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Abstract: Self-Supervised Representation Learning (SSRL) has become a potent strategy for address-
ing the growing threat of Global Positioning System (GPS) spoofing to small Unmanned Aerial
Vehicles (UAVs) by capturing more abstract and high-level contributing features. This study focuses
on enhancing attack detection capabilities by incorporating SSRL techniques. An innovative hybrid
architecture integrates Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models
to detect attacks on small UAVs alongside two additional architectures, LSTM-Recurrent Neural
Network (RNN) and Deep Neural Network (DNN), for detecting GPS spoofing attacks. The pro-
posed model leverages SSRL, autonomously extracting meaningful features without the need for
many labelled instances. Key configurations include LSTM-GRU, with 64 neurons in the input and
concatenate layers and 32 neurons in the second layer. Ablation analysis explores various parameter
settings, with the model achieving an impressive 99.9% accuracy after 10 epoch iterations, effectively
countering GPS spoofing attacks. To further enhance this approach, transfer learning techniques are
also incorporated, which help to improve the adaptability and generalisation of the SSRL model. By
saving and applying pre-trained weights to a new dataset, we leverage prior knowledge to improve
performance. This integration of SSRL and transfer learning yields a validation accuracy of 79.0%,
demonstrating enhanced generalisation to new data and reduced training time. The combined
approach underscores the robustness and efficiency of GPS spoofing detection in UAVs.

Keywords: self-supervised representation learning (SSRL); unmanned aerial vehicles (UAVs); deep
learning; spoofing attacks; global positioning systems (GPS); autonomous vehicles

1. Introduction

Self-Supervised Representation Learning (SSRL) represents a burgeoning paradigm
in machine learning, wherein a model acquires meaningful representations from input
data without explicit labels [1]. In small UAVs and GPS spoofing detection, this method-
ology empowers the model to discern intrinsic patterns and features within GPS signals,
eliminating the need for labelled datasets during training [2]. This innovative approach
shows promise in fortifying UAVs against GPS spoofing attacks by enabling models to inde-
pendently learn pertinent features from raw GPS signals [3]. GPS spoofing attacks within
small UAVs represent a considerable cybersecurity threat by manipulating the essential
GPS signals vital for drone navigation [4]. Malicious actors seek to deceive a drone’s GPS
receiver by transmitting falsified signals that replicate authentic satellite data, giving rise
to potential risks such as unauthorized access to restricted areas, compromise of sensitive
mission data, and an elevated risk of collisions [5–7]. The ramifications of a successful
GPS spoofing attack on a UAV encompass deviations from planned flight paths and erratic
behaviour, compromising security and safety [8]. The purpose of GPS spoofing attacks on
small UAVs lies in intentionally manipulating GPS signals to deceive the UAV’s navigation
system. Malicious actors undertake these attacks with various motives, including gaining
unauthorized access to restricted areas, compromising sensitive mission data, or causing
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disruptions in UAV operations [9,10]. By sending falsified signals that mimic authentic
satellite data, the attackers aim to mislead the drone about its location, speed, and altitude,
potentially leading to deviations from planned flight paths and erratic behaviour [7,11].
The overarching goal is often to exploit vulnerabilities in the UAV’s GPS, posing security
and safety risks that can have far-reaching consequences.

The trajectory of GPS spoofing attacks on small UAVs can be traced back to the military
origins of GPS technology, initially developed for defence purposes before transitioning
into widespread civilian use [12]. As UAVs gained prominence across various sectors, their
reliance on GPS for navigation rendered them susceptible to cyber threats. The concept of
GPS spoofing, rooted in military strategies to disrupt navigation systems, expanded to en-
compass civilian applications, with adversaries recognizing the potential for unauthorized
access, data compromise, and safety hazards [13,14]. This evolution prompted cybersecu-
rity experts and researchers to delve into the vulnerabilities associated with GPS spoofing
on UAVs, emphasizing the imperative for robust security measures [15,16]. The intersection
of technology, cybersecurity, and discussions surrounding critical infrastructure further
underscores the ongoing challenges in safeguarding UAVs, particularly as advancements
in artificial intelligence and the Internet of Things (IoT) continue to shape the modern
technological landscape [17,18].

