to δΦ0, Φr, Φp, and δσ above. In addition, let Ua = Uh + ∆Ua, where Uh is
the voltage amplitude which generates sufficient lift force to counter the gravity. The wing
flapping angle exhibit a quasi-sinusoidal waveform lagging behind the voltage signal, and
these two sets of parameters are roughly proportional according to the analysis in [27]:

Φi ∝ Ui, δσ ∝ ∆σ (11)

where i = a, r or p. Specifically, the left and right motor input signals u0 and u1 at time t
within one period T can be expressed as follows:

u0 = −

(Ua −Ur) cos
(

πt
(0.5−∆σ)T

)
+ Up , if 0 ≤ t ≤ (0.5− ∆σ)T

(Ua −Ur) cos
(

π(T−t)
(0.5+∆σ)T

)
+ Up , else (0.5− ∆σ)T ≤ t ≤ T

(12)

u1 =

(Ua + Ur) cos
(

πt
(0.5+∆σ)T

)
+ Up , if 0 ≤ t ≤ (0.5 + ∆σ)T

(Ua + Ur) cos
(

π(T−t)
(0.5−∆σ)T

)
+ Up , else (0.5 + ∆σ)T ≤ t ≤ T

(13)

As the bi-directional motor driven FWMAV relies solely on two motors to fully control
the six degrees of freedom, it suffers from severe underactuation. Additionally, due to the
high sensitivity of this type of FWMAV, even minor adjustments in wing kinematics can
result in significant changes in lift and torque outputs [11], posing a considerable challenge
to its control.

g4

lift roll pitch yaw

（a） （b） （c） （d）

Figure 3. Generation of lift and control torque through kinematic modulations of wings: (a) lift,
(b) roll, (c) pitch. (d) yaw. (Pictures in the row below are depicted in top view. Pink and black lines
denote the extreme stroke wing position before and after modulation, and blue dashed lines denote
wingtip trajectory after modulation. In (d), orange and purple line denote wingtip trajectory during
the first 0.5 T and the latter 0.5 T, and solid trajectories indicate faster average stroke angular velocities
compared to dashed ones.)
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2.3. Reinforcement Learning

Note that the symbols in the following discussion may conflict with those used earlier,
but should not cause confusion in context. See the notation section at the end for details.

Reinforcement learning has increasingly been applied to address control problems
in robotics, including aerial vehicles. In typical reinforcement learning setups, an agent
continually interacts with the environment: it observes the current state st, takes action
at according to its policy π, receives a reward rt+1 from the environment, and transitions
to the next state. Through these repeated iterations, the agent learns about the task and
refines its policy accordingly, as shown in Figure 4a. The yellow line represents the learning
process in one step. Define the return Rt as the weighted sum of rewards over time:

Rt =
T

∑
i=t

γ(i−t)r(si, ai) (14)

where γ is a discount factor between 0 and 1, used to balance the importance of current
and future rewards. A γ closer to 1 emphasizes long-term rewards, but setting it too close
to 1 can hinder training performance. The key mechanism of reinforcement learning is to
find a policy π which can execute optimal actions to maximize the return Rt [34].

Environment

Value Reward

State

Policy Network

Actor
Value Network

（Critic

Action

…
…

…
…

…
…

…
…

…
…

…
…

Environment

Agent

Policy

Action

Reward

State

(a)

（

(b)

 

（ （

Figure 4. Reinforcement learning framework. (a) General concept. (b) Actor-Critic algorithm.

At time t, the return Rt is a random variable, but the agent needs to predict the
value of Rt, estimating the quality of future rewards to update the policy. At this point,
taking the expectation of Rt can eliminate its randomness. Define the action-value function
Qπ as the expectation of Rt with respect to St+1, At+1, · · · , ST , AT under the condition of
observing St = st, At = at. The Qπ depends on st and at but does not depend on the
states and actions at time t+1 and beyond. Mathematically, it is expressed as: Qπ(st, at) =
ESi>t ,Ai>t [Rt | St = st, At = at]. Qπ can be used to measure the quality of taking action at
in state st throughout the entire training episode when using policy π.

