o drones

Article

An Elite Wolf Pack Algorithm Based on the Probability
Threshold for a Multi-UAV Cooperative Reconnaissance Mission

Hanrui Zhang ', Xiao Lv *f, Chao Ma ' and Liangzhong Cui *

check for
updates

Citation: Zhang, H.; Lv, X.; Ma, C.;
Cui, L. An Elite Wolf Pack Algorithm
Based on the Probability Threshold
for a Multi-UAV Cooperative
Reconnaissance Mission. Drones 2024,
8,513. https://doi.org/10.3390/
drones8090513

Academic Editor: Francesco Nex

Received: 21 August 2024
Revised: 13 September 2024
Accepted: 19 September 2024
Published: 22 September 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Computer Engineering, Naval University of Engineering, Wuhan 430030, China;
2zzzhr0315@163.com (H.Z.); chaoma5402@163.com (C.M.); szzll@163.com (L.C.)

* Correspondence: xiaolv_nue@163.com

t Current address: 717 Jiefang Avenue, Qiaokou District, Wuhan 430030, China.

Abstract: In the task assignment problem of multi-UAV collaborative reconnaissance, existing algo-
rithms have issues with inadequate solution accuracy, specifically manifested as large spatial spans
and knots of routes in the task execution of UAVs. To address the above challenges, this paper
presents a multi-UAV task assignment model under complex conditions (MTAMCC). To efficiently
solve this model, this paper proposes an elite wolf pack algorithm based on probability threshold
(EWPA-PT). The EWPA-PT algorithm combines the wandering behavior in the traditional wolf pack
algorithm with the genetic algorithm. It introduces an ordered permutation problem to calculate the
adaptive wandering times of the detective wolves in a specific direction. During the calling phase of
the algorithm, the fierce wolves in the wolf pack randomly learn the task assignment results of the
head wolf. The sieging behavior introduces the Metropolis criterion from the simulated annealing
algorithm to replace the distance threshold in traditional wolf pack algorithms with a probabil-
ity threshold, which dynamically changes during the iteration process. The wolf pack updating
mechanism leverages the task assignment experience of the elite group to reconstruct individual
wolves, thereby improving the individual reconstruction’s efficiency. Experiments demonstrate that
the EWPA-PT algorithm significantly improves solution accuracy compared to typical methods in
recent years.

Keywords: multi-UAVs; task assignment; wolf pack algorithm; probability threshold; elite group;
adaptive wandering times

1. Introduction

In recent years, UAVs have gained widespread application across various fields due
to their advantages, including quick and easy deployment, high mobility, high economy,
strong self-organizing ability, and scalability [1]. In practical applications, due to the large
number and complexity of tasks, a single UAV will be limited by its individual performance,
flight range, and payload, making it inefficient to complete all assigned tasks [2,3]. Based
on the various defects of executing tasks with a single UAV and the promotion of practical
needs, multi-UAV cooperation has become a focus of current research at home and abroad.

In multi-drone collaborative task scenarios, task assignment is the major component
and prerequisite for improving mission execution efficiency and automatic control of the
UAV swarm system. The multi-UAV task assignment problem mainly involves two aspects:
the task assignment model and the task assignment algorithm [4].

The task assignment problem of multi-UAV cooperation is a type of NP-hard combi-
natorial optimization problem [5]. In recent years, scholars have established many models
for the UAV task assignment problem to make the task assignment model more realis-
tic. Zhang et al. [6] modeled the task assignment problem based on the background of
UAV reconnaissance and evaluation. Zhu et al. [7] established a multi-UAV task planning
model, which comprehensively considers the performance differences of heterogeneous

Drones 2024, 8, 513. https:/ /doi.org/10.3390/drones8090513

https:/ /www.mdpi.com/journal /drones

https://doi.org/10.3390/drones8090513
https://doi.org/10.3390/drones8090513
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0009-0002-8713-0352
https://doi.org/10.3390/drones8090513
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8090513?type=check_update&version=1

Drones 2024, 8,513

2 of 28

UAVs and three performance indicators for task evaluation. Based on the background of
UAV reconnaissance tasks, Wu et al. [8] presented a multi-UAV task assignment model by
comprehensively considering factors such as the total range of the task, task threat degree,
and task benefit. Gao et al. [9] focused on the performance of heterogeneous UAVs and
proposed a task assignment model based on evaluation metrics such as task completion
time and energy consumption.

Heuristic algorithms are commonly used to solve the multi-UAV task assignment mod-
els. In heuristic algorithms, the particle swarm algorithm has emerged as the mainstream
approach due to its minimal parameters, simplicity of implementation, and fast solving
speed [10]. Wang et al. [11] proposed an EPPSO algorithm that constructs an experienced
pool with the top 20% particles based on fitness values. Individuals who do not satisfy
the constraint conditions are reconstructed based on the experienced positions in the pool.
This algorithm effectively maintains population diversity and expands the search scope
of the solution space. Liu et al. [12] proposed the RPSO algorithm that uses adjustable
Gaussian white noise to perturb the inertia weight and acceleration coefficients of particles
randomly. This approach enhances the range of the algorithm’s search space to some
extent and has a positive effect on helping the particle swarm to escape from local optima.
Wang et al. [13] proposed the IPSO algorithm, where individuals selectively optimize in
multiple directions during the iteration process. Additionally, the algorithm introduces
a position abandonment mechanism to improve the overall optimization capability and
perform better in escaping out of the local optimal solution. Tian et al. [14] proposed the
MPSO algorithm to improve the population diversity during initialization by employing
chaotic initialization, Sigmoid inertia weight, and a maximum focusing distance strategy.
This approach effectively optimizes the algorithm's iteration efficiency and demonstrates
better stability when searching for global optimal solutions.

However, particle swarm optimization algorithms have significantly improved their
search performance, accelerated their iteration speed, and enhanced their capability to
escape local optima, making them competent for the task assignment of multi-UAV co-
operation. But due to the inherent limitations in dealing with high-dimensional discrete
problems and falling into local optima in the later stage, PSO’s ability to search for opti-
mal solutions is still not satisfactory when dealing with the complex, high-dimensional,
and discrete problem of multi-UAV task assignment.

The wolf pack algorithm is a relatively new type of swarm intelligence algorithm which
primarily imitates the clear social division of labor and cooperative hunting behavior [15].
Compared to the particle swarm algorithm, the wolf pack algorithm has better global
convergence, computational robustness, and effectiveness in handling high-dimensional
and discrete problems. Therefore, the wolf pack algorithm demonstrates superior solving
performance in multi-UAV task assignments.

In recent years, scholars have proposed numerous improvements to the wolf pack
algorithm. Xu et al. [16] proposed the MDWPA algorithm, which combines the wandering,
calling, and sieging behaviors with the genetic algorithm and elite strategy, significantly
improving the convergence speed and solution accuracy. However, due to the excessively
large scope of learning from the head wolf in calling and sieging behaviors, the diver-
sity of the population is reduced, making it prone to local optima in the later iteration.
Lu et al. [17] presented the MPPWPA algorithm, which divides the population into multi-
ple subpopulations with approximately equal quality. Each subpopulation independently
solves the problem and continuously evolves during the iteration process through infor-
mation exchange between subpopulations. The algorithm accelerates the iteration and
convergence speeds and performs well in handling low-dimensional problems. However,
as the dimensionality increases, the accuracy of searching for the optimal solution gradually
decreases. Zhu et al. [18] introduced the CDWPA algorithm, which enhances the quality of
initial solutions through chaotic inverse initialization. Additionally, interference factors
and adaptive step size are added to the iterative process to increase the ability to search

Drones 2024, 8,513

30f28

the global optimal. However, the algorithm is prone to premature convergence during
iterations, which leads to unstable optimization results.