GPS spoofing attacks can unfold in diverse scenarios, presenting distinct threats and
consequences. For instance, a delivery drone system may be compromised as malicious ac-
tors manipulate GPS signals, causing the drone to deliver packages to unintended locations,
potentially resulting in theft or unauthorized access to sensitive deliveries [19,20]. In the
realm of surveillance, GPS spoofing could deceive drones monitoring critical infrastructure
or borders, allowing illicit activities to go unnoticed. Agricultural drones, essential for
precision farming, may experience crop monitoring and management disruptions due to
GPS manipulation [21,22]. Emergency response drones guided by GPS could face misdirec-
tion during critical missions, potentially causing delays in aid delivery. The risk extends
to scenarios involving drone swarms or autonomous vehicles, where GPS spoofing may
lead to chaotic behaviour, collisions, or unauthorized entry into secure areas [23]. These
scenarios underscore the diverse and complex risks associated with GPS spoofing on Small
Unmanned Aerial Vehicles, underscoring the imperative for robust countermeasures and
heightened cybersecurity protocols. Figure 1 depicts the UAV attack scenario.

Figure 1. Small UAV’s GPS spoofing attacks scenario.
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Traditional localisation methods face limitations due to battery depletion and en-
vironmental electromagnetic fields. To overcome these, the work [24] proposes a deep
learning-based OAM using You Only Look Once version 3 (YOLOv3) and a fiducial marker-
based localisation method. These are integrated with real-time damage segmentation for
an advanced UAV system. Tests in indoor and outdoor settings demonstrated the system’s
superior performance in obstacle avoidance and localisation compared to traditional ap-
proaches. Traditional modelling methods struggle with computing efficiency and accuracy.
To enhance performance, a Cascade Ensemble Learning (CEL) method is proposed in [25],
combining a Cascade Synchronous Strategy (CSS) and Wavelet Neural Network-based
AdaBoost (WNN-Ada). The method is tested on a multi-level reliability evaluation of
an aero-engine turbine rotor system. It shows significant improvements in computing
accuracy and efficiency, highlighting its potential for reliably modelling complex systems.

1.1. Motivation

Incorporating SSRL is pivotal in empowering small UAVs—specifically those under
25 kg in weight—to learn and adapt dynamically to evolving threats, thereby mitigating
the risks associated with GPS spoofing. This research addresses the immediate objective
of enhancing the security and reliability of UAVs within this category and extends its
impact on the broader landscape of autonomous systems. By demonstrating the practical
application of self-supervised representation learning in real-world scenarios, our work
establishes a pioneering pathway for integrating state-of-the-art machine learning tech-
niques to tackle critical challenges faced by these UAVs. Our endeavour aims not only to
secure small UAVs against GPS spoofing but also to establish a precedent for leveraging
innovative technologies to fortify the resilience of autonomous systems across diverse
domains. Through the integration of SSRL, our approach seeks to endow small UAVs
with advanced adaptability and learning capabilities, reinforcing their resilience against
GPS spoofing attacks. This research not only enhances the security and reliability of these
UAVs in response to evolving threats but also makes a valuable contribution to the broader
field of autonomous systems, showcasing the potential of self-supervised representation
learning in real-world applications.

This study aims to detect and categorize GPS spoofing in UAVs. In the literature, numer-
ous investigations have focused on utilizing deep learning models, including LSTM [26–28],
GRU [26,29,30], RNN [31–33], and DNN [34–36], to detect GPS spoofing attacks. These
models offer effective approaches for recognizing instances of GPS spoofing. Additionally,
a pivotal aspect of this research involves a comprehensive exploration of the efficacy of
LSTM, GRU, RNN, and DNN when integrated with transfer learning. This analysis evalu-
ates how well these specific neural network architectures, renowned for their proficiency
in pattern recognition and sequence modelling, perform when leveraging knowledge ac-
quired from one task to improve performance on another related task. The study aims to
comprehend the potential advantages and challenges associated with applying transfer
learning to enhance these models’ efficiency in detecting and classifying GPS spoofing
attacks on UAVs.

1.2. Research Contributions

• Introduced a self-supervised hybrid deep learning architecture for GPS spoofing attack
detection in small UAVs. This study employed three distinct model structures: LSTM-
GRU, LSTM-RNN, and a DNN, each with specific neural network configurations.

