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Abstract: In disaster-stricken areas that were severely damaged by earthquakes, typhoons, floods,
mudslides, and the like, employing unmanned aerial vehicles (UAVs) as airborne base stations for
mobile edge computing (MEC) constitutes an effective solution. Concerning this, we investigate a
3D air–ground collaborative MEC scenario facilitated by multi-UAV for multiple ground devices
(GDs). Specifically, we first design a 3D multi-UAV-assisted air–ground cooperative MEC system,
and construct system communication, computation, and UAV flight energy consumption models.
Subsequently, a cooperative resource optimization (CRO) problem is proposed by jointly optimizing
task offloading, UAV flight trajectories, and edge computing resource allocation to minimize the total
energy consumption of the system. Further, the CRO problem is decoupled into two sub-problems.
Among them, the MATD3 deep reinforcement learning algorithm is utilized to jointly optimize the
offloading decisions of GDs and the flight trajectories of UAVs; subsequently, the optimal resource
allocation scheme at the edge is demonstrated through the derivation of KKT conditions. Finally, the
simulation results show that the algorithm has good convergence compared with other algorithms
and can effectively reduce the system energy consumption.

Keywords: mobile-edge computing (MEC); task offloading; computation resource allocation; trajectory
optimization; unmanned aerial vehicles (UAVs); deep reinforcement learning; convex optimization

1. Introduction

In today’s world, disasters are everywhere. Natural catastrophes such as storms,
floods, and earthquakes, as well as man-made ones such as industrial mishaps and terrorist
attacks, cause thousands of lives and property losses globally every year. According to re-
ports [1], over the past fifty years, the frequency of natural catastrophes that were recorded
worldwide virtually grew fivefold. In the aftermath of these disasters, communication
networks are usually one of the first infrastructures to be affected [2]. Ground base stations
(GBS) may not cover all areas of a disaster due to terrain and facility issues. The damaged
communication facilities make rescue operations more difficult, slowing down and compli-
cating the rescue work [3]. In the face of these difficulties, unmanned aerial vehicles (UAVs)
carrying small mobile edge computing (MEC) servers became popular today [4]. As a
typical mobile device, UAVs have a high degree of flexibility and maneuverability, enabling
them to react swiftly to mission needs and flexibly adjust their location and deployment
methods to meet data processing and computing needs in different scenarios. Furthermore,
because of things such as obstructions, UAVs have a higher likelihood of establishing
line-of-sight (LoS) links to ground devices (GDs) due to their variable altitude [5], which
helps to enhance and expand the reach of UAVs. As a result, drones became an integral
part of disaster response.
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However, UAVs for post-disaster relief face fundamental engineering challenges; on
the one hand, the dimensions and weight of UAVs limit the number and capacity of
computing and storage resources they can carry [6]. Modern UAVs can carry a certain
scale of computing devices, but their computing power and storage capacity are usually
limited compared to traditional data centers or GBS. This limits the data processing capacity
in edge computing, potentially reducing the efficiency of real-time data processing and
analysis [7]. On the other hand, intensive computing tasks such as video preprocessing
and pattern recognition can damage the UAV’s battery life [8]. Therefore, in the process of
post-disaster rescue, due to the powerful arithmetic power of GBS, it becomes an effective
solution for UAVs to perform collaborative computation with GBS when performing a
large number of intensive computation tasks [9].

In this regard, in recent years, edge computing in air–ground collaboration scenarios
gained widespread attention. In the process of post-disaster rescue, when the GBS is
damaged or unable to cover all the corners of the disaster area, in this case, UAVs can
effectively unite with the GBS to offload computation to tasks [10]. Currently, most of the
scholars are working on the development of task offloading and resource allocation schemes
in air–ground collaborative MEC systems; however, the computational resources of GBS
and UAVs outfitted with edge servers are predefined. However, the computational tasks
and resource requirements from GDs are time-varying, and this information is difficult to
obtain in actual MEC scenarios [11]. Therefore, to address the dynamic decision-making
problem in unknown environments, many researchers used the Markov decision process
(MDP) to simulate the MEC systems’ dynamic control and applied reinforcement learning
(RL) to deal with the problems in air–ground collaborative MEC systems [12]. In RL,
the intelligent body learns coping strategies rapidly by interacting with the unknown
environment so that the intelligent body has a certain decision-making ability. In addition,
the neural network of deep learning (DL) also has a certain perceptual ability [13], and
the combination of the capacity for perception of DL and the capacity for judgment of RL
for deep reinforcement learning (DRL) can effectively deal with perceptual issues with
complicated system decision making.

1.1. Related Work

1. Task Offloading and Trajectory Optimization: As research on UAV edge computing
deepens, more scholars are focusing on GD task offloading and UAV flight trajecto-
ries. With pending tasks, GDs now have more decision-making options: they can
either execute tasks locally or offload them to other servers to enhance overall sys-
tem performance [14]. Specifically, the decision of which server to offload a task to,
what offloading method to use, and the amount of offloading tasks are the focus of
current research. He et al. [15] designed a 3D dynamic multi-UAV assisted MEC
system, theoretically derived, and mathematically proved the optimal unloading
and flight strategies for GD to achieve fairness among UAVs. While ensuring the
optimal unloading and flight strategies, in order to discover the best solution, the
authors opted to solve the problem using the multi-agent deep deterministic policy
gradient (MADDPG) algorithm, modeling the UAV trajectories as a series of posi-
tional updates for each UAV, which effectively reduces the energy consumption of the
system and achieves high efficiency in the model processing task. Xue et al. [16] jointly
optimized the task offloading decision, sub-channel allocation, and computational
resource allocation in a non-orthogonal multiple access (NOMA) scenario. The energy
consumption and task processing latency of the UAV are minimized. The authors
considered the issue as an integer and non-integer nonlinear programming problem,
solved the resource allocation problem by matching algorithm and Lagrange duality
method, and subsequently designed an algorithm for multi-objective task offload-
ing to change the offloading choice according to the resource allocation scenario,
which significantly reduces the energy consumption and latency of the system. Tang
et al. [17] studied a MEC system assisted by multiple access points (APs) and a UAV.
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The computational task of the Internet of Things on the GDs is divided into three parts:
local computation, offloading to the UAV for processing, and completion on the AP
via relay. The authors optimize the offloading decision and the UAV trajectory jointly
to minimize the energy consumption of the system in a finite time. Minimizing the
energy consumption of the system, due to the non-convex structure of the problem,
the authors decouple the problem into two parts using block coordinate descent (BCD)
method and solve it iteratively by using the Lagrange duality method and succession
convex approximation (SCA) methodology.