The various improved wolf pack algorithms have achieved a certain degree of im-
provement in solution accuracy, but the final solutions still have issues such as large spatial
spans and knots of routes in UAV task execution. In order to address the above chal-
lenges, this paper proposes a multi-UAV task assignment model under complex conditions
(MTAMCC) to comprehensively take into account various factors such as the speed and
range differences of heterogeneous UAVs, the time required for the UAV fleet to complete
all reconnaissance tasks, target threat coefficients, and target area ranges. This model aims
to align closely with practical applications by considering these multifaced aspects. To solve
the MTAMCC model effectively, this paper proposes an elite wolf pack algorithm based
on probability thresholds (EWPA-PT). The EWPA-PT algorithm significantly improves
solution accuracy.

The remainder of this paper is arranged as follows: Section 2 introduces the task
assignment model (MTAMCC). Section 3 presents the proposed algorithm (EWPA-PT)
to solve the model. Section 4 introduces the experimental parameters and an analysis
of the experimental results. Section 5 concludes this work and proposes directions for
future improvements.

2. Task Assignment Model
2.1. Modeling Background

This chapter models the scenario of UAV swarm collaboratively performing recon-
naissance tasks. A reconnaissance task involves UAVs taking off from the launch platform,
flying to a designated target area, covering the entire region for reconnaissance, and re-
turning to the launch platform upon completion. The following assumptions are made to
mitigate the impact of uncertain factors and simplify the practical problem.

(1) The UAV’s flight is constant and unaffected by exernal environmental factors.

(2) TheUAV is assumed to be secure during its flight; threats occur only during reconnaissance.
(3) There are no obstacles during flight and distance is calculated using Euclidean distance.
(4) Each reconnaissance task is performed only once.

2.2. Task Modeling

This paper represents the task model with a quadruple <5, U, T, C>, where S is the set
of the UAV launch platform. U is the set of UAVs. T is the set of target points, and C is the
set of constraints. Table 1 contains the attributes of each element in the quadruple.

Table 1. Object attributes and symbol interpretation.

Attributes

UAV launch platform: Np
Platform:P Initial position of the platform: pjo.
Launch platform drone type: Typex

Number of UAVs: Nu
Initial position of UAVs: u,,

UAV:U Flight speed of UAVs: uavy
Maximum range of UAVSs: uavm;
Number of targets: Nt
Target:T Initial position of targets: ¢},

Reconnaissance radius: tarrange
Threat factor: targ

Maximum range of UAVs

Constraint:C UAV threat factor

Drones 2024, 8,513

4 0f 28

2.3. Objective Function Construction

To enable the UAV swarm to accomplish the assigned tasks with minimal cost, maximal
benefit, and the highest safety, this model will optimize based on the average flight time of
the UAV swarm, the time required to complete the reconnaissance tasks, and the average
threat level of the UAV swarm.

2.3.1. Reconnaissance Task Completion Time

The time required for UAVs to complete reconnaissance tasks includes the time for
flying to the target point and conducting the reconnaissance. The completion time of the
reconnaissance task is obtained as follows:

TCT = tep;
P g
where tcp; represents the time taken by the UAV; to depart from the launch platform to
complete its corresponding assigned task. The calculation is obtained as follows:

Dyt + 22;11 Dy, x, + Y1 Dctu
Vu-

1

()

tepi =

where Dy, +, denotes the distance from UAV; to the first task point. Dy, x, , represents the
distance between task point; and task point;, . Dcty, 1, represents the flying distance for
UAV; to complete the reconnaissance task on target. V, represents the flying speed of
the UAV.

2.3.2. Average Flight Time of UAV Swarm

The average flight time of the UAV is calculated as the average duration for the UAV
swarm to take off from the launch platform, carry out the reconnaissance task, and return
to the launch platform. The calculation is shown as follows:

YN T 3)
Nu

AFT =

where T; represents the time when the UAV; finishes all assigned tasks and returns to the
launch platform; Nu represents the number of UAVs.

2.3.3. The Average Threat Coefficient of The UAV Swarm

The average threat coefficient of the UAVs refers to the average threat faced by the
UAVs in completing all tasks. In this paper, the threat coefficient is related to the size of the
area. For every additional kilometer of target reconnaissance range, the threat coefficient
increases by 5. The calculation of the average threat coefficient is shown as follows:

Nu Nt
L0 ey riskuy p, (4)

ATC = Nu

2.3.4. Objective Function

Based on the preceding discussion, the optimization parameters for this model are the
time the UAV swarm takes to complete reconnaissance tasks, the average flight time of the
UAV swarm, and the average threat coefficient of the UAV swarm. Therefore, the objective
function is calculated as follows:

fithess = o x TCT 4+ B X AFT + ¢ x ATC (5)

Let &, B, and 7y represent the weights for the UAV swarm tasks’ completion time, the UAV
swarm'’s average flight time, and the average threat coefficient of the UAV swarm, respectively.
This paper sets the model parameters as« = f = 0,3, and y = 0.4. It is important to note that
these model parameters can be dynamically adjusted based on the specific requirements of
the scenario, provided that they adhere to the constraint « 4+ + ¢ = 1 [9,19]. Adjustments

Drones 2024, 8,513

50f28

to the model parameters do not affect the algorithm’s performance. The rationale behind
the chosen model parameters is to construct a general model. Ideally, we would prefer the
parameters to be equal. However, due to the constraints, this is not feasible. Consequently,
with a focus on safety considerations, the weight of the average threat coefficient of the UAVs
is emphasized. This approach ensures that the UAV swarm can complete tasks with the
maximum possible safety.

3. The Wolf Pack Algorithm
3.1. Traditional Wolf Pack Algorithm

As a relatively new swarm intelligence optimization method, the wolf pack algorithm
employs a bottom-up design approach based on artificial wolf individuals and a cooperative
search path structure based on division of labor [20]. It primarily mimics three hunting
behaviors in wolf packs, wandering, calling, and sieging, with the head wolf at the core.
Lastly, it implements a mechanism for leader wolf generation based on the “victor is king”
rule in nature and an updating mechanism based on the “survival of the fittest” principle.
The following will briefly describe the three behaviors and two mechanisms of the wolf
pack algorithm in the order of algorithm implementation.

3.1.1. The Head Wolf Generation Mechanism

The head wolf generation mechanism is inspired by the “victor is king” rule in nature,
where the most capable individual wolf in the pack assumes the role of the head wolf.
In the algorithm, the head wolf is determined by the individual wolf with the lowest fitness
value in the pack, as the task assignment problem is a minimization problem.

3.1.2. Wandering Behavior

Detective wolves carry out the wandering behavior. In traditional wolf pack algo-
rithms, the amount of wandering time and the detective wolf factor must be determined
first. The detective wolf factor is an integer within the range [%, %] that is used to calcu-
late the number of detective wolves in the current iteration. The position update of the ith

detective wolf is calculated as follows:

xi,‘;l = xfﬁd + sin(27'c X %) X step, (6)

3.1.3. Calling Behavior

The fierce wolves carry out the calling behavior. When a fierce wolf receives the call
from the head wolf, it rapidly approaches the head wolf with a larger step, step,, and the
position update is calculated as follows:

k k

Yhead — Xi (7)
k k

|xhead X ’

According to that, the fitness value is recorded after each wandering. If the fitness of
the new position is superior to the head wolf’s fitness, the calling behavior stops, and the
detection wolf becomes the new head wolf to initiate the calling behavior. If the fitness of
the new position is superior to that of the original position, the new position is retained;
otherwise, no change occurs.

In the calling behavior, to maintain population diversity and expand the search range,
a distance threshold d_near is introduced, which is calculated as follows. If the distance
between the head wolf and the fierce wolf exceeds the distance threshold, the fierce wolf
will keep rushing towards the head wolf with a large step size. Otherwise, it switches to
sieging behavior.

k1

_ ok
;= x; +step, X

D
X) |maxy; — ming| (8)
d=1

d_near =
- D xw

Drones 2024, 8,513

6 of 28

3.1.4. Sieging Behavior

All individual wolves perform sieging behavior in the wolf pack except for the head
wolf. Each wolf moves towards the position of the head wolf with a smaller step size.
The position update is calculated as follows:

xif+1 = xF 4+ A x step, x)xﬁead —xf)
The relationship of the step size for the three behaviors is as follows:
ste —mi
step, = % =2 xstep, = des—mmd' (10)

3.1.5. Wolf Pack Update Mechanism

The updating mechanism in the wolf pack algorithm mirrors the “survival of the
fittest” rule in nature. Firstly, all individual wolves are sorted in ascending order based
on their fitness value. Then, at the end of each iteration, based on the updating factor

N

g, a random integer within the range [%, ?] is generated to determine the number of

individual wolves that need to be updated.