Define the state-value function Vπ as the expectation of the action-value function with
respect to the action variable at the current time t: Vπ(st) = EAt [Q

π(st, At)]. In policy
learning, the objective function is defined as:

J(θ) = ES[Vπ(S)] (15)

where θ represents the parameters of the policy π. The goal is to maximize J(θ).
One common approach to policy optimization in reinforcement learning is the Actor-

Critic method [35]. In this method, the Critic module approximates Qπ(S, A) using the
value network q with parameters ω, which it provides to the Actor to improve the policy, as
illustrated in Figure 4b. Then ∇θ J(θ) can be approximated as q(s, a; ω) · ∇θ ln π(a | s; θ)
according to the policy gradient theorem. Define the loss function of the value network
using temporal-difference method:

L(ω) =
1
2
[q(st, at; ω)− (rt + γ · q(st+1, at+1; ω))]2 (16)
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All gradients can be obtained through backpropagation in the neural network, updat-
ing the parameters of the value network with gradient descent and the parameters of the
policy network with gradient ascent becomes straightforward:

ω ← ω− α · ∇wL(ω), θ ← θ + β · ∇θ J(θ) (17)

where α, β are the learning rates. The final result is the policy πθ after optimization.
In this paper, the Proximal Policy Optimization (PPO) algorithm [36], a member

of the Actor-Critic algorithm family, is utilized for training. Unlike the original Actor-
Critic algorithm, its Value Net vω(s) directly estimates Vπ . To reduce the variance of
policy gradient estimates and improve learning efficiency, the advantage function is com-
puted using Generalized Advantage Estimation(GAE) method [37] within a given length-T
trajectory segment:

Ât =
T−t

∑
l=0

(γλ)l(rt+l + γvω(st+l+1)− vω(st+l)) (18)

In PPO, the trust region approach is used to approximate the objective function J(θ) of
the Policy Net, and a clipping technique is typically employed to ensure that the disparity
between new and old parameters remains within acceptable bounds. Relevant papers
usually use L(θ) instead of J(θ) in their notation [36], which can specifically be expressed as:

Lt(θ) = min
(
ratioπθ

Ât, clip(ratioπθ
, 1− ϵ, 1 + ϵ)Ât

)
(19)

where ratioπθ
= πθ(at | st)/πθold (at | st).

3. Experiments

Based on the aforementioned physical model, a simulation environment is constructed
by using the PyBullet physics engine [38]. The details of the system identification will be
provided in another concurrently conducted work. This simulation is fully compatible
with the OpenAI Gym environment. It can run independently on each CPU core, enabling
parallel training to expedite sample collection efficiency and enhance training speed. The
physics engine update frequency is set to 24 kHz, while the control step frequency is set
to 1.2 kHz based on the performance of microcontrollers in reality. The steps used in
reinforcement learning experiments are the control steps mentioned here. All experiments
in this paper are conducted on a personal computer equipped with an i7-13790F processor
and running Ubuntu 20.04.

In the context of the hovering for FWMAV, two prerequisites are paramount. Firstly,
the FWMAV must be capable of generating adequate lift and three-axis torque. Secondly,
it necessitates the implementation of a pose controller. In the following sections of this
chapter, we discuss the relationship between the FWMAV voltage signal input and the
force and torque output. Additionally, we detail the training of a pose controller using
reinforcement learning.

3.1. Force and Torque

In this section, we measure the forces and torques experienced by the entire FWMAV
during the flapping wing process, in preparation for subsequent reinforcement learning
experiments. Additionally, an approximate linear relationship is verified between the
relative control inputs Ua, Ur, Up, ∆σ and FZ, τX , τY, τZ.

We fix the torso of the drone and measure the forces acting on the object attached to
it, through which the forces exerted on the FWMAV can be inferred, akin to using force
sensors in reality. Specifically, the voltages of the motors on the left and right sides are
given as u0 = −15 cos 2π f t and u1 = 15 cos 2π f t. This corresponds to setting Ua = 15 V
and zeroing the four control inputs ∆Ua, Ur, Up, ∆σ specified in Equations (12) and (13). All
measurements start from the FWMAV’s static state. The data for the first few wing strokes
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represent the transient transition state, as shown in Figure 5. Only the voltage signal and
wing motion for the one side is plotted. Both the force and torque undergo median filtering
with a kernel size of 3.