• Integrated self-supervised learning into the training process, with models trained
for 10 epochs and a batch size of 32 using training data, followed by validation on
a separate dataset. This research also performed an ablation analysis to present a
comprehensive evaluation of various parameter settings.

• The models, trained on different columns, including ch0_output, ch1_output, ch2_output,
ch3_output, ch4_output, ch5_output, ch6_output, and ch7_output, exhibited varying
levels of accuracy. The accuracy for ch5_output reached 99.9% across all models.
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• Enhanced the self-supervised learning approach by incorporating transfer learning,
allowing pre-trained weights to be applied to a new dataset. This technique improved
the model’s adaptability and generalisation, resulting in a validation accuracy of 79.0%
while also reducing the training time required for new datasets.

1.3. Organisations

The remainder of the article follows this structure: Section 2 overviews current research
on GPS-based spoofing attacks in small UAVs. Section 3 introduces the proposed deep
learning methods for the detection and multi-label classification of GPS spoofing attacks in
small UAVs. Section 4 presents the experimental analysis, results, and discussion. Finally,
Section 5 concludes this paper and leads to future recommendations.

2. Literature Review
2.1. Deep Learning Approaches

We propose a novel GPS spoofing detection method tailored for small UAVs using a
1D CNN. Our contribution lies in addressing the critical security concern of GPS spoofing
attacks on small UAVs. The proposed methodology involves data collection, preprocessing,
feature extraction, and implementing a specialized 1D CNN architecture. The results of
extensive experiments demonstrate the method’s efficiency in accurately distinguishing
between genuine and spoofed GPS signals. Evaluation metrics such as precision, recall,
and F1 score attest to the robustness of the approach [37–39]. The research work in [40]
introduces a pioneering solution for mitigating GPS signal spoofing in small UAVs by
leveraging deep learning. The core contribution lies in developing a deep neural network
architecture tailored to the resource constraints of small UAVs, enabling real-time detection
of spoofed GPS signals. The methodology involves collecting and preprocessing real-world
GPS data, training the neural network on labelled datasets, and optimizing the model
for onboard deployment. Results indicate a high detection accuracy exceeding 90%, ro-
bustness across diverse environments, and real-time responsiveness. The research study
in [12] introduces dynamic selection techniques for detecting GPS spoofing attacks on
UAVs, contributing to a novel adaptive methodology framework. The framework incor-
porates advanced signal processing and machine learning algorithms, enabling real-time
analysis and dynamic adjustment to evolving threat scenarios. Extensive experiments
reveal a high detection accuracy, with the proposed system achieving an accuracy rate
exceeding 95%, showcasing its effectiveness in minimizing false positives and adapting
to changing environmental conditions. The study in [41] introduces a pioneering deep
ensemble learning framework designed for the specific challenge of GPS spoofing detection
in cellular-connected UAVs. The methodology involves collecting and preprocessing a
comprehensive dataset, utilizing a diverse set of deep learning models, including CNNs,
RNNs, and LSTM networks. The ensemble of these models is trained and validated to
form a robust system capable of accurately distinguishing genuine from spoofed GPS sig-
nals. The results exhibit a notable accuracy of 97%, surpassing conventional single-model
approaches and affirming the efficacy of the proposed approach in fortifying cellular-
connected UAVs against GPS spoofing attacks. The work in [42,43] addresses two key
challenges in cognitive radio and signal detection: automatic modulation classification
(AMC) and unauthorized broadcasting identification. For AMC, a real-time solution is
proposed using the lightweight neural network MobileViT, driven by clustered constel-
lation images transformed from I/Q sequences. MobileViT, evaluated on the RadioML
2016.10a dataset with edge computing, demonstrates robust performance, marking the
first deep learning-based real-time modulation classification at the edge. For unauthorized
broadcasting detection, the manifold regularisation-based deep convolutional autoencoder
(MR-DCAE) is introduced. Using reconstruction errors and a similarity estimator for
manifold consistency, MR-DCAE accurately identifies unauthorized signals, achieving
state-of-the-art results on the AUBI2020 dataset. Both methods highlight the potential of
deep learning in real-time signal classification and detection.
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2.2. Adaptive Methodologies and Frameworks