3.2. The Proposed EWPA-PT Algorithm

The traditional wolf pack algorithm has demonstrated strong performance in handling
multi-dimensional continuous problems. However, when it comes to the complex discrete
problem of multi-UAV task assignment, this algorithm performs poorly and requires algo-
rithmic improvements. Consequently, this paper proposes the EWPA-PT algorithm, which
optimizes four aspects: wandering, calling, sieging, and the pack updating mechanism.

During the wandering behavior, the algorithm optimizes the task execution order for
UAVs. Inspired by the problem of solving ordered permutation problems in mathematics,
the traditional wolf pack algorithm’s maximum number of wandering times is replaced
by the maximum potential for optimization in a specific direction, enabling each detective
wolf to have its adaptive maximum number of wandering times in each direction.

The calling behavior is mainly inspired by genetic algorithms, where the fierce wolf
randomly selects the task assignment solution of the head wolf for n tasks as its task
assignment result.

Sieging behavior introduces the “acceptance probability” P based on the Metropolis
criterion in the simulated annealing algorithm, where the value of P is calculated based on
the difference in fitness between individual wolves and the head wolf. In the EWPA-PT
algorithm, P is named the probability threshold, replacing the distance threshold in the
traditional wolf pack algorithm.

The wolf pack updating mechanism refers to individuals in the wolf pack that rank
lower in fitness, learning from elite wolves about task assignment schemes and adopting
them for use, thereby ensuring the number of effective individuals during iterations.

Subsequent experiments have demonstrated that the algorithm’s elite-wolf-based
updating mechanism shows significant performance advantages under complex constraints.
The pseudocode of the algorithm is shown in Algorithm 1.

3.2.1. Individual Coding and Initialization

This algorithm uses integer encoding, where the task assignment is represented by the
correspondence between two lists: the task list and the UAV list. The execution order of
tasks is determined by the sequence of task numbers in the task list, as shown in Figure 1.

TN 1 3) 2 4
UN 1 2 5 3 5

Figure 1. Integer encoding.

Drones 2024, 8,513

7 of 28

Algorithm 1: ENWPA-PT
Input :initial position of UAVs, position of targets, population size: N, iteration,
Temperature coefficient: T
Output:The best task allocation scheme
1 Generate initial solution X
2 fori < 1 toiteration do
Calculate fitness value and sort in ascending order
Select dnum detective wolves
for j < 1 to dnum do
| Wandering behavior() // Introduced in Section 3.2.2
end
The fitness value sorting in ascending order
Select fnum fierce wolves
10 for j « 1to fnum do

© 0 N U R W

11 ‘ Calling behavior() // Introduced in Section 3.2.3
12 end

13 The fitness value sorting in ascending order

14 | forj<1toN—1do

15 ‘ Sieging behavior() // Introduced in Section 3.2.4
16 end

17 | The fitness value sorting in ascending order
18 | Wolf pack update mechanism() // Introduced in Section 3.2.5
19 end

Figure 1 illustrates a scenario involving five UAVs and five tasks to be assigned, where
the lists TN and UN represent the task list and the UAV list, respectively. For example, in the
second column of the figure, the value 3 in the TN list and value 2 in the UN list indicate
that the third task is assigned to the second UAV. Notably, the assignment allocation results
in the third and fifth columns show that the fifth and fourth tasks are assigned to the fifth
UAV, respectively. However, since the fifth task appears before the fourth task in the TN list,
the fifth UAV prioritizes completing the fifth task before the fourth task; the task allocation
results are as follows: UAV; : {1}, UAV, : {3}, UAVs : {2}, UAV, : {}, UAV5 : {5,4}.

Algorithm initialization primarily involves several aspects: population initialization,
parameter initialization, UAV position initialization, and target position initialization.
Among these, population initialization includes the following steps and the pseudocode is
shown in Algorithm 2.

1. Initialize the TN and UN lists, where both TN and UN consist of N sublists, each
length Nt. Each element within the sublists of TN is a randomly generated integer within
the range (1, Nt), with each integer appearing exactly once. In contrast, each element within
the sublists of UN is a randomly generated integer within the range (1, Nu), with integers
allowed to repeat.

2. The sublists in the TN and UN lists correspond one-to-one, collectively forming a
task allocation solution. The decoded task allocation results are stored in the UdoT _list list.
Subsequently, the feasibility of the task allocation solution is assessed against the constraint
conditions. If the constraints are satisfied, the corresponding fitness value is computed
using Formula (5). If the constraints are not satisfied, the fitness value is set to infinity.

3. Finally, the TN, UN, and UdoT _list lists are re-sorted according to the ascending order
of fitness values. The completion of sorting marks the completion of population initialization.

3.2.2. Improvements in Wandering Behavior

Inspired by the problem of ordered permutations in mathematics, the algorithm
introduces the concept of adaptive wandering times during the wandering behavior phase.
The adaptive wandering times essentially reflect the number of possible adjustments in the

Drones 2024, 8,513

8 of 28

task execution order for each UAV. Unlike the fixed wandering times used in traditional
wolf pack algorithms, the adaptive wandering times enable a more rational allocation of
computational resources and improve the optimization of UAV task execution sequences.
The specific steps of the wandering behavior are as follows:

Algorithm 2: Population Initialization

1 Initialize the TN, UN, and UdoT _Iist lists.

2 Initialize the fitness array.

3 forj < 1to N do

1 | Assign values to the sublists within the TN and UN list
5

6

Decode the task allocation solution and store it in the UdoT _[ist.
Evaluate whether the task allocation solution meets the constraints and
compute the fitness value.
7 end
8 the TN, UN, and UdoT _list lists are re-sorted according to the ascending order of
fitness values.

In the wandering behavior, firstly, a random integer is generated from the range
[%, %] to determine the number of detective wolves, denoted as dnum. Then, the task
assignment results for the detective wolves are traversed. For each detective wolf, the wan-
dering direction can be understood as the tasks-assigned scheme for each UAV. The solution
to an ordered permutation problem from mathematics inspires the calculation of the maxi-
mum number of wandering times in each direction. Based on the number of tasks assigned
to a UAV, the maximum number of possible task orders is determined and denoted as
poss_num. This poss_num is then used as the maximum number of wandering times for the
corresponding direction of the detective wolf. It is worth noting that when a large number
of tasks are assigned to the UAYV, to expedite the execution efficiency of the wandering
behavior, we can truncate poss_num to its maximum value. After determining the maxi-
mum number of wandering times, we need to find the tasks to be performed by the UAV.
Next, the order of executing tasks is randomly shuffled, and the fitness value is calculated.
The fitness value of the new assignment scheme is compared with the original assignment
scheme. If the new scheme is better, it is retained; otherwise, no changes occur. Figure 2
illustrates the specific operational steps.

Figure 2. The improved wandering behavior.

The main process of wandering behavior is illustrated in lines 5-13 of Algorithm 3.
In fact, the essence of the improvement in the wandering behavior is optimizing the task
execution order for UAVs. While ensuring that the UAV is assigned to appropriate tasks,
the flight route of the UAV is improved by adjusting the order of the UAV executing tasks
and reducing the fitness value at the same time so that the result of task assignment is
more optimized.