2. Computational Resource Allocation: Through effective resource allocation, the utiliza-
tion of computing resources can be maximized and waste of resources can be avoided.
Ho et al. [18] considered a UAV-assisted cloud robotics network that can perform
emergency tasks such as rescue, disaster, etc., in which the tasks can be transferred to
an MEC server or a distant cloud via UAVs; the authors described the problem as a
joint scheme of offloading decisions and computational resource allocation and solved
the non-convex problem via KKT conditions, Lagrange’s duality method, and so on.
Zhang et al. [19] suggested a scenario wherein UAVs serve as relays to offload tasks
to LEO satellite edge servers during natural disaster emergencies and investigated
the allocation of computational resources in UAV-assisted multi-layer LEO satellite
networks, which, in order to optimize the weighted sums of energy consumption
and delay in the system, was converted into a Markov decision problem (MDP). To
address the issue, the authors suggest a resource allocation method based on deep de-
terministic policy gradient and long short-term memory (DDPG-LSTM). Liu et al. [20]
proposed a novel cloud edge framework to jointly optimize EUAV deployment and
computational resource allocation, and the authors proposed a sequential convex
programming (SCP) and sequential quadratic programming (SQP) algorithms based
on deep Q-learning (SS-DQN) to obtain the EUAV deployment scheme and resource
allocation scheme, respectively.

Due to the current frequent occurrence of natural disasters, UAVs as MEC servers
have limited computational capabilities and need to perform collaborative computations
with GBS in a timely manner, and few attempts were made to study the scheme of three-
dimensional multi-UAV as MEC servers for collaborative computations with ground base
stations. The intricacy of 3D planar UAV motion makes it challenging to find the best
answer with conventional algorithms. Few researchers currently employ DRL to tackle
the multi-UAV trajectory problem in three dimensions. Hao et al. [21] investigated the
problem of task offloading in an assisted MEC system with multiple UAVs collaborating
and designed UAV trajectories. In order to minimize the data acquisition time, the authors
proposed a novel latent space-based deep reinforcement learning (DRL) algorithm to solve
the problem and designed UAV flight trajectories to maximize the long-term average
system gain. Gao et al. [22], considering practical assumptions such as the mobility of GDs,
obstacle avoidance in 3D buildings, and the fact that UAVs can fly between buildings to
minimize the time cost, proposed a multi-step dueling DDQN (D3QN) solution based on
the DRL method to solve the problem and design the flight trajectory of the UAV.

1.2. Motivation and Contributions

Considering the system advantages of UAVs and the shortcomings of existing work,
this paper proposes a 3D multi-UAV-assisted multi-user air–ground collaborative MEC
system. In disaster scenarios, when the UAV performs MEC mission offloading, it needs to
quickly return the mission processing results to the ground and update them in a timely
manner, which has extremely high requirements for speed and accuracy. The advantage
of an air-to-ground (A2G) transmission channel is that it can realize low-latency, high-
bandwidth data transmission, achieve efficient transmission and feedback, and ensure
seamless collaboration between UAVs and ground systems. Therefore, we study the
joint communication, computation, and flight problem in A2G mode [23]. Note that our
study has practical implications in many real-world scenarios, such as in disaster areas
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that cause severe damage such as earthquakes, typhoons, floods, mudslides, etc.; UAVs
can dynamically adjust their positions according to the actual needs, provide data and
communication support to ensure uninterrupted communication, and help the rescue
teams to quickly deal with the situation of the disaster areas. In addition, in the case
of collaborative computing with GBS, computing resources can be efficiently scheduled
and allocated to ensure that UAVs are not loaded when handling complex tasks, thus
greatly improving the efficiency of emergency response and rescue operations, UAVs can
be quickly sent to these locations to collaborate with the GBS and perform computational
tasks more efficiently due to their high maneuverability. Therefore, a multi-UAV-assisted
air–ground collaborative MEC system is necessary and promising.

In this regard, we propose a MEC system with multiple UAVs and multiple GDs for
air–ground collaboration, and jointly optimize the offloading decision of the GDs, the flight
trajectories of the UAVs, and the side-end computational resource allocation.

The main contributions of this paper are as follows:

• We construct a model of an air–ground collaborative MEC system consisting of multi-
UAV with multi-GD. A 3D dynamics model is used to model the UAVs and GDs
that move randomly in 3D space and the fixed GBS. Specifically, there are three
computational strategies for GD tasks: local computation, offloading to a UAV, and
offloading to the GBS for computation. Each UAV flies and updates its position based
on the tasks it needs to perform for the GDs. We also consider the stochastic nature of
task generation and the safe distances between multi-UAV, which are highly dynamic
features of the problem.

• We propose a cooperative resource optimization (CRO) problem with the intention
of minimizing the energy consumption of the system. Specifically, we construct the
communication, computation, and flight models of the UAVs of the system, and jointly
optimize the offloading decision of the GDs, the flight trajectories of the UAVs, and the
computational resource allocation of the side ends. Since there are too many variables
to optimize and design the optimization problem, we decouple the optimization
problem into two sub-problems by firstly letting the GDs and the UAV act as agents
and design the MATD3 algorithm that performs the unloading decision and flight
trajectory. On the other hand, we perform the convex optimization solution and derive
the optimal solution for the side-end computational resource allocation using the
KKT condition.

• Through the interaction of the two sub-problems, the joint action of task offloading,
flight trajectory, and computational resource allocation is utilized to train through the
designed reward function until the MATD3 algorithm converges. After theoretical
analyses, our algorithm has good convergence and achieves lower energy consumption
in 3D realistic scenarios.

2. System Model and Problem Construction
2.1. Network Model

In this section, we construct a model of a 3D multi-UAV assisted air–ground network
MEC system. As shown in Figure 1, the system consists of one GBS, N UAVs (with set
denoted by N ) equipped with edge servers and K GDs (with set denoted by K). The set
of discrete time slots is denoted by T = {1, . . . t, . . . , T}, where T is the total number of
time slots. All GDs move randomly through the system, and the GDs can autonomously
perform the computational tasks generated by partial offloading. UAVs can change their
flight trajectories in the 3D plane according to the offloading task.
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At the beginning of the time slot t, we denote uUAV
n (t) =

[
xUAV

n (t), yUAV
n (t), zUAV

n (t)
]

the position of the nth UAV in time slot t, uTU
k (t) =

[
xTU

k (t), yTU
k (t), 0

]
the position of the

kth GD in time slot t, and uGBS
m = [xm, ym, zm] the position of the GBS. Each GD generates a

computationally intensive task in time slot t. Let the task of the kth GD be defined as

Ak(t) = {Dk(t), Fk(t),}, ∀k ∈ K, t ∈ T (1)

where Dk(t) and Fk(t) denote the kth GD’s task data size and the number of CPU cycles
required to execute the task, respectively.

2.2. GD and UAV Mobile Model

At the beginning of the time slot t, each GD generates a computationally intensive task.
Regarding the real-time mobile end-user movement, this paper adopts the Gauss–Markov
movement model, i.e., the movement of each GD at the current moment is related to its
own previous moment’s movement speed and movement angle to be more in line with the
objective reality of the GD movement [24]. Therefore, the kth GD’s moving speed vTU

k (t)
and moving angle ωTU

k (t) at the current moment are

vTU
k (t) = γvTU

k (t− 1) + (1− γ)vk +
√

1− γ2 φk (2)

ωTU
k (t) = γ1ωTU

k (t− 1) + (1− γ1)ωk +
√

1− γ2
1ψk (3)

where 0 ≤ γ ≤ 1, 0 ≤ γ1 ≤ 1 refers to the memory level, which indicates the degree of
influence of the moving speed and moving angle of the previous time slot on the current
time slot state, and vk and ωk denote the average moving speed and angle of the kth GD,
respectively. φk and ψk denote the randomness of the moving speed and the randomness of
the moving angle of the kth GD, respectively, and both of them obey Gaussian distribution.