As shown in Figure 5a,b, though the wing stroke angle and the wing rotation angle
both lag behind the voltage signal, the phase lag of the wing rotation angle is larger. In
Figure 5c, the FWMAV is only subjected to the force of gravity initially, resulting in a force
of approximately −0.1 N in the Z-axis direction. As the wings start flapping, lift force is
generated. At times, negative lift occurring, this phenomenon is consistent with the findings
of Dickinson [29], who attribute it to the lagging rotational motion of the wings behind the
stroke motion. While in subsequent reinforcement learning experiments, asymmetric mass
properties are introduced to better simulate real-world imperfections in manufacturing and
assembly, the URDF mass file is configured symmetrically here for clarity. Nonetheless,
some noise still persists here due to computational errors. It’s noticeable that in the absence
of control, the pitch torque significantly surpasses the roll and yaw torques, as shown in
Figure 5d–f. This warrants particular consideration when crafting reinforcement learning
reward functions later on.

（a） （b）

（c）

（e）

（d）

（f）

Figure 5. Sinusoidal voltage input for 0.5 s with measured wing kinematics and body force/torques
over time. (a) Single-sided voltage signal and wing stroke angle. (b) Single-sided voltage signal and
wing rotation angle. (c–f) represent the overall resultant force in the vertical direction, as well as the
overall roll torque, pitch torque, and yaw torque, respectively.

Subsequently, the mean force and torque exerted on the FWMAV during a certain time
are measured with variations of control inputs. Adopting a similar force measurement
method as the previous experiment and following the averaging theory, we record the data
between 1 s and 5 s and plot mean values as small dots in Figure 6. In each experiment,
only one of the four control inputs, ∆Ua, Ur, Up, ∆σ, is varied. The thin red line represents
the linear regression model using the least squares method. From the first row of Figure 6,
it can be observed that δFz, τX, τY, and τZ exhibit proportional relationships with ∆Ua,
Ur, Up, and ∆σ, aligning with the theoretical models in Equations (7)–(11). The second
row of Figure 6 illustrates how τX , τY, and τZ vary with Ua. Notably, changes in Ua have
minimal impact on roll torque, while pitch torque and yaw torque demonstrate linear
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growth with Ua, consistent with Equation (8) (without Φ0) and Equations (9) and (10) (with
Φ0), respectively.

Through the above analysis, it is evident that pitch torque is not solely controlled by
Up, and yaw torque is also not solely controlled by ∆σ. Both of them are influenced by Ua,
which means the four control inputs is not decoupled. This needs to be considered in the
subsequent design of the reward function. Additionally, it is observed that when Ua is set to
its maximum value within the operational range, 15 V, the corresponding vertical upward
force is approximately 0.1 N. For our FWMAV, the gravitational force is −0.1095 N, so the
maximum upward acceleration is equivalent to one gravitational acceleration. Admittedly,
its control authority is rather small compared to quadrotors capable of generating vertical
upward accelerations exceeding three gravitational accelerations [39].
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Figure 6. Variation of mean force and torque on the FWMAV with control inputs.

3.2. Action and State Space

In the forthcoming sections, a pose controller is developed through reinforcement
learning. The discussion delve into the specifics of action and state space selection, as
well as providing a description of the formulation of boundaries, rewards, and training
process. In our reinforcement learning experiments, the action at is defined as the normal-
ized [∆Ua, Ur, Up, ∆σ]. The state, constructed using [eP, R, v, ω] ∈ R18, employs a sliding
window of historical observations and actions with a window size of 40 steps to address
system delays and asynchronous control issues [25]. Here, eP = [x − x∗, y− y∗, z− z∗]
represents the error between the current position [x, y, z] and the target position [x∗, y∗, z∗]
in world frame. In addition, R ∈ R9 represents the current rotation matrices. v and ω
denote the drone’s linear velocity and angular velocity in the body frame, respectively.