Drones 2024, 8,513 9 of 28

Algorithm 3: Wandering behavior

1 Wolves are sorted by fitness value and select the head wolf;
// wandering behaviour

2 Select dnum detective wolves;

3 forj < 1to dnum do

1 | Initialize the list of maximum wandering time in each direction;
5 fore <— 1to Nu do
6 Calculate the poss_num;
7 for n < 1 to poss_num do
8 ‘ Shuffle the execution sequence of the eth UAV;
9 end

10 if F*1(x) < F¥(x) then

11 ‘ update location: xfﬂ = Xnew;

12 end

13 end

14 end

3.2.3. Improvement on Calling Behavior

The calling behavior is crucial for the entire wolf pack algorithm to converge to the
optimal solution. The improved calling behavior is inspired by genetic and elite strategies.
It requires several steps at the beginning of the algorithm. Firstly, we need to determine the
number of fierce wolves, denoted as frnum (N - dnum - 1). Then, while ensuring that the task
order in the TN list remains unchanged, a random positive integer is generated to determine
the number of columns that the fierce wolf will alter in its calling behavior for this iteration.
Subsequently, another random positive integer is generated to specify the exact column to
be changed. After identifying the column, we need to find the corresponding task number.
The fierce wolf learns from the head wolf’s assignment result for that task and updates
its corresponding value in the UN list, achieving a rapid convergence towards the head
wolf. If the fitness after updating is better than the original fitness, the assignment scheme
is updated; Otherwise, it remains unchanged. If the fitness value after updating is better
than that of the head wolf, the head wolf is immediately updated, and calling behavior
continues based on the new head wolf’s position. The specific steps are shown in Figure 3.

TN 1 3 5 7 8 9
Head_wolf
UN 1 2

F N

Fierce_wolf

Flerce_wolf” "\ 4 2 1 1 2 3 3 3 3

Figure 3. The improved calling behavior.

The main process of calling behavior is illustrated in lines 3-8 of Algorithm 4. In the
example illustrated in Figure 3, the random number R1 is 3. In subsequent iterations,
the values of random number R2 are 2, 4, and 6, respectively. Then, the fierce wolf identifies
the task numbers corresponding to these three columns as 2, 4, and 6, respectively. It learns
from the head wolf’s assignment schemes for task 2, 4, 6 and updates its values in the UN
list accordingly. If the updated position is better than the original position, the new position
is retained; otherwise, no change occurs. If the updated position is better than the current
head wolf’s position, the fierce wolf replaces the head wolf to initiate the calling behavior.

Drones 2024, 8,513 10 of 28

Algorithm 4: Calling behavior

1 Select frnum fierce wolves
2 forj < 1to fnum do

3 Generate a random integer R1 in the range from 0 to 9;
4 fork < 1to R1do
5 Generate a random integer R2 in the range from 0 to 9;
6 Find the task represented by column R2 in Tn;
7 Copy the task allocation results of the head wolf for this task;
8 end
o | if F*1(x) < FF(x) then
10 ‘ update location: xﬁ‘“ = Xnew,
1 end
© | if FF(x) < Ff_,(x) then
13 ‘ update location: xlfl;}i = Xpew;
14 end
15 end

3.2.4. Improvements in Sieging Behavior

The process of sieging behavior involves all individual wolves, excluding the head
wolf, converging towards the optimal solution by taking smaller steps. Since integer
encoding cannot accurately represent the distance relationship between the head wolf and
individual wolves, in the improved sieging behavior, the innovative aspect of the algorithm
lies in replacing the traditional “distance threshold” with a “probability threshold”.

The “probability threshold” is computed based on the fitness difference between the
head wolf and the individual wolf, effectively reflecting the similarity in task allocation ef-
fectiveness between them. If the fitness difference between the head wolf and the individual
wolf is slight, it is assumed that their task allocation effects are similar. Consequently, in the
current iteration, the “probability threshold” for that individual wolf is high, resulting in a
greater probability of individual mutation.

Because the fitness value of individual wolves changes dynamically, going through a
process of divergence followed by convergence throughout the algorithm’s iteration using
a fixed fitness difference value leads to unsatisfactory results. Inspired by the simulated
annealing algorithm, where the probability of accepting worse solutions decreases with
increasing iterations, this aligns well with the need to set the threshold for sieging behavior.
Therefore, the EWPA-PT algorithm incorporates the probability calculation formula from
simulated annealing, denoted as the probability threshold in this algorithm, replacing
the traditional distance threshold. With the fitness difference between the head wolf and
individual wolves remaining constant, it is advisable to set a large probability threshold
during the early stages of iteration. This is because, in the early stage, there is significant
diversity in fitness value among individual wolves, and a large distance threshold allows
individual wolves to explore the solution space more extensively around their current
position. As the iteration progresses, the fitness values of all individual wolves gradually
converge. Therefore, it is preferable to decrease the probability threshold during the later
stages of iteration. This adjustment is necessary because maintaining the initial “similarity
probability” throughout the later stage may lead the program to execute only one branch
of the sieging behavior code. Additionally, a smaller distance threshold facilitates faster
convergence towards the optimal solution.

This approach preserves the possibility of individual mutations, preventing excessive
similarity between individual wolves and the head wolf during the iteration process, thus
enhancing population diversity. Moreover, using a probability threshold enables the wolf
pack to explore multiple points simultaneously when the task assignment results differ
but yield similar effectiveness. This facilitates multi-point optimization while ensuring

Drones 2024, 8,513

11 of 28

diversity and enhancing the ability to break out of local optimal solutions. The calculation
of the probability threshold is calculated as follows:

_ (Tl (11)
P=e

where T is the global temperature coefficient, which continuously decreases as the iteration
progresses. y is the adjustment coefficient. F,,; represents the fitness value of the head
wolf. F; represents the value of the ith individual wolf. When the fitness values of the
individual wolf and the head wolf are close, the probability threshold is larger; conversely,
it is smaller.

In the improved sieging behavior, a random number 7 is generated between 0 and
1 and compared with a probability threshold. If 7 is less than the threshold, the task
assignment effectiveness between the individual wolf and the head wolf is considered
similar. In this case, two columns from the individual wolf’s UN list are randomly selected
for mutation (lines 4-6). When 7 is greater than the threshold, it suggests that there is
still a gap in the task assignment effectiveness between the individual wolf and the head
wolf. Following the elite strategy, a random wolf with a better fitness value than the
current one is selected as the learning template. The corresponding TN and UN lists are
then copied, and two columns in the copied UN list are randomly changed (lines 9-11).
During the sieging behavior, the position is updated if the fitness value is lower after
updating; otherwise, the original position is retained. The process is shown in Figure 4 and
the pseudocode is shown in Algorithm 5.

P>n

TN 1 3 4 (5} 7 8 9
Siegingwolf "N~ 1 1 1 2 2 3 3 3
mutated columns: 2, 5
o N 1 3 4 6 7 8)
Sieging_wolf 7)™y 2 1 1 3 2 3 3 3
P<n
TN 1 3 4 5 (5} 7 9
Better_wolf
UN 1 2 3 1 2 B 1 2 3
T Learning columns:2, 8
- TN 1 3 4 5 (5} 7 9
Seeging.wolf 1 1 1 1 2 2 3 8 8
Seqing ot ﬁ_-ﬁ_
UN 1 2 1 1 2 2 3 2 3

Figure 4. The improved sieging behavior.