Therefore, the position coordinates of the kth GD at time slot t are

xTU
k (t) = xTU

k (t− 1) + vTU
k (t− 1) cos(ωTU

k (t− 1))∆t (4)

yTU
k (t) = yTU

k (t− 1) + vTU
k (t− 1) sin(ωTU

k (t− 1))∆t (5)

where t denotes the movement time of the kth GD in two time slot intervals.
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In this paper, a 3D dynamics model is used to model the UAV. The position of the
UAV is determined by the flight speed, angle, and delay, the angle includes the angle with
the XOY plane and the angle with the Z-axis, and the delay includes the flight delay of the
UAV and the delay of processing the upload task. Therefore, the position coordinates of
the nth UAV at time slot t are

xUAV
n (t) = xUAV

n (t− 1) + dis f ly × cos wi × sin wv (6)

yUAV
n (t) = yUAV

n (t− 1) + dis f ly × sin wi × sin wv (7)

zUAV
n (t) = zUAV

n (t− 1) + dis f ly × cos wv (8)

where ωi is the angle to the XOY plane when the nth UAV is flying, ωv is the angle to
the Z-axis when the nth UAV is flying, dis f ly = vmax × (T f ly

n (t) + TTr
n,k(t))× vweight, vmax

denotes the maximum flight speed of the UAV, vweight denotes the velocity component of

the UAV, T f ly
n (t) denotes the flight delay of the UAV, and TTr

n,k(t) denotes the transmission
delay of the UAV unloading task.

2.3. Communication Models

Most existing work uses simplified LoS channels or statistical channel models (i.e.,
probabilistic LoS channels) to model A2G links. However, traditional probabilistic LoS
channel models are often not adapted to complex environments such as rural, urban, and
forest environments, and UAVs need to change altitude for better communication. In
contrast, we examine more realistic A2G channel models characterized by the consideration
of both large-scale fading and small-scale fading, which are computed based on simulating
3D maps and considering the presence of buildings as propagation scatterers [25].

During communication, we determine whether the communication link between the
nth UAV and the kth GD is a LoS link by checking whether it is obscured by a building.
Therefore, the channel massive fading associated with the kth GD can be expressed as [26]

PLn,k(t) =

{
LFS

n,k(t) + ηLos

LFS
n,k(t) + ηNLos

(9)

where LFS
n,k(t) = 20 log10 dn,k(t) + 20 log10 fc + 20 log10(4π/c) denotes the free space path

loss between the nth UAV and the kth GD, dn,k(t) =
∥∥uUAV

n (t)− uTU
k (t)

∥∥ denotes the
distance from the nth UAV to the kth GD, fc denotes the carrier frequency, and c denotes
the speed of light. In addition, ηLos and ηNLos denote the propagation loss of LoS and NLoS
links, respectively.

The small-scale fading coefficients are assumed to be Rayleigh fading in the NLoS
case and Rice fading with a 15 dB Rice factor in the LoS case, respectively. Furthermore,
it is assumed that the Doppler effect due to UAV mobility can be well estimated and
then compensated for at the receiver by using the available state-of-the-art compensation
algorithms [27]. Thus, the channel gain from the nth UAV to the kth GD can be expressed as

hn,k(t) = 10−PLn,k(t)/20h̃n,k(t). (10)

It is assumed that GDs upload data at a constant transmit power Pk to compute a
computational task only when they generated that task. The equivalent uplink signal-
to-noise ratio (SNR) between the kth GD and the nth UAV at the start of time slot t is
as follows:

ρn,k(t) =
Pk
∣∣hn,k(t)

∣∣2
Pn

(11)
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where
∣∣hn,k(t)

∣∣2 is the channel power gain between the kth GD of the time slot t and the
nth UAV, and Pn denotes the power of additive Gaussian white noise (AWGN) at the nth
UAV receiver.

Further, the transmission rate between the kth GD and the nth UAV may be ex-
pressed as

rn,k(t) = Πn,k(t)W log2(1 + ρn,k) (12)

where Πn,k(t) denotes the binary indicator function between the kth GD and the nth UAV,
and its value is 1 if the GD offloaded the task to the nth UAV; otherwise, it is 0.

Similarly, the transmission rate between GBS and the kth GD can be expressed as

rm,k(t) = Πm,k(t)W log2(1 + ρm,k) (13)

where Πm,k(t) denotes the binary indicator function between the kth GD and the GBS, and
its value is 1 if that GD offloaded the task to the GBS; otherwise, it is 0.

The channel model in this paper is able to better describe the communication between
UAVs and ground users and is effective when the communication environment is relatively
stable in most disaster scenarios [25–27].

2.4. Computational Model

In this paper, we adopt a partial offloading strategy; specifically, in time slot t, let the
partial offloading variables αm,k(t) ∈ [0, 1], αn,k(t) ∈ [0, 1], and αlocal,k(t) ∈ [0, 1] denote
the proportions of tasks that are offloaded by the kth GD to the GBS, the nth UAV, and the
local computation, respectively. For the kth GD, the offloading strategy needs to be satisfied
αlocal,k(t) + αn,k(t) + αm,k(t) = 1.

2.4.1. Local Computation Model

In time slot t, the kth GD chooses to compute part of the task αlocal,k(t)Dk(t) locally,
therefore, the kth GD computes locally with a delay of

Tlocal
k (t) =

αlocal,k(t)Fk(t)
f c
k (t)

(14)

where f c
k (t) denotes the computational power of the kth GD.

The kth GD calculates the energy consumption locally as

Elocal
k (t) = η1 f c

k(t)
ϑ−1Fk(t)αlocal,k(t) (15)

where η1 is the effective capacitance switch and ϑ is the normal number, usually taken as 3.

2.4.2. Offloading to GBS Computation Model

In time slot t, the kth GD offloads a part of the task αm,k(t)Dk(t) to the GBS for
computation according to the partial offloading strategy, so the total delay for the kth GD
to offload a part of the task to the GBS is as follows:

TGBS
m,k = TTr

m,k(t) + Tc
m,k(t) =

αm,k(t)Dk(t)
rm,k(t)

+
αm,k(t)Fk(t)

f c
m,k(t)

(16)

where TTr
m,k(t) and Tc

m,k(t) denote the transmission delay and computation delay of the task
offloading to the GBS, respectively, where f c

m,k(t) is the computation capacity allocated by
the GBS to the kth GD. Notably, since the amount of resultant data of the computation task
is usually small and the downlink usually has a high transmission rate, the backhaul delay
of the computation result can be ignored.

The total energy consumption of the kth GD offloading some tasks to the GBS is

EGBS
m,k (t) = ETr

m,k(t) + Ecom
m,k (t) = PkTTr

m,k(t) + η1 f c
m,k(t)

ϑ−1Fk(t)αm,k(t) (17)
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where ETr
m,k and Ecom

m,k denote the transmission energy and computation energy for offloading
to GBS, respectively, and Pk denotes the transmission power.