Domain randomization is adopted to enhance the robustness of the strategy and
facilitate its transfer to real drones in the future. Specifically, the drone is initially placed
along the Z-axis, and its altitude varies randomly between 400 mm and 600 mm, while the
hover target position is always (0 mm, 0 mm, 500 mm). The Euler angles ϕ, θ, ψ are initially
set to 0 degrees, varying randomly within ±5 degrees, with the goal of maintaining them
near 0. Note that the Euler angles follow the XYZ fixed angles convention as defined in
the URDF standard. Additionally, the mass properties corresponding to different wing
geometries are analyzed to generate a multivariate regression function. During training,
each wing’s span varies randomly within ±2 mm from a base of 90 mm and URDF file is
accordingly updated, with the wing’s mass and moments of inertia automatically generated
by the regression function.
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3.3. Boundary and Reward

The final strategy is obtained through two sessions of training, each with different
boundary conditions and reward. In the first training session, the boundaries are set
as follows:{
− 100 mm < x < 100 mm, −100 mm < y < 100 mm, 200 mm < z < 800 mm,

− 45 deg < ϕ < 45 deg, −45 deg < θ < 45 deg, −45 deg < ψ < 45 deg.
(20)

During a training episode, the drone undergoes a reset each time it exceeds this
boundary, initiating a new episode. In addition, the time boundary is set as t < 15 s,
meaning that a maximum of 18,000 control steps can be executed in one episode.

The reward function is designed to guide policy updates. Specifically, the policy, based
on the previous step’s state st−1, applies the action at−1, and then the simulation computes
the forward dynamics. Next, the environment calculates the reward rt using the reward
function. The policy is updated based on the sequence of states, actions, and rewards. The
reward function is defined as follows:

rt = rp − kp · ||ep||2 − ka · (|ϕ|+ kpitch · |θ|+ |ψ|)
− kv · (1 + |vz|)2 − kw · ||ω||

(21)

where the term rp is initially set to 25 and increases by 5 when the drone approaches
within 25 mm of the hover target point. The coefficients kp, ka, kv, kw represent penalties
for position error, attitude, linear velocity, and angular velocity, respectively, and are set as
follows: kp = 800, ka = 10, kv = 5, and kw = 0.1. All physical quantities define in above
section and can be calculated during training from the data in the state space.

Note that the linear velocity penalty term only involves vz. While the hovering strategy
appears to require minimizing vx and vy , experimental processes indicate that directly
penalizing these velocities in the reward function is ineffective. Theoretically, an ideal
hovering strategy would also produce inherent oscillations in the pitch direction due to the
wings’ downstroke and upstroke, which generate certain vx. To address this, a coefficient
kpitch is introduced and ultimately the trained strategy can maintain vx and vy within
reasonable bounds.

The strategy trained from the first training session accomplishes hovering but exhibits
notable position drift. Therefore, a second training session is carried out using the best
model from the first session, along with modified boundary conditions and reward function.
While other boundaries remain unchanged, position boundaries are narrowed as follows to
improve precision:

−50 mm < x < 50 mm, −50 mm < y < 50 mm, 300 mm < z < 700 mm, (22)

and the initial value of rp in the reward function is adjusted to 50, with kp adjusted to 1600.
It should be noted that without the first training session, starting from scratch with the
modified conditions and parameters typically results in failure.

3.4. Training

Figure 7 illustrates the details of our parallel training framework. A separate simula-
tion is established on each CPU core, with 20 parallel simulations used during training to
enhance data collection efficiency. The sequence s0, a0, r1, s1, a1, r2, . . . , sn−1, an−1, rn in the
upper right corner, is generated as follows: In each simulation environment, the state s0 is
constructed using the initial observation, with historical observations and actions initially
set to zero. Then, the initial Policy Net generates a Gaussian distribution for the action
based on s0, from which the action a0 is sampled. After applying a0 to the FWMAV in
the simulation environment, the reward r1 is calculated according to the reward function.
Next, state s1 is constructed, and action a1 is sampled from the distribution predicted by
the Policy Net. After forward dynamics computation, the reward r2 is obtained using
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the reward function. This process repeats until the sequences collected from all parallel
environments reach the Rollout buffer’s size, at which point the Policy Net is updated. The
black dashed box on the left contains the neural networks used in the PPO algorithm. The
algorithm is implemented using the Stable-Baselines3 reinforcement learning library [40].
Both the Policy Net and Value Net are configured as neural networks with two hidden
layers, each with 64 units.
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Figure 7. Parallel training framework.