Algorithm 5: Sieging behavior

1 Wolves are sorted by fitness value and select the head wolf;
2 for all individual wolves except the head wolf do

3 | The probability threshold P is obtained according to Equation (11);
4 if P > random then
5 ‘ Individual mutation;
6 else
7 ‘ Learning from head wolf;
8 end
9 | if FF1(x) < F¥(x) then
10 ‘ update location: xé‘“ = Xnew;
11 end
12 end

13 T=T-down;

Drones 2024, 8,513

12 of 28

3.2.5. The Improvement of the Wolf Pack Update Mechanism

The wolf pack updating mechanism eliminates some wolves with the poorest fitness
values and regenerates them according to specific rules. The number of wolves to be
updated is calculated according to Formula (12), with b as the updating factor. In the
traditional wolf pack algorithm, the update rule is similar to individual initialization
and is carried out through random generation. This approach maintains population
diversity in the early stage. However, as the algorithm progresses, the randomly generated
individuals lack competitiveness compared to those that have been adjusted through
multiple iterations. This diminishes the effectiveness of the wolf pack updating mechanism
within the overall algorithm.

n = Random.ranint(

N N
7x5 B (12

An individual reconstruction based on an elite strategy is proposed in the improved
wolf pack updating mechanism. Specifically, the task allocation experiences of the elite
wolves (the top 20% of wolves in terms of fitness ranking) will directly influence the
results of individual reconstruction. For example, if most elite wolves agree that the first
task should be assigned to the fifth UAV, then in the individual reconstruction process,
the first task will be assigned to the fifth UAV. By statistically analyzing the task allocation
experience of the elite wolves for all tasks, the new individual’s task allocation scheme
is determined based on the majority opinion. The specific steps are as follows, and the
pseudocode is shown in Algorithm 6.

1. Construct the experience pool. One should traverse the task allocation schemes of
all elite wolves and statistically evaluate the allocation results for each task. The statistical
result will reveal which UAV the elite wolves prefer for each task. The majority opinion on
task allocation within the elite wolf group is considered the potential optimal allocation
result for each task and is recorded in the experience pool.

2. Individual Reconstruction. The essence of individual reconstruction is to regenerate
the task allocation scheme for the individual to be updated. First, the TN list of the
individual to be updated is kept unchanged. Then, each task in the TN list is examined.
For each task, allocation experience is retrieved from the experience pool and used to
modify the corresponding values in the UN list, thereby completing the reconstruction of
the individual.

For example, referring to Figure 5, it can be observed that the majority of elite wolves
believe that the first task should be assigned to the third UAV. Therefore, in the individual
to be updated, the first task will be assigned to the third UAV.

Elite wolves

Regenerated individual UN 3 o 2 B " o " o o

Figure 5. The improved wolf pack update mechanism.

Drones 2024, 8,513

13 of 28

Algorithm 6: Wolf pack update mechanism

1 The number n of individual wolves to be updated is calculated according to
Formula 12;

2 forj < 1tondo

3 fork < 1to Nt do

4 Explore the allocation strategies of the elite wolf pack for the kth task;

5 Select the UAV with the highest frequency of occurrence as the new
individual’s assignment result for task k;

6 end

7 end

4. Simulation

To validate the performance of the EWPA-PT algorithm, this section selects the PSO
algorithm [21], the well-performing EPPSO algorithm [11] among particle swarm optimiza-
tion variants, and the MDWPA [16] and MPPWPA [17] algorithms, which are both noted
for their performance in wolf pack optimization. These algorithms are all evaluated based
on the MTAMCC model, with each being run 50 times to derive various experimental
results.

In the experimental section, this paper standardizes the parameters across the above
algorithms. The parameters for the PSO algorithm are set according to the original literature,
as detailed in Table 2. The parameters of the wolf pack algorithm are kept consistent,
as detailed in Table 3.

Table 2. EPPSO algorithm parameter settings.

Parameter Value
Number of individuals N =100
Inertia weight Wini =0.9, Wy =04
Cognitive acceleration coefficient Clini = 2.5, Cleng = 0.5
Social acceleration coefficient Coini = 0.5, Coppg = 2.5
Size of experience pool expsize = 20
Mutation probability of refactoring operations Py =0.01
— Vi 0 of e et spae
Maximum number of iterations Iter = 800

Table 3. Wolf pack algorithm parameter settings.

Parameter Value
Number of individuals N =100
Maximum number of iterations Iter = 800
Detective wolf factor a=4
Update factor b=7
Temperature T =100
Cooling coefficient down = 0.125

To ensure the randomness of the experiment, the initialization process of individuals
is performed randomly. Additionally, the positions of the launch platforms, the positions
of the target points, and the sizes of the target points are all randomly generated within

Drones 2024, 8,513

14 of 28

specified ranges. This approach ensures that the algorithm can handle various scenarios
within the predefined environment.

The experiment was conducted using PyCharm IDE, with an Intel(R) Core(TM)
i5-13500H processor running at a clock speed of 2.60 GHz.

4.1. Experiments Comparing Different Target Quantities

In multi-UAV task assignment models, the number of tasks directly determines the
search dimension of the solution space. A higher dimension makes it more challenging
to optimize the best solution. In the experiment, the number of UAVs is fixed at Nu = 10,
and the number of tasks Nt varies as 15, 20, 25, 30, 35, and 40. To ensure the randomness of
the experiments, the initial position of the UAVs is randomly generated within the range
[0,100] for both x and y coordinates, while the target points are randomly generated within
the range [100, 300] for both x and y coordinates. The target distance is generated within
the range of 1 to 5 km. Each algorithm is run 50 times. In the experiment, the X coordinate
represents the number of iterations, and the Y coordinate represents the average fitness
value obtained from 50 repeated runs at iteration X. The comparison results are illustrated
in Figures 613 and Table 4.

4500 + -
—— original_pso
4250 4 MPPWPA
— MDWPA
4000 —— EPPSO
« 3750 4 —— EWPA-PT
4
IS
i= 3500 -
=
0]
£ 3250
3000
2750 4
2500

0 100 200 300 400 500 600 700 800
iter

Figure 6. The number of targets = 15.

—— original_pso
2400 1 MPPWPA
—— MDWPA
2900 —— EPPSO
" —— EWPA-PT
[y
q
=
‘= 2000 -
m
@
E
1800 A
1600 -

0 100 200 300 400 500 600 700 800
iter

Figure 7. The number of targets = 20.

Drones 2024, 8,513 15 of 28

3000 + —— original_pso
—— MPPWPA
2800 — MDWPA
—— EPPSO
» 2600 EWPA-PT
8
£ 2400 -
c
m
1]
£ 2200
2000 -
1800 -

0 100 200 300 400 500 600 700 800
iter

Figure 8. The number of targets = 25.

3600 4 —— original_pso
—— MPPWPA
3400 —— MDWPA
—— EPPSO
, 22007 EWPA-PT
wn
]
E 3000 4
=
® 2800
g
2600
2400 +
2200 4

0 100 200 300 400 500 600 700 800
iter

Figure 9. The number of targets = 30.

3800 A —— original_pso
—— MPPWPA
36001 —— MDWPA
3400 | —— EPPSO
" EWPA-PT
[0y
8 3200 -
£
e
& 3000 |
L]
S
2800 -
2600 -
2400 -

0 100 200 300 400 500 600 700 800
iter

Figure 10. The number of targets = 35.

Drones 2024, 8,513

16 of 28

4500 4 .
—— original_pso
4250 — MPPWPA
—— MDWPA
4000 1 —— EPPSO
a 37501 —— EWPA-PT
g
=
4= 3500 A
=
o
£ 3250 -
3000 ~
2750 ~
2500 +

0 100 200 300 400 500 600 700 800

iter

Figure 11. The number of targets = 40.

—e— PSO
—eo— EPPSO
3009 4 MDWPA
—e— MPPWPA
w» 30004 —®— EWPA-PT
0
E
—
c 2500 4
m
o
=
2000 +
1500 A

15 20 25 30
The number of targets

Figure 12. Average fitness comparison.

35 40

3500 A
—e— PSO
—eo— EPPSO
3000 4 —*— MDWPA
—e— MPPWPA
" —e— EWPA-PT
3 2500 -
£
o
%4}
o
2000 A
1500 +

15 20 25 30
The number of targets

Figure 13. Best fitness comparison.