2.4.3. Offloading to UAV Computational Model

In time slot t, the kth GD offloads part of the task αn,k(t)Dk(t) to the UAV for compu-
tation, so the total delay for the kth GD to offload part of the task to the nth UAV is

TUAV
n,k = TTr

n,k(t) + Tc
n,k(t) =

αn,k(t)Dk(t)
rn,k(t)

+
αn,k(t)Fk(t)

f c
n,k(t)

(18)

where TTr
n,k(t) and Tc

n,k(t) denote the transmission delay and computation delay of task
offloading to the nth UAV, respectively, where f c

n,k(t) is the computational capacity of the
nth UAV allocated to the kth GD. As with the offloading to GBS computation, the return
delay of the computation results is ignored.

The total energy consumption of the kth GD to offload part of the task to the nth
UAV is

EUAV
n,k (t) = ETr

n,k(t) + Ecom
n,k (t) = PkTTr

n,k(t) + η1 f c
n,k(t)

ϑ−1Fk(t)αn,k(t) (19)

where ETr
n,k(t) and Ecom

n,k (t) denote the transmission energy and computation energy for
offloading to the nth UAV, respectively.

In summary, the total time cost of the kth GD computation task Dk(t) in time slot t can
be expressed as

Tk(t) = max
{

Tlocal
k (t), TGBS

m,k (t), TUAV
n,k (t)

}
(20)

where the first part denotes the delay of the local computation part of the task, the second
part denotes the delay of the part of the task that is offloaded to the GBS, and the last part
denotes the delay of the portion of the task that is offloaded to the nth UAV.

2.5. Flight Model

In this paper, we use a quad-rotor UAV carrying a small MEC server, and we con-
sider the flight vector v, acceleration vector a, vertical deflection angle wv, and horizontal
deflection angle wi of each UAV, and the flight trajectory of the UAV is shown in Figure 2.
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The nth UAV’s single rotor’s thrust equals [28]

Fn(vn,an) =
1
m

∥∥∥∥(M0∥an∥+
1
2

ρv2
nSn

)
vn −M0gn

∥∥∥∥ (21)
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where m is the number of rotors of the nth UAV, M0 is the weight of the nth UAV, ρ is the
air density, vn = ∥vn∥ denotes the scalar magnitude of the velocity, Sn is the equivalent
plane area of the UAV fuselage, and gn is the gravitational acceleration vector.

Based on the individual rotor thrust of the UAV, we can obtain the propulsion power
of the nth UAV as follows [28]

P f ly
n (vn, Fn) = m

[
cr
8

(
Fn

ctρAr
+ 3v2

n

)√
Fns2

r ρAr
ct

+
(

1 + c f

)
Fn

(√
F2

n
4ρ2 A2

r
+ v2

n
4 −

v2
n

2

)0.5
]

+m
[
0.5drv3

nsrρAr +
M0∥gn∥vn

m sin
(

π
2 −ωv

)] (22)

where cr denotes the local blade section drag coefficient, ct is the thrust coefficient based on
the disc area, sr is the rotor solidity, Ar is the rotor disc area, and c f and dr are the induced
power incremental correction factor and fuselage drag ratio.

Therefore, the flight energy loss of the nth UAV is

E f ly
n (t) = P f ly

n (t)TFly
n (t) (23)

TFly
n (t) =

[
max

{
TTr

n,k(t) ∀k ∈ ′
}
+

K′

∑
k=1

Tcom
n,k (t)

]
(24)

where ′ denotes the set of the number of GDs that the nth UAV performs the task, we take
the maximum delay of the transmission task plus the time taken by the nth UAV to compute
the tasks of all the connected GDs K′ as the flight duration of the nth UAV, denoted by
TFly

n (t).

2.6. Problem Construction

In this paper, we address the problem of optimizing the energy consumption of a
MEC network for multi-UAV-assisted air–ground collaboration by jointly optimizing the
3D trajectories of the UAVs, the offloading decisions of the GDs, and the allocation of
computational resources between the UAVs and the GBS, in an effort to reduce the system’s
overall energy consumption.

Firstly, the total energy consumption of UAVs, GBSs, and GDs in time slot t is

E(t) =
[

N
∑

n=1

K
∑

k=1

(
Elocal

k (t) + EUAV
n,k (t) + +EGBS

m,k (t)
)
+

N
∑

n=1
ξEFly

n (t)
]

∀n ∈ N , k ∈ K, t ∈ T (25)

where ξ denotes the flight energy consumption weight.
Then, we construct the cooperative resource optimization problem as follows:

CRO : min
Ψ,Θ, f c

T

∑
t=1

E(t) (26a)

s.t.C1 : 0 ≤ αm,k(t) ≤ 1, 0 ≤ αn,k(t) ≤ 1, 0 ≤ αlocal,k(t) ≤ 1 ∀n ∈ N , k ∈ K, t ∈ T (26b)

C2 :
K

∑
k=1

f c
n,k(t) ≤ f max

UAV ,
K

∑
k=1

f c
m,k(t) ≤ f max

GBS ∀t ∈ T (26c)

C3 : uTU
k , uUAV

n ∈ {Xsize, Ysize, H} ∀n ∈ N , k ∈ K (26d)

C4 :
∥∥∥uUAV

n1
(t)− uUAV

n2
(t)

∥∥∥2
≥ (dmin)

2 ∀n1, n2 ∈ N , t ∈ T (26e)

C5 : vmin ≤ ∥vn(t)∥ ≤ vmax∀n ∈ N , t ∈ T (26f)

C6 : max{Tk(t)} ≤ Tmax(t) ∀k ∈ K, t ∈ T (26g)

where Ψ =
{

αm,k(t), αn,k(t), αlocal,k(t) ∀n ∈ N , k ∈ K, t ∈ T
}

, Θ = {v(t), ωv(t), ωi(t) ∀t ∈ T },
and f c =

{
f c
n,k(t), f c

m,k(t) ∀n ∈ N , k ∈ K, t ∈ T
}

. Constraint C1 denotes the offloading
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decision constraints of UAVs; C2 denotes the limited resources that offloading GDs can
be allocated from edge servers; C3 denotes the location constraints of UAVs and GDs; C4
denotes the minimum safe distance between UAVs; C5 denotes the speed constraints of
UAVs; and C6 denotes the offloading total delay constraints.

3. Problem Solution

In the process of optimizing UAV trajectories and GD offloading decisions, multi-
ple variables and constraints need to be considered simultaneously, including kinematic
constraints of UAVs, positions of GDs, and mission requirements, while computational
resource allocation is optimized for the amount of tasks offloaded to UAVs or GDs. Thus,
the UAV trajectory and GD offloading decisions are uncertain, while the computational
resource allocation decisions are relatively more deterministic. Further, the CRO prob-
lem is split into task offloading, flight trajectory (Q1) sub-problems, and computational
resource allocation (Q2) sub-problems, and such sub-problem splitting helps to improve
the optimization efficiency and performance of the overall system.

The mission offloading and flight trajectory (Q1) sub-problem is a complex decision-
making problem involving strategy optimization in dynamic and uncertain environments.
There are dynamic changes and interactions between the various agents (UAVs and GDs).
To solve this sub-problem, the MATD3 algorithm is used. The MATD3 algorithm is suit-
able for dynamic and uncertain environments where the agents are able to optimize the
overall system performance by learning their respective strategies. In contrast, for the
computational resource allocation (Q2) sub-problem, a convex optimization approach is
used to determine the optimal resource allocation for tasks offloaded to UAVs or GBS.
These two algorithms are alternately updated in interaction and can effectively solve the
joint optimization problem of UAV trajectory optimization, GD offloading decision, and
resource allocation.