In the first training session, the batch size for updating the neural network is set to 256,
and the discount factor, i.e., γ in Equation (14), is set to 0.99. In the second training session,
the batch size is increased to 512, and λ is increased to 0.995 to more thoroughly consider
the expectation of future rewards. In each training session, five independent episodes are
evaluated every 20,000 steps, resulting in the episode reward versus training steps curve
shown as the light blue line in Figure 8. The dark blue line represents a moving average
calculated every 10 data points. Subfigure (a) represents the first training session, and
subfigure (b) represents the second training session.
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Figure 8. Episode reward over timesteps. (a) first session, (b) second session.

3.5. Algorithm Comparison

To verify that the training results are not coincidental, we perform another training
session from scratch using PPO with the same parameters as those used in the first session
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above. The reward curve obtained is shown in Figure 9. The algorithm is able to complete
the hovering task, but the accuracy and response speed are certainly inferior to the policy
optimized through the second session. Additionally, we train using the algorithms A2C [41]
and DDPG [42], with all parameters kept the same except for the internal parameters of the
algorithms. As shown in Figure 9, both algorithms fail to achieve high rewards.

Figure 9. Comparison of reward curves for three algorithms.

4. Results

The trained policy successfully achieves the goal of hovering within a 50 mm diameter
range around the initial center of mass. It is noteworthy that, although the initial and target
positions are close during training, the strategy demonstrates the capability to generalize to
more distant targets. The strategy enables the FWMAV to hover at any set point in world
frame and perform vertical, forward and lateral flights, enabling point-to-point flight from
the initial position to distant target points, which serves effectively as a low-level pose
controller. As a demonstration of its versatility, we showcase trajectory tracking along a
circular path and the control of multiple drones within the simulation environment.

4.1. Open-Loop Flight

As a comparison, we present open-loop flight segments where the four control inputs
∆Ua, Ur, Up, ∆σ are set to 0, and Ua is set to constant values. Figure 10a shows the trajec-
tories of the FWMAV starting from (0 mm, 0 mm, 1000 mm) for 0.8 s under different Ua
values. The trajectory with Ua = 9 V is shown in red, and the trajectory with Ua = 12 V is
shown in blue. Figure 10b compares the positions and attitudes under the two Ua values.
It can be seen that the drone becomes unstable in a short period of time in both cases.
Additionally, although Ua = 9 V demonstrates a positive force along the z-axis in the force
measurement experiment, as shown in the first subplot of Figure 6, this Ua is not sufficient
to lift the drone due to pitch oscillations.
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Figure 10. Open-loop flight of the FWMAV: (a) trajectories (b) position and attitude within 1 s.

4.2. Hovering

The trained policy is applied to control the FWMAV for setpoint hovering. As shown
in Figure 11a, after 2 s of adjustment, the position error between the torso’s center of mass
and the set point does not exceed 10 mm within the third second. Figure 11b illustrates
the position and attitude of the FWMAV hovering within 20 s. Note that the FWMAV
exhibits inherent oscillations in the pitch direction due to wing flapping, leading to position
fluctuations in the x direction. Since the state space during training observed the error
between the current position and the target position, our policy can achieve hovering at
any arbitrary point in space. By performing a coordinate transformation before inputting
the state into the policy, the FWMAV can hover with different yaw angles. These two points
are demonstrated in the experimental results of the following sections.
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Figure 11. Hovering at (0 mm, 0 mm, 1000 mm). (a) The trajectory of the first three seconds. The red
thin line denotes the trajectory of the torso’s center of mass, while the yellow small ball has a radius
of 5 mm centered on the target point. (b) Position and attitude within 20 s.
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4.3. Point to Point Flight