35 40

Drones 2024, 8, 513 17 of 28
Table 4. Comparative experiments with different numbers of targets.
Algorithm Criteria 15 20 25 30 35 40

PSO Best fitness 1456 1730 2121 2599 2918 3414
Average fitness 1641 1959 2396 3026 3180 3856
EPPSO Best fitness 1343 1630 1751 2133 2292 2403
Average fitness 1440 1747 1996 2367 2526 2693
MDWPA Best fltrTess 1276 1537 1685 2119 2202 2368
Average fitness 1386 1653 1900 2367 2425 2604
Best fitness 1276 1524 1639 2121 2285 2407

MPPWPA
Average fitness 1353 1605 1848 2312 2458 2695
Best fitness 1278 1514 1624 1991 2174 2324

EWPA-PT
Average fitness 1340 1577 1760 2163 2346 2521

When the number of UAVs is fixed, as the number of targets increases, the solution
dimension will also increase, leading to a significant increase in the complexity of task
assignments. From the comparison results, we can observe that the EWPA-PT algorithm
demonstrates a precision advantage, and as the solution dimension increases, this algo-
rithm’s precision advantage becomes more evident. This is because the improved sieging
behavior enables multi-point optimization, greatly enhancing the algorithm’s ability to
escape local optima. Additionally, as the number of tasks increases, the order in which
UAVs perform tasks significantly impacts the assignment results. The enhanced wander-
ing behavior enables better optimization of task execution order, thereby improving the
accuracy of the final solution.

4.2. Experiments Comparing Different Target Locations

In the multi-UAV task assignment problem, the targets’ location directly impacts the
UAVs’ fuel consumption and the time it takes to complete reconnaissance tasks. Further-
more, as the distance between targets and UAVs increases, the influence of constrained
conditions during algorithm iterations also increases, making it more challenging to find
optimal solutions with the algorithm. To verify the performance of the EWPA-PT algorithm,
the number of targets is fixed at NT = 30. The target distance is randomly generated
within the range of 1 to 5 km. The target locations are divided into the following:

[0,100] x [0,100], [50,150] x [50,150],
[100,200] x [100,200], [150,250] x [150,250],
[200,300] x [200,300], [250,350] x [250,350].

Each algorithm is run 50 times. In the experiment, the X coordinate represents the
number of iterations, and the Y coordinate represents the average fitness value obtained
from 50 repeated runs at iteration X. The comparison results are illustrated in Figures 14-21
and Table 5.

Table 5. Comparative experiments with different target positions.

Algorithm Criteria 15 20 25 30 35 40
PSO Best fitness 869 1382 1524 1838 2369 3236
Average fitness 1011 1267 1678 2113 2611 3436
EPPSO Best fitness 757 1072 1346 1697 2007 2594
Average fitness 852 1158 1487 1867 2192 2898
Best fitness 646 974 1256 1639 1953 2520
MDWPA Average fitness 704 1099 1359 1759 2103 2919
Best fitness 653 971 1245 1622 1919 2696
MPPWPA Average fitness 704 1074 1343 1749 2074 2971
EWPA-PT Best fitness 638 958 1229 1596 1896 2503

Average fitness 687 1047 1304 1691 1996 2700

Drones 2024, 8,513 18 of 28

1300 - —— original_pso
—— MPPWPA
1200 4 —— MDWPA
—— EPPSO
» 11001 EWPA-PT
0
IS
= 1000 A
=
1]
8]
€ 900 |
800
700

0 100 200 300 400 500 600 700 800
iter

Figure 14. Targets are distributed over [0, 100].

—— original_pso
1700 — MPPWPA
— MDWPA
1600 1 —— EPPSO
a 1500 4 —— EWPA-PT
g
=
%= 1400 4
=
(1]
L)
£ 1300
1200 A
1100 - K

0 100 200 300 400 500 600 700 800
iter

Figure 15. Targets are distributed over [50, 150].

2000 - —— original_pso
—— MPPWPA
1900 1 —— MDWPA
— EPPSO
L 12007 —— EWPA-PT
wn
]
_*é‘ 1700
=
® 1600 -
£
1500 4
1400
1300 +

0 100 200 300 400 500 600 700 800
iter

Figure 16. Targets are distributed over [100, 200].

Drones 2024, 8,513 19 of 28

—— original_pso
2400 4 —— MPPWPA
2300 4 — MDWPA
—— EPPSO
w 2200 | EWPA-PT
g
£ 2100 A
%
@ 2000 A
£
1900 -
1800 -
1700 -

0 100 200 300 400 500 600 700 800
iter

Figure 17. Targets are distributed over [150, 250].

3000 4 —— original_pso
—— MPPWPA
—— MDWPA
2800 —— EPPSO
a EWPA-PT
_LE’ 2600
e
=
o
£ 2400 A
2200 1
2000 A

0 100 200 300 400 500 600 700 800
iter

Figure 18. Targets are distributed over [200, 300].

4200 -
—— original_pso
4000 - —— MPPWPA
—— MDWPA
3800 1 —— EPPSO
" EWPA-PT
? 3600 -
]
£
e
= 3400
[0}
L]
£ 3200
3000 -
2800 -

0 100 200 300 400 500 600 700 800
iter

Figure 19. Target is distributed over [250, 350].

Drones 2024, 8,513

20 of 28

3500
—e— PSO
EPPSO
3000 1 —s— MDWPA
—e— MPPWPA
w 2500 { —®— EWPA-PT
8
£
= 2000
(18]
L8]
=
1500
1000

[0,100] [50,150] [100,200] [150,250] [200.300] [250.350]
Targets distribution area

Figure 20. Average fitness comparison.

—e— PSO
3000 EPPSO

—e— MDWPA
25004 MPPWPA

—ea— EWPA-PT

2000 -

Best fintess

1500 ~

1000 +

[0,100] [50,150] [100,200] [150,250] [200,300] [250,350]
Targets distribution area

Figure 21. Best fitness comparison.

When the number of task points remains fixed, the impact of constraints becomes
increasingly important as the distance between task points and UAV launch platforms
continues to increase. As shown in the comparison results, the EWPA-PT algorithm
demonstrates certain advantages in solution accuracy under different task distribution
scenarios. This is partly due to the novel individual reconstruction mechanism, which
enhances the algorithm’s effective search space. Furthermore, as the distance between
target points and departure points increases, there is a greater demand for optimizing the
sequence of UAV task execution. The improved wandering behavior effectively addresses
this issue, resulting in superior solution accuracy when task points are distributed across
different regions.

4.3. Algorithm Stability Experiments

In the study of swarm intelligence algorithms, the stability and performance of the
algorithms are influenced by various factors, with population size being a critical one.
The size of the population can significantly affect the algorithm’s optimization ability and
robustness. In the experiments, there were 10 UAVs and 25 tasks to be allocated, with fixed
positions for the UAVs and target points, as detailed in Tables 6 and 7. The population sizes
were set at 20, 40, 60, and 80. The experiments were repeated 50 times, and the results are
presented in Figures 22-25.

Drones 2024, 8,513 21 of 28

Table 6. Target attribution.

Targets Location Radius (km)
Targets1 (175.122, 293.220) 4475
Targets2 (282.096, 214.658) 1.001
Targets3 (110.518, 209.367) 4.696
Targets4 (232.619, 289.573) 1.773
Targets5 (134.394, 212.129) 3.097
Targets6 (218.309, 158.736) 2.989
Targets? (129.216, 178.339) 3.358
Targets8 (202.855, 291.466) 2.095
Targets9 (138.990, 151.092) 4.388
Targets10 (291.157, 251.372) 2421
Targets11 (216.578, 118.050) 2.960
Targets12 (226.443,245.922) 3.780
Targets13 (181.193, 296.027) 1.844
Targets14 (111.091, 213.164) 3.651
Targets15 (213.639, 228.066) 3.014
Targets16 (146.839, 195.993) 4.830
Targets17 (229.860, 264.698) 1.234
Targets18 (212.137, 202.245) 4.037
Targets19 (272.106, 160.008) 1.453
Targets20 (180.013, 116.216) 3.172
Targets21 (272.344, 204.400) 1.071
Targets22 (195.327,121.874) 2.469
Targets23 (195.723, 223.340) 1.033
Targets24 (274.388, 293.648) 1.231
Targets25 (281.683, 263.907) 2.691

Table 7. UAV attribution.