As shown in Figure 3, we designed the splitting of the optimization problem and
the solving process of the sub-problems. During the optimization process, the two algo-
rithms are alternately updated to solve the joint optimization problem of UAV trajectory
optimization, GD offloading decision, and resource allocation. The specific process is as
follows: firstly, the task offloading decision and flight trajectory are determined based on
the input local observation data of the MATD3 algorithm, and then the computational
resource allocation is obtained through the optimal solution based on the task volume of
the task offloading decision. Subsequently, in the edge computing environment, using the
joint decision of task offloading, flight trajectory, and computational resource allocation, the
corresponding reward is calculated by designing the reward function, and the procedure
will continue to train until the training is completed and converged.

In this regard, we aim to provide a fundamental technological solution for disaster
relief by enhancing the efficient use of task offloading and computational resources. In the
implementation of the proposed algorithm, each GD is regarded as an independent agent,
which is able to dynamically adjust the task offloading ratio according to their respective
task characteristics, and at the same time, by optimizing the UAV and GBS task scheduling
and computational offloading in order to obtain the optimal performance, the offloading
efficiency can be indirectly improved, which can further provide technological guarantee for
the rescue operation. Meanwhile, the optimization algorithm based on the combination of
DRL and convex optimization is of great significance in solving optimization problems. This
combination can make full use of the adaptive learning ability of DRL and the mathematical
guarantee of convex optimization to cope with complex and dynamic environments. It
not only improves the decision-making ability and computational efficiency of the system,
but also achieves comprehensive optimization and improves the overall performance and
stability of the system.
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3.1. Problem Decomposition

In this section, we first break down the CRO into multiple problems for each time slot.
Since the variables Ψ, Θ, and f c are independent of each other in time slot t, the constraints
can be separated since there is no overlap between the variables, and the main optimization
problem can be divided into two sub-problems, formulated as follows.

3.1.1. Sub-Problem Q1: Task Offloading and Trajectory Optimization

Q1 : min
Ψ,Θ

E(t) (27a)

s.t.C7 : 0 ≤ αm,k(t) ≤ 1, 0 ≤ αn,k(t) ≤ 1, 0 ≤ αlocal,k(t) ≤ 1 ∀n ∈ N , k ∈ K, t ∈ T (27b)

C8 : uTU
k , uUAV

n ∈ {Xsize, Ysize, H} ∀n ∈ N , k ∈ K (27c)

C9 :
∥∥∥uUAV

n1
(t)− uUAV

n2
(t)

∥∥∥2
≥ (dmin)

2 ∀n1, n2 ∈ N , t ∈ T (27d)

C10 : vmin ≤ ∥vn(t)∥ ≤ vmax ∀n ∈ N , t ∈ T (27e)

C11 : max{Tk(t)} ≤ Tmax(t) ∀k ∈ K, t ∈ T . (27f)

3.1.2. Sub-Problem Q2: Computational Resource Allocation

Sub-problem Q2 focuses on the computational resource allocation f c, the edge end.
After sub-problem Q1 makes the optimal offloading decision Ψ∗ through the MATD3
algorithm, Q2 can be formulated as

min
f c

E(t) (28a)

s.t.C12 :
K

∑
k=1

f c
n,k(t) ≤ f max

UAV ,
K

∑
k=1

f c
m,k(t) ≤ f max

GBS , ∀t ∈ T . (28b)
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Since we are investigating the use of computational resource allocation only when GDs
choose to offload some of their tasks to the edge end, the only energy consumption involved
in the optimization variable f c is the computational energy consumption of offloading to
the GBSs and the UAVs, and thus, from (17) and (19), the problem Q2 can be reduced to

min
f c

K

∑
k=1

Ecom
n,k (t) + Ecom

m,k (t) (29a)

s.t.C13 :
K

∑
k=1

f c
n,k(t) ≤ f max

UAV ,
K

∑
k=1

f c
m,k(t) ≤ f max

GBS , ∀t ∈ T . (29b)

3.2. MATD3 Algorithm for Task Offloading and Trajectory Optimization

In the disaster scenario, we interact the GD and UAV as two separate classes of agents.
The goal of the GD agent is to optimize task processing, which requires a decision on
the proportion of offloading to the edge, while the goal of the UAV agent is to optimize
the flight trajectory, to adjust the flight path to compute the task, and improve efficiency.
Through DRL, these two agents can continuously improve their strategies through dynamic
interaction and feedback to achieve more efficient task processing and resource usage.

In the problem optimization process, UAVs need to determine the location of the
next moment of flight to minimize energy consumption, and GDs need to determine the
target node for task offloading so as to reduce the task transmission and processing energy
consumption. Considering that the actions of UAVs and GDs at this moment may affect the
state of the environment, and that the total energy consumption is jointly determined by the
behaviors of GDs and UAVs in the current state, i.e., the current state of the environment,
and the actions of the agents work together to bring the environment into the next random
state. Therefore, the optimization problem of UAV trajectory optimization and GD task
offloading can be represented as a multi-agent Markov decision process {N ,S ,A,P ,R},
where N , represents the collection of all agents, S is the collection of states of all agents
in the environment, A is the collection of actions of all agents, P is the state transfer
probability, andR is the reward function of the agents.

• States S .

The location and computational power where GD, UAV, and GBS are located are the
key factors affecting the unloading of GD, so the state space of GD is{

sx,k, sy,k, sz,k, sc,k, sx,n, sy,n, sz,n, sc,n, sx,m, sy,m, sz,m, sc,m ∀k ∈ K, n ∈ N
}

(30)

where sx,k, sy,k, sz,k, and sc,k are the location and computational power state of the kth
GD, sx,n, sy,n, sz,n, and sc,n are the location and computational power state of the nth UAV,
and sx,m, sy,m, sz,m, and sc,m are the location and computational power state of the GBS,
respectively.

The state space of the UAV is the state of all GDs, the UAV position, the processing
capacity, and the energy consumption, so the state space of the UAV is{

sx,k, sy,k, sz,k, sc,k, sx,n, sy,n, sz,n, sc,n, scomcom,n, stran,n, s f ly,n ∀k ∈ K, n ∈ N
}

(31)

where scom,n, stran,n, and s f ly,n are the computational energy, task transfer energy, and flight
energy states of the UAV, respectively.

• Actions A.

Since this paper uses a partial offloading mechanism, the action of each GD is the
proportion of tasks that are offloaded to each node, so the action of the GD agent output is
defined as

ak
t =

{
αlocal,k(t), αn,k(t), αm,k(t) ∀k ∈ K, n ∈ N , t ∈ T

}
(32)
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where αlocal,k(t) represents the proportion of tasks that the kth GD offloaded to itself, αn,k(t)
represents the proportion of tasks that the kth GD offloaded to the nth UAV, and αm,k(t)
represents the proportion of tasks that the kth GD offloaded to the GBS.