The trained policy enables the drone to fly to set points farther than those encountered
during training and maintain hovering at these positions. Figure 12a demonstrates the
FWMAV lifting off from (0 mm, 0 mm, 500 mm) and hovering at (0 mm, 0 mm, 1000 mm).
Figure 12b illustrates the FWMAV flying forward from (0 mm, 0 mm, 500 mm) and hovering
at (500 mm, 0 mm, 500 mm). Figure 12c shows the FWMAV flying laterally from (0 mm,
0 mm, 500 mm) and hovering at (0 mm, 500 mm, 500 mm). As shown in the three sets of
images mentioned above, during the execution of these three tasks, except for the initial
1 s, the pitch angles all remain within ±5 degrees, and the roll and yaw angles all remain
within ±2 degrees. Figure 12d depicts the FWMAV taking off at a yaw angle of 45 degrees
from (0 mm, 0 mm, 200 mm) and hovering at (500 mm, 500 mm, 700 mm), where the pitch
and roll angles converge to a smaller range after oscillation.
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Figure 12. Each experiment is presented in a separate row of images, including snapshots at specific
moments, position, and attitude information. (a) Flight and hover along the x-axis. (b) Flight and
hover along the y-axis. (c) Flight and hover along the z-axis. (d) Diagonal point-to-point flight.
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It is worth noting that directly training for these long-distance point-to-point flights
is rather difficult. The drone must learn to accelerate for takeoff and then decelerate to
hover. If the starting and target positions are set as far apart as in this section during
training, it often results in failures. However, this kind of trianing task is relatively easy for
quadcopters with greater control authority [43].

4.4. Trajectory Tracking

The trained policy can be used for trajectory tracking. Figure 13 illustrates the drone
tracking a circle parallel to the horizontal plane ith a radius of 300 mm. The target position
setpoint is changed every 600 control steps and it is set to a point tangent to the trajectory
in order to accelerate the tracking speed.

Figure 13. Tracking a circular trajectory. (a) Top view. (b) Spatial position information.

4.5. Multi-Drones

This section demonstrates implementation of controlled flight of multiple drones in
a simulated environment. Figure 14a shows multiple drones hovering at different vertex
positions of a 300 mm edge length cube in space. Figure 14b presents two images showing
eight drones taking off from a height of 200 mm to hover at 750 mm, each with a different
initial yaw angle, while maintaining a circular formation during the flight.

Figure 14. Control of multiple FWMAVs: (a) Cubic formation (b) Circular formation

During training, the FWMAV always takes off from a stationary state, but our hovering
policy can be applied to drones with non-zero initial velocity. To demonstrate this, eight
FWMAVs are initially positioned at the same height of 750 mm, and the 0th FWMAV is
applied the trained control voltage signal, while the 1st to 7th FWMAVs are allowed to free
fall under gravity. The control voltage is applied to the 1st FWMAV after the 0th FWMAV
has been controlled for 20 control steps, then to the 2nd FWMAV after the 1st FWMAV has
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been controlled for 20 control steps, and so on. As shown in Figure 15, all eight drones
eventually return to hovering at the height of 750 mm.

Figure 15. Applying the trained controller to various FWMAVs at different time. (a,b) The positions
of 8 FWMAVs at specific moments. (c) The variation in flight altitude of the FWMAVs over 5 s.

5. Conclusions

This paper utilizes deep reinforcement learning to train a hovering strategy for a Bi-
directional Motor Driven FWMAV. The strategy operates at a low-level, directly mapping
the FWMAV’s state to motor voltage outputs. We select appropriate action and state
spaces, design a reward function to maintain attitude stability during flapping flight
within a confined space, and train using the PPO algorithm across 20 parallel simulation
environments. Verification in high-fidelity simulation environments demonstrates its
applicability for FWMAV pose control, enabling agile transitions from forward flight,
lateral flight, or liftoff to hovering, facilitating point-to-point movement. Additionally,
simple trajectory tracking and multi-drone formation flight are demonstrated. Future work
will focus on sim-to-real transfer, particularly addressing sensor noise and safety concerns,
with the aim of deploying the strategy onto real FWMAVs in laboratory.

6. Notation

Because different fields have their own conventional symbols, which may conflict
and cause confusion in this manuscript, we include this section to clarify the potentially
confusing symbols. Below are the notation in different contexts:
r Aerodynamics: Radial wing distance

Reinforcement Learning: Rewards (typically with a time-series subscript)
R Aerodynamics: Wing span

Reinforcement Learning: Return
ϕ, ψ Drone Euler Angles: Roll angle (ϕ) and yaw angle (ψ)

Wing Motion: Stroke angle and rotation angle (typically with subscript w)
θ Drone Euler Angles: Pitch angle

Policy Learning: Parameters to be optimized in the policy π
ω Drone State: Body angular velocity

Actor-Critic Algorithm: Parameters of the value network
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