UAVs Location Flight Speed (km/s) Maximum Flight Range (km)
UAV1 (22.067, 30.579) 0.22 1000
UAV2 (22.067, 30.579) 0.18 1200
UAV3 (22.067, 30.579) 0.16 1500
UAV4 (80.365, 88.720) 0.22 1000
UAV5 (80.365, 88.720) 0.18 1200
UAV6 (80.365, 88.720) 0.16 1500
UAV7 (15.933, 24.293) 0.22 1000
UAVS (15.933, 24.293) 0.30 800
UAV9 (75.097, 32.661) 0.18 1200
UAV10 (75.097, 32.661) 0.30 800

The experimental results indicate that regardless of variations in population size,
the EWPA-PT algorithm consistently maintained superior solution accuracy, thereby
demonstrating the algorithm’s stability and adaptability.

Drones 2024, 8,513 22 of 28

— PSO
3200 1 —— MPPWPA
—— MDWPA
3000 1 —— EPPSO
" —— EWPA-PT
& 2800 -
=
oy
S 2600
£
2400
2200
0 100 200 300 400 500 600 700 800
iter
Figure 22. Population size = 20.
— PSO
3000 1 —— MPPWPA
— MDWPA
2800 - —— EPPSO
—— EWPA-PT

mean fintess

2600 1
2400
2200
2000 -

0 100 200 300 400 500 600 700 800
iter

Figure 23. Population size = 40.

3000 — PSO

—— MPPWPA

7800 —— MDWPA
— EPPSO
—— EWPA-PT

2200 ~

2000

0 100 200 300 400 500 600 700 800
iter

bJ

[=3]

(=

[=]
L

mean fintess
M
=
(=]
(=)
1

Figure 24. Population size = 60.

Drones 2024, 8,513 23 of 28

2800
— PSO
MPPWPA
2600 - —— MDWPA
—— EPPSO
8 400 —— EWPA-PT
8
IS
g
S 2200 -
@
£
2000 -
1800 -

0 100 200 300 400 500 600 700 800
iter

Figure 25. Population size = 80.

4.4. Comparative Experiments on High-Dimensional Problems

In this section, we present a comparative experiment to evaluate the EWPA-PT algo-
rithm'’s performance in solving high-dimensional optimization problems. In the experiment,
the number of UAVs was set to 25, and the number of tasks was set to 100. Each algorithm
was run 50 times to obtain the data. The results are shown in Figure 26.

Comparative Experiments on High-dimensional Problems

14

=2 845
T

B

A }zssg

[

=

£

- }2472

oy

°©

g 316

=

< F

0 F742

[

=2

&}

= 2456

«

I

@

=4

':E 2340

= =1 EWPA-PT
4 =1 MDWPA

® 166 =1 MPPWPA

=1 EPPSO

o 560 10‘00 15‘(10 2!)‘00 25‘00

Fitness Values

Figure 26. Visualization result of EWPA-PT.

The experimental results show that the EWPA-PT algorithm withstood the challenges
of solving high-dimensional problems. It not only demonstrates an advantage in solution
accuracy for low-dimensional problems but also maintains a good level of accuracy when
handling high-dimensional problems. Therefore, it can be concluded that the EWPA-PT
algorithm is suitable for application in high-dimensional complex environments.

4.5. Ablation Experiment of the Algorithm Parameters

In this section, we perform an ablation experiment on the wolf pack algorithm’s
detective wolf factor and updating factor to assess their effects on the performance of
the EWPA-PT algorithm. The parameters are varied within the range of [1,9], and each
experiment is repeated 50 times to calculate the effect of parameter changes on the fitness
values. The data are illustrated in Figures 27 and 28.

Drones 2024, 8,513

24 of 28

Fitness value curve

1620

1610

1600

1590

1580

1570

1560

Average Fitness

1550
1540
1530

1520
b=1 b=2 b=3 b=4 b=5 b=6 b=7 b=8 b=9

The Value of Update Factor

Figure 27. Ablation experiment with the update factor.

Fitness value curve

1800

1577.8 159809 1593.66 15923 159064
I

I I 5
1 L L L

1600

1431.34 1425.8
1400 13245 1312.7

1200
1000

800

Average Fitness

600
400

200

a=1 a=2 a=3 a=4 a=5 a=6 a=7 a=8 a=9
The Value of Detective Wolf Factor

Figure 28. Ablation experiment with the detective wolf factor.

The ablation experiment on the algorithm parameters reveals their overall impact on
the algorithm’s performance. In the wolf pack algorithm, the detective wolf factor and
the update factor are inversely proportional to the final number of detective wolves and
the number of individuals to be updated. In practice, a smaller detective wolf factor is
desired as it increases the number of individuals benefiting from the wandering behavior
optimization. Conversely, a larger update factor is preferred since it reduces the number
of regenerated individuals, thereby enhancing population diversity. Experimental results
indicate that the algorithm achieves optimal performance when the detective wolf factor is
set to 2 and the update factor is set to 7, which aligns with our expectations.

4.6. Visualization of Task Allocation Results

The experimental scenario in this subsection involves 10 UAVs and 25 tasks to be
allocated. To ensure fairness in the experiment, the attributes of the UAVs and the targets
are fixed. The position coordinates are listed in Tables 6 and 7. The visualization results are
shown in Figures 29-33.

Drones 2024, 8,513 25 of 28

400
e Targets
350 - v Ships
—
300 1 U3
Ug
250 — U
Us
200 1 — W
— Usg
150 -
100 -
50 4
0 T T T T T T T
0 50 100 150 200 250 300 350 400
Figure 29. Visualization result of PSO.
400
e Targets
350 ¥ Ships
— U
300 Us
Uy
250 —
Y
200 1 — U
150
100 A
50 +
0 T T T T T T T
0 50 100 150 200 250 300 350 400
Figure 30. Visualization result of EPPSO.
400
e Targets
350 - v Ships
U3
300 - —
— Uy
250 — U
200 +
150
100
50 A
0 T

0 50 100 150 200 250 300 350 400

Figure 31. Visualization result of MPPWPA.

Drones 2024, 8,513

26 of 28

400
e Targets
350 + v Ships
P
300 1 Us
; Us
250 - — U
— Us
200 A
150 +
100 +
50 A
0 T T T T T T T
0 50 100 150 200 250 300 350 400
Figure 32. Visualization result of MDWPA.
400
e Targets
350 4 ¥ Ships
U
300 - Us
Ug
250 - —
N Ug
200 A
150 ~
100 +
50 ~
0 T T T T T T T
0 50 100 150 200 250 300 350 400

Figure 33. Visualization result of EWPA-PT.

In addition to quantitative metrics, the route taken by UAVs to execute tasks should
also be considered an important criterion for evaluating task allocation results. This
paper argues that an optimal UAV task execution route should include the following
characteristics: minimal flight span for each UAV (to avoid overloading any single UAV),
clear flight paths, and the absence of “knots” (to prevent unnecessary resource wastage
during flight).

Although the comparison algorithms have achieved certain results in terms of compu-
tational accuracy, the visual results reveal that these algorithms inevitably exhibit issues
such as “knotted” flight paths (e.g., UAV7 in Figure 23, UAV; in Figure 24) and large flight
spans (e.g., UAVy in Figure 24, UAVy in Figure 25) in the task allocation results. In contrast,
the EWPA-PT algorithm generates route maps, where each UAV maintains a minimized
flight span with a smooth route and no “knots”, resulting in an ideal outcome.

5. Conclusions

This paper introduces a multi-UAV task assignment model under complex conditions
(MTAMCC), considering various factors such as UAV flight speed, maximum range, target
point coverage, and threat coefficient in the context of multi-UAV cooperative reconnais-

Drones 2024, 8,513 27 of 28

sance tasks. To efficiently solve this model, a probability threshold-based elite wolf pack
algorithm, called EWPA-PT, is proposed.