The actions optimized for each UAV trajectory are the velocity, horizontal deflection
angle, and vertical deflection angle of the UAV in the 3D scene; therefore, the actions output
by each UAV agent are defined as

an
t = {vn(t), ωi(t), ωv(t) ∀n ∈ N , t ∈ T } (33)

where vn(t) represents the flight speed of the nth UAV, ωi(t) represents the horizontal
deflection angle of the nth UAV, and ωv(t) represents the vertical deflection angle of the
nth UAV.

• RewardR.

Since the GD determines the offloading decision of the task when acting as an agent,
the reward function associated with the GD is

rk
t = −

[
Elocal

k (t) + EUAV
n,k (t) + EGBS

m,k (t) + Tk(t) ∀k ∈ K, n ∈ N , t ∈ T
]
. (34)

Since the computational energy consumption and flight energy consumption are the
key energy consumption in this paper, and the computational delay is the key index,
and the UAV moving range must not exceed the environment boundary and collision;
therefore, the reward function of the UAV is designed as the negative of the weighted sum
of the task computational delay, the computational energy consumption, the flight energy
consumption, and the penalty for the collision of the UAV overstepping the boundaries,
i.e.,

rn
t = −

[
K′

∑
k=1

EUAV
n,k (t) + ξEFly

n (t) + TUAV
n,k (t) + Pen ∀k ∈ K, n ∈ N , t ∈ T

]
(35)

where K′ denotes the number of GDs chosen to be offloaded to the nth UAV, and Pen is the
collision and crossing penalty for the nth UAV.

In order to solve the above multi-intelligent body Markov decision-making process,
this paper proposes a MATD3-based trajectory optimization and task offloading algorithm
for UAVs. Each GD and UAV as an agent is optimized for its respective task using the TD3
algorithm, which is an online heterogeneous deep reinforcement learning algorithm for
continuous control problems obtained by improving on the DDPG algorithm. Essentially,
the TD3 algorithm incorporates the idea of the double Q learning algorithm into the
DDPG, which consists of six networks, namely actor network π(·|θπ), target actor network
π′(·|θπ′), critic networks µ1(·|θµ1) and µ2(·|θµ2), and target critic networks µ′1(·|θµ′1)

and µ′2(·|θµ′2), where θ is the parameter of each network. The algorithm uses two critic
networks in order to take the smaller of the two when calculating the target value, thus
suppressing the network overestimation problem.

The MATD3 algorithm uses an optimal optimization process with centralized training
and decentralized execution, so that during the iteration process, each UAV and GD as an
agent performs actions in a distributed manner through observations, and the performed
actions are mapped to the environment translated into the position of the UAV and the
nodes and proportions of the GD task offloading. By interacting with the environment,
the agents store the collected experience into an experience pool for centralized training.
In the centralized training phase, the UAV and the GD share their state information, and
then each agent uses the state St as well as At =

{
a1

t , a2
t , · · · , ak

t , · · · , an
t

}
to estimate the

strategies of the other agents and obtains the Q-function Qµ
k (st, at) for all the agents. Then,

each agent adjusts the local actor network strategy vπ
k = π(st|θµ) to maximize its own

utility. In the distributed action session, the critic network of each agent is no longer used
and the weight parameter of the actor network remains unchanged. This decentralized
execution can greatly improve the flexibility of the decision making of the agents.
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In the MATD3-based UAV trajectory optimization as well as task offloading algorithm,
the environment parameters, as well as the network parameters, are first initialized. At
each iteration, all the agents select actions using the evaluation actor network π(sk,t|θπ),
and to increase the exploration rate, random noise ε is added after each action and cropped
according to its action threshold. The agent maps the selected action to the environment,
and based on this action, the GD offloads proportionally to the task and the UAV changes its
position, thus completing the trajectory optimization and calculates the task transmission
and processing delay, as well as task transmission processing energy consumption and
UAV flight energy consumption through the obtained performance indicators, each agent
according to the reward function to calculate the reward value. At this time, all agents will
obtain a set of experience {at, st, s′t, rt} and store this into the playback experience pool
with capacity M to improve the sample efficiency. Then, experience

{
aj, sj, s′ j, rj

}
of size

batch size is randomly selected from the experience pool for training. Each agent will use
the policy gradient to update the target actor network weights, i.e.,

∇θπ J(θπ) =
1

Mbatch

Mbatch

∑
j=1
∇θµ µ(sj|θπ)∇akan Qθ1(sj, aj

1, aj
n, . . . , aj

N)|a=π(sj
k |θπ)

, (36)

agent input sj into the target actor network π′(·|θπ′) to generate strategies

a′ = π′(sj|θπ′). (37)

Deterministic strategies can over-fit to reduce the value estimates’ peaks. When the
critic network is updated, the learning objective using the deterministic strategy is highly
susceptible to function approximation errors, which leads to large variance in the objective
estimate and inaccurate estimates. Therefore, when calculating the target value, TD3
adds a perturbation to the action in the next state using the objective strategy smooth
regularization, which prevents over-fitting of the Q-value and makes the value estimation
more accurate. The modified action is defined as

a′ = a′ + ε (38)

ε ∼ clip(N(0, ζ),−1, 1). (39)

Then we use the idea of dual networks to calculate the target value

yj = rj + γmini=1,2µ′ i(s
′
j, a′ j|θµ′ i ). (40)

Finally, the gradient descent method is used to minimize the error between the assessed
and target values

L(θi
n,k) =

1
Mbatch

Mbatch

∑
j=1

[
yj − ψi(s, a|θµi )

]2, i = 1, 2. (41)

According to the above equation, the weights of the three networks of each agent will
be updated by

θπ
n,k ← θπ

n,k −ω∇θπ
n,k

J(θπ
n,k),

θ
µi
n,k ← θ

µi
n,k −ω∇

θ
µi
n,k

L(θµi
n,k), i = 1, 2 (42)

where ω is the learning rate. In order to reduce the error between the evaluated value and
the target value, the agent updates the evaluation actor network at a fixed frequency. Finally,
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the weights of the target network are softly updated with the update rate τ according to
the following equation:

θπ′
n,k = τθπ

n,k + (1− τ)θπ
n,k,

θ
µ′ i
n,k ← θ

µi
n,k + (1− τ)θ

µ′ i
n,k, i = 1, 2

(43)

The total pseudo code of the MATD3-Based GD Task Offloading and UAV Trajectory
Optimization algorithm is shown in Algorithm 1:

Algorithm 1: MATD3-Based GD Task Offloading and UAV Trajectory Optimization

1. Initialize actor and critic networks for each agent, playback experience pools D;
2. for each episode do
3. Initialize the state s(t) and t = 0;
4. while t < EP do
5. Each UAV and GD select the action;
6. All UAVs set the angle and speed of their movement according to the joint action a(t),

and each GD selects the offloading decision;
The optimal computational resource allocation decision is computed by (47) and (48)
based on the amount of tasks offloaded by each UAV and GBS;

7. All UAVs and GDs communicate to obtain the reward r(t), the next state s(t + 1) and
the joint action a(t);

8. for all agents, store s(t), s(t), a(t), r(t) in D;
9. s(t)← s(t + 1) ;
10. for agent
11. A small batch (sj, sj, aj, rj) is randomly sampled from the in which the intelligence

is located;
Update the weights for evaluating the critic network by minimizing the loss function

L(θi
k,n) in (41)

{
θi

k,n

}
, i = 1, 2; Update the weights of the evaluated actor network

via (42);
By updating the weights of the three target networks in (43);

12. End for
13. End for
14. End for

The flow of the proposed algorithm can be described as follows:
Firstly, the weights of the actor and critic networks and the pool of playback experience

used for the actor and critic networks are initialized, (line 1). The second part (lines 3–9)
is the process of exploration. At the beginning of each round, the algorithm initializes
the environment and receives the initial state, the time slot set to 0, and the termination
state. Then, during the exploration process, an action is deduced from the current actor
network, which subsequently interacts with the environment and is updated accordingly
with the corresponding reward and next state. The third part is how to update the neural
network (line 11). Specifically, we first sample a small batch of samples stored into the pool
of playback experience (line 14) to update the actor and critic networks. The critic network
is updated by minimizing the loss function; the actor network is updated by computing
the gradient.