Through various comparative experiments, it has been observed that the EWPA-PT
algorithm demonstrates higher solution accuracy when solving simple discretized problems
with fewer tasks, and its convergence speed is also relatively ideal. As the number of tasks
or the distance between UAVs and task points increases, the problem becomes significantly
more complex. However, the EWPA-PT algorithm consistently maintains highly accurate
solutions. Therefore, it can be concluded that the EWPA-PT algorithm has an advantage in
solving multi-UAV task assignment problems.

Although the EWPA-PT algorithm maintains a commendable convergence speed and
high solution accuracy, its overall running speed is slower than similar algorithms due to
the adoption of dynamic step sizes during wandering behavior.

In the future, we will concentrate on optimizing both models and algorithms. When
it comes to models, we will consider more detailed application scenarios and constraints
that closely resemble real-world conditions. Regarding algorithms, our main objective will
be to minimize runtime and improve scalability, ensuring that the algorithm can handle
various dimensions without adjusting the parameters.

Author Contributions: H.Z. is responsible for conceptualizing the research, analyzing experimental
data, designing experimental methods, developing software and programming, visualizing exper-
imental results, and writing the initial draft of the manuscript. X.L. is responsible for conducting
the actual survey research, overseeing and leading the research project, validating and verifying
experimental design, and reviewing the manuscript. C.M. is responsible for data organization and
management, reviewing and revising the manuscript, and conducting the actual survey research.
L.C. is responsible for reviewing the manuscript and overseeing and guiding the research project. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Poudel, S.; Moh, S. Task assignment algorithms for unmanned aerial vehicle networks: A comprehensive survey. Veh. Commun.
2022, 35, 100469. [CrossRef]

2. Zhang, J.; Wen, P; Xiong. A. Application of Improved Quantum Particle Swarm Optimization Algorithm to Multi-Task
Assignment for Heterogeneous UAVs. In Proceedings of the 2022 6th Asian Conference on Artificial Intelligence Technology
(ACAIT), Changzhou, China, 9-11 December 2022; pp. 1-5.

3. Zhang,].; Xiang,]. Cooperative task assignment of multi-UAV system. Chin. J. Aeronaut. 2020, 33, 2825-2827. [CrossRef]

4. Qin, B;; Zhang, D.; Tang, S.; Wang, M. Distributed grouping cooperative dynamic task assignment method of UAV swarm.
Appl. Sci. 2022, 12, 2865. [CrossRef]

5. Whitbrook, A.; Meng, Q.; Chung, P. Addressing robustness in time-critical, distributed, task allocation algorithms. Appl. Intell.
2019, 49, 1-15. [CrossRef]

6. Zhang, Y.Z.; Xu,].L.; Wu, Z.R.; Ma, Y.H. Complex task assignment of heterogeneous UAVs under timing constraints. In
Proceedings of the 2020 IEEE 16th International Conference on Control & Automation (ICCA), Singapore, 9-11 October 2020;
pp. 853-858.

7. Zhu, P; Fang, X. Multi-UAV cooperative task assignment based on half random Q-learning. Symmetry 2021, 13, 2417. [CrossRef]

8. Wu, X, Yin, Y,; Xu, L.; Wu, X,; Meng, F.; Zhen, R. Multi-UAV task allocation based on improved genetic algorithm. IEEE Access
2021, 9, 100369-100379. [CrossRef]

9. Gao,S; Wu,J.; Ai, J. Multi-UAV reconnaissance task allocation for heterogeneous targets using grouping ant colony optimization
algorithm. Soft Comput. 2021, 25, 7155-7167. [CrossRef]

10. Wang, K.; Zhang, X.; Qiao, X.; Li, X.; Cheng, W.; Cong, Y.; Liu, K. Adjustable fully adaptive cross-entropy algorithms for task
assignment of multi-UAVs. Drones 2023, 7, 204. [CrossRef]

11. Wang, G.; Lv, X,; Ben, K.; Cui, L. A particle swarm optimization algorithm based on experience pool for multi-UAV cooperative

reconnaissance task allocation. In Proceedings of the 2023 26th International Conference on Computer Supported Cooperative
Work in Design (CSCWD), Rio de Janeiro, Brazil, 24-26 May 2023; pp. 861-866.

http://doi.org/10.1016/j.vehcom.2022.100469
http://dx.doi.org/10.1016/j.cja.2020.02.009
http://dx.doi.org/10.3390/app12062865
http://dx.doi.org/10.1007/s10489-018-1169-3
http://dx.doi.org/10.3390/sym13122417
http://dx.doi.org/10.1109/ACCESS.2021.3097094
http://dx.doi.org/10.1007/s00500-021-05675-8
http://dx.doi.org/10.3390/drones7030204

Drones 2024, 8,513 28 of 28

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Liu, W,; Wang, Z.; Zeng, N.; Yuan, Y.; Alsaadi, FE.; Liu, X. A novel randomised particle swarm optimizer. Int. J. Mach. Learn.
Cybern. 2021, 12, 529-540. [CrossRef]

Wang, C.-F,; Liu, K. An improved particle swarm optimization algorithm based on comparative judgment. Nat. Comput. 2018,
17, 641-661. [CrossRef]

Tian, D.; Shi, Z. MPSO: Modified particle swarm optimization and its applications. Swarm Evol. Comput. 2018, 41, 49-68.
[CrossRef]

Liu, Y;; Li, W.; Wu, H.; Song, W. Track planning for unmanned aerial vehicles based on wolf pack algorithm. J. Syst. Simul. 2020,
27,1838-1843.

Xu, S.; Li, L.; Zhou, Z.; Mao, Y.; Huang,]. A task allocation strategy of the UAV swarm based on multi-discrete wolf pack
algorithm. Appl. Sci. 2022, 12, 1331. [CrossRef]

Lu, Y.; Ma, Y.; Wang, J. Multi-population parallel wolf pack algorithm for task assignment of UAV swarm. Appl. Sci. 2021,
11, 11996. [CrossRef]

Zhu, Q.; Wu, H; Li, N.; Hu, J. A chaotic disturbance wolf pack algorithm for solving ultrahigh-dimensional complex functions.
Complexity 2021, 2021, 6676934. [CrossRef]

Zhu, W.; Li, L.; Teng, L.; Yonglu, W. Multi-UAV reconnaissance task allocation for heterogeneous targets using an opposition-based
genetic algorithm with double-chromosome encoding. Chin. J. Aeronaut. 2018, 31, 339-350.

Wu, H.-S.; Zhang, F.; Wu, L. New swarm intelligence algorithm-wolf pack algorithm. Syst. Eng. Electron. 2013, 35, 2430-2438.
Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS'95. Proceedings of the Sixth
International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4-6 October 1995; pp. 39-43.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s13042-020-01186-4
http://dx.doi.org/10.1007/s11047-017-9630-5
http://dx.doi.org/10.1016/j.swevo.2018.01.011
http://dx.doi.org/10.3390/app12031331
http://dx.doi.org/10.3390/app112411996
http://dx.doi.org/10.1155/2021/6676934

	Introduction
	Task Assignment Model
	Modeling Background
	Task Modeling
	Objective Function Construction
	Reconnaissance Task Completion Time
	Average Flight Time of UAV Swarm
	The Average Threat Coefficient of The UAV Swarm
	Objective Function

	The Wolf Pack Algorithm
	Traditional Wolf Pack Algorithm
	The Head Wolf Generation Mechanism
	Wandering Behavior
	Calling Behavior
	Sieging Behavior
	Wolf Pack Update Mechanism

	The Proposed EWPA-PT Algorithm
	Individual Coding and Initialization
	Improvements in Wandering Behavior
	Improvement on Calling Behavior
	Improvements in Sieging Behavior
	The Improvement of the Wolf Pack Update Mechanism

	Simulation
	Experiments Comparing Different Target Quantities
	Experiments Comparing Different Target Locations
	Algorithm Stability Experiments
	Comparative Experiments on High-Dimensional Problems
	Ablation Experiment of the Algorithm Parameters
	Visualization of Task Allocation Results

	Conclusions
	References