3.3. Computational Resource Allocation Based on Convex Optimization

The computational resource allocation optimization problem associated with the UAV
can be formulated as Q3 for GD offloading part of the task to the UAV in time slot t

Q3 : min
f c
n,k

z1 =
K

∑
k=1

Ecom
n,k (t) ∀n ∈ N, k ∈ K (44a)
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s.t.C14 :
K

∑
k=1

f c
n,k(t) ≤ f max

UAV , ∀t ∈ T . (44b)

To solve the convex optimal computational resource allocation problem: by introduc-
ing Lagrange multiplier, transforming the resource constraints into additional terms in
the optimization problem, and then solving the KKT conditions, the resource allocation
strategy that maximizes the benefits of the GD task completion can be found.

We first use the Lagrange duality method to introduce the Lagrange multiplier λt
n to

Q3 [29], and then the problem of Q3 can be formulated as

min
λt

n , f c
n,k(t)

z2 = z1 − λt
n(

K

∑
k=1

f c
n,k(t)− f max

UAV) (45a)

stC15 : λt
n ≥ 0. (45b)

Based on the KKT condition [29], we can derive the following equation:

∇ f c
n,k(t)

z1 + λt
n∇ f c

n,k(t)
(

K
∑

k=1
f c
n,k(t)− f max

UAV) = 0

λt
n(

K
∑

k=1
f c
n,k(t)− f max

UAV) = 0.

λt
n ≥ 0

(46)

By solving the above system of equations, the optimal solution for the computational
resource allocation obtained when the kth GD offloads part of the task αk,n(t)Dk(t) to the
nth UAV in time slot t is obtained as follows:

f c∗
n,k(t) =

1/ f max
UAV

√
αk,nDk(t)Fk(t)

K
∑

k=1
1/ f max

UAV

√
αk,nDk(t)Fk(t)

. (47)

Similarly, the optimal solution for computational resource allocation obtained when
the kth GD offloads part of the task αk,m(t)Dk(t) to the GBS in time slot t is obtained as
follows:

f c∗
m,k(t) =

1/ f max
GBS

√
αk,mDk(t)Fk(t)

K
∑

k=1
1/ f max

GBS

√
αk,mDk(t)Fk(t)

. (48)

4. Simulation Parameter Design and Simulation Result Analysis

In this section, we first set the simulation parameters, including environment parame-
ters and algorithm hyper-parameters, and then analyze the simulation results, including the
effects of different offloading methods, different environment parameters, and algorithm
hyper-parameters on the system performance indicators.

4.1. Simulation Parameter Design

In this paper, we consider a 3D simulation region of 1000 m× 1000 m× 200 m in which
1 GBS, 2 UAVs, and 10 GDs are considered, each GD is capable of randomly generating
tasks of a certain size and selecting the offloading nodes and scaling, and the UAVs are
initially hovering at an altitude of 100 m and with the algorithmic iterations can change the
altitude to keep flying.

For the simulation environment, we implement a simulation environment build using
Python 3.8.0 and Pytorch 2.1.2 to evaluate the performance of the proposed algorithm.
The simulation was run using a PC equipped with an AMD Core R7 CPU, 512 GB of
RAM, and 16 GB of RAM. The version Numpy utilized in the simulation is 1.22.4. In
the initialization phase of the simulation environment, the initial positions of the UAVs
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and GDs are randomly generated based on the size of the boundary of the simulation
environment and the computational tasks are randomly generated for each GD in a set
range of task sizes.

The specific simulation parameters are shown in Tables 1 and 2:

Table 1. Design of Main Environmental Parameters.

Parametric Description

The number of GDs K 10
The number of UAVs N 2
The number of GBS 1
The number of time slots 50
The computing resources per GD f c

k 1 × 109–2 × 109 HZ
The computing resources per UAV f c

n,k 5 × 109–6 × 109 HZ
The computing resources GBS f c

m,k 1010 HZ
The task data size per GD Dk 3 Mbit–5 Mbit
Required CPU cycles per bit per GD Fk 500 cycles/bite-800 cycles/bite
The number of rotors per UAV m 4
The weight per UAV M0 2.0 Kg
The air density ρ 1.225 Kg/m3

The equivalent plane area of fuselage per UAV Sn 0.01 m2

The gravitational acceleration vector gn 9.8 m/s2

The local blade section drag coefficient cr 0.012
The thrust coefficient based on disc area ct 0.302
The rotor solidity sr 0.0955
The rotor disc area Ar 0.0314 m2

The induced power increment correction factor c f 0.131
The fuselage drag ratio dr 0.834
The weight of per UAV′ fight energy ξ 10−4

Table 2. Algorithm Parameter Design.

Parametric Description

Learning rate 0.0001
Sampling batch size 128
Discount factor 0.95
Playback experience pool size 100,000
Number of training Episodes 300
Activation function Tanh
Optimizer Adam
Frequency of target network updates 2

4.2. Analysis of Simulation Results
4.2.1. Effect of Different Batch_Sizes

In deep reinforcement learning, the batch_size is the number of samples randomly
drawn from the empirical playback buffer for each training. Larger batch_size improves
training efficiency, stability, and convergence, but increases the training time and the
risk of over-fitting. Smaller batch_size leads to instability in gradient estimation, high
variance in parameter updates, and under-utilization of information, making the training
process more difficult, convergence slower, and making it difficult to obtain high-quality
policies. From Figure 4a–d, it can be seen that when the batch_size is 128, its total reward,
computational energy, flight energy, and transmission energy are all at their lowest values,
and thus the batch_size suitable for our proposed environment and algorithms is 128. On
the other hand, it can be seen from the figure that the curves obtained when the batch_size
is 64 are roughly the same as those obtained when the batch_size is 128; this is because
deep reinforcement learning algorithms usually use experience playback buffers to store
and reuse past experiences, and even if the batch_size is small, by repeatedly utilizing
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these experiences for training, the algorithm can obtain sufficient sample diversity and
information from the entire data-set. As a result, the algorithm is able to learn similar
strategies from the entire data-set, even though the number of samples used in each training
step varies.
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4.2.2. Effect of Different Learning Rates

The learning rate is an important hyper-parameter in deep reinforcement learning,
which controls how much the network parameters are tuned at each update. In terms
of convergence speed, a larger learning rate allows the parameters to be adjusted to the
neighborhood of the optimum faster, speeding up convergence. However, an excessive
learning rate could result in the parameters oscillating around the optimal point and not
achieving a stable convergence. On the contrary, a smaller learning rate may require more
training steps to reach the optimal value, resulting in slower convergence, and too small
a learning rate may result in too small a parameter update, which does not make full
use of the training data during the training process, causing the algorithm to fall into a
local optimum during the optimization process. From Figure 5a–d, it can be seen that
when the learning rate is 0.0001, although the flight energy consumption and transmission
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energy consumption do not reach the minimum, due to its lower computational energy
consumption, it makes the total reward value the highest, because our algorithm uses a
learning rate of 0.0001.
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4.2.3. Effect of Computational Resource Allocation and Partial Offloading

In the task offloading environment, the way of computational resource allocation and
partial offloading can greatly improve the flexibility of task offloading and processing.
Therefore, after determining two important hyper-parameters, namely algorithm learning
rate and batch_size, this paper verifies the effects of computational resource allocation
and the partial offloading approach on various performance metrics. Where CRA stands
for computational resource allocation, PO stands for partial offloading method, and BP
stands for binary offloading method. From Figure 6a, it can be seen that with the partial
offloading approach in the presence of both partial offloading approaches, the reward
obtained with computational resource allocation is higher than that without computational
resource allocation, while with the partial offloading approach in the presence of both
computational resource allocations, the reward value obtained with the addition of partial
offloading approach is much higher than that of the binary offloading approach, which
is due to the fact that in the resource-limited environment, all the tasks generated by the
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GD are offloaded to a single processing node, which tends to cause processing congestion,
increase task processing latency and energy consumption, and significantly reduce resource
utilization. Therefore, synthesizing Figure 6a–d, it can be seen that in the environment
designed in this paper, the computational resource allocation combined with the partial
offloading approach can greatly reward the latency and energy consumption, and thus
increase the total system reward.
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4.2.4. Effect of the Number of GDs

GDs serve as agents constitute the crucial factors influencing the environment, so
in this paper, different numbers of GDs are simulated for various performance metrics.
From Figure 7a–d, it can be observed that the lower the number of GDs, the lower the task
computation energy, flight energy, and transmission energy, which results in a higher total
system reward. Consequently, the lower the number of GDs, the fewer tasks are generated,
so the lower the transmission energy consumption and flight energy consumption; and
when fewer tasks are generated, the more computational resources are allocated to each task,
so its computational delay is lower and its computational energy consumption becomes
lower accordingly, which validates the reasonableness of the environment design.
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4.2.5. Effect of GDs Computing Power

Secondly, we evaluate the effect of GDs’ computational power on each index by
changing the computational power of GDs to verify the performance of the algorithm.
From Figure 8a–d, it can be seen that the larger the computational power of the GDs,
the smaller the value of its various energy consumption, which is because the larger the
computational power of the GDs, then the GDs are more biased to process more tasks by
themselves, and thus the transmission of the tasks and the flight of the UAVs consume less
energy. Moreover, due to the increase in GD computational power, the total computational
resources in the scene increase, and then the computational delay of the tasks decreases,
which leads to the decrease in the total computational energy consumption in the system
environment, further verifying the reasonableness of the environment proposed in this
paper as well as the effectiveness of the proposed algorithms.
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4.2.6. Comparison of This Paper’s Algorithm with the Benchmark Algorithm

For performance comparison, we implemented the following comparison of three
benchmark algorithms:

MADDPG [30]: consistent with the proposed algorithm, differing in the DDPG algo-
rithm used by each agent for action optimization.

DDPG [31]: The global state of the system is constructed by splicing the local observa-
tions of each agent and feeding them into the DDPG algorithm, which determines the task
offloading decision and transmission power allocation uniformly, and subsequently maps
its decisions to each agent. The reward function uses the weighted sum of all the agents as
the total reward.

DQN [32]: Similar to DDPG, the difference is that in the construction of the construc-
tion of the action space, for the unloading decision of the part of the unloading needs to be
discretized. We rely on this literature to follow the same discretization.

(1) Comparison of energy consumption between the algorithm in this paper and the
benchmark algorithm: Figure 9a–c shows bar charts illustrating the energy consumption
of this paper’s algorithm compared to the benchmark algorithm. Where CRA stands for
computational resource allocation, PO stands for partial offloading method, and BP stands
for binary offloading method. As can be seen from the figure, regardless of whether partial
offloading or binary offloading is used, the MATD3 algorithm we use consumes less energy
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than the other benchmark algorithms, has the lowest cost, and is effective in reducing the
resource utilization when combined with computational resource allocation.
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(2) Comparison of this paper’s algorithm with the benchmark algorithm for negative
total rewards at different task arrival rates: The bar charts in Figure 10 show the perfor-
mance of this paper’s algorithm and the benchmark algorithm under 10 GD scenarios with
different task arrival rates in terms of the reward negative value. The tasks of GD within
each time slot are randomly generated based on the task probability model. As can be seen
from Figure 10, the reward negative value gradually increases with the increase in task
arrival rate, which indirectly reflects the gradual decrease in the reward value. The reason
is that a lower task arrival rate implies a smaller number of tasks with a fixed total time slot,
which further reduces the energy consumption for transmission and computation. In con-
trast, the negative reward value of this paper’s algorithm is always higher than that of the
benchmark algorithm, which further validates the effectiveness of this paper’s algorithm.
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(3) Comparison of this paper’s algorithm with the benchmark algorithm for negative
total rewards at different task load range size: The bar chart in Figure 11 demonstrates
the effect of this paper’s algorithm and the benchmark algorithm on the negative rewards
at different task load ranges, from which it can be seen that the negative rewards usually
show an upward trend as the task load range increases. This indicates that as the system
burden increases (i.e., the task load range expands), the performance burden of the system
increases, which leads to an increase in the negative reward, and the negative reward of
this paper’s algorithm is always higher than other benchmark algorithms, which effectively
reduces the performance burden of the system.
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5. Conclusions

In this paper, a 3D dynamic multi-UAV-assisted air–ground collaborative MEC system
model is constructed. Specifically, the task offloading decision of GDs, the UAV flight
trajectory, and the computational resource allocation problem of edge-end nodes are,
respectively, discussed. Then, to minimize the total energy consumption of the system, the
CRO problem is proposed herein. Furthermore, the problem is decoupled into two sub-
problems based on the correlation of the tasks. We take advantage of the DRL and adopt
the MATD3 algorithm to jointly optimize the task offloading and flight trajectory problems,
and subsequently, the optimal solution for the computational resource allocation of the
edge nodes is derived based on the KKT condition. The two sub-problems interact until the
MATD3 algorithm converges. Finally, the simulation results validate the rationality and
effectiveness of our algorithm. In our future work, we gradually carry out tests of realistic
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scenarios and observe the impact of communication interference, interruption, and channel
deterioration on system performance in extreme environments, especially in conjunction
with the actual needs of disaster relief, to deploy and validate the algorithms, to collect
more real-world data, and to further optimize the algorithm performance.
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