The research in [44] contributes to UAV security by presenting a comprehensive tax-
onomy of GPS spoofing and jamming attack detection methods and proposing a novel
methodology framework for their evaluation. The taxonomy systematically categorizes
existing detection methods, offering a structured overview for the UAV security community.
The proposed methodology framework includes key performance metrics, experimental
setups, and validation criteria, providing a standardized approach for comparing the ef-
fectiveness of different detection approaches. Preliminary results demonstrate promising
accuracy levels ranging from 85% to 95%, affirming the efficacy of tested methods. The re-
search in [45,46] contributes to UAV security by proposing a methodology for evaluating
weak and strong learners in detecting GPS spoofing attacks. The framework involves
dataset collection, feature extraction, and implementation of both weak and strong learners.
Weak learners, including decision trees and k-nearest neighbours, are contrasted with
strong learners, like ensemble methods and neural networks. This research introduces a
novel contribution focused on enhancing GPS spoofing detection for UAVs.

2.3. Advanced Techniques and Integration

The research in [47,48] focuses on advancing construction vehicle detection by combin-
ing Self-Supervised Learning (SSL) with the YOLOv4 network. The methodology involves
initial SSL pre-training on a diverse dataset, allowing the model to learn representations in
an unsupervised manner. This dual approach enhances the model’s adaptability to varied
construction site conditions. The dataset likely comprises annotated images and videos
with diverse scenarios. The results demonstrate improved accuracy, speed, and generalisa-
tion compared to conventional methods. The research in [49] introduces a methodology
using linear regression to detect GPS spoofing attacks on UAVs. The study employs a
simulated and real-world GPS data dataset to train and evaluate the linear regression model.
The approach demonstrates promising results, accurately identifying anomalies in GPS
signals indicative of spoofing incidents. The research in [50] introduces a groundbreaking
MAE-based self-supervised anomaly detection and localisation method. The methodology
utilizes mean absolute error as a pivotal metric for autonomously identifying deviations in
unlabeled data. The study employs a diverse dataset to train and evaluate the model, demon-
strating its superior accuracy and efficiency in detecting and localizing anomalies. The results
indicate the method’s effectiveness, outperforming existing approaches and offering valuable
insights into interpretability. The proposed methodology in [51] integrates a dynamic selection
module into the UAV’s navigation system, leveraging machine learning for the real-time
evaluation of GPS signals. This module adapts to changing environmental conditions and
potential spoofing attempts, utilizing feature extraction, advanced signal processing, and a
continually learning machine learning model. Evaluation through simulations and real-world
experiments demonstrates a substantial improvement in accuracy, with the dynamic selection
framework achieving a 99.6% accuracy rate in simulated scenarios.

The existing research on GPS spoofing detection for small UAVs has significantly
advanced the field by tackling essential security challenges. Researchers have employed
deep learning techniques like CNNs, RNNs, and LSTMs to achieve accurate detection while
also incorporating real-time analysis and dynamic adaptation to enhance system robust-
ness. Ensemble learning strategies, which combine diverse models, have further improved
detection accuracy. Additionally, standardized evaluation frameworks and taxonomies
have established crucial benchmarks for comparison and future studies. Despite these
advancements, several challenges remain. These include resource limitations for small
UAVs, restricted data availability for training, issues with false positives and environmen-
tal adaptability, and concerns about the complexity and interpretability of deep learning
models. Furthermore, many studies tend to focus on specific UAV scenarios, which limits
the generalizability of their findings. The typical workflow involves data collection, prepro-
cessing, feature extraction, deep learning model training, and deployment with real-time
adaptation. This research stands out by introducing a specialized 1D CNN architecture
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specifically designed for GPS spoofing detection in small UAVs. This approach builds on
the strengths of existing studies, integrating deep learning with advanced preprocessing
and feature extraction techniques. By doing so, this work pushes the boundaries of UAV
security, offering a novel solution to the ongoing challenges in this field.

3. Proposed Methodology

This paper focuses on improving the security and reliability of UAVs, with broader impli-
cations for the field of autonomous systems. Figure 2 illustrates the complete workflow of the
proposed approach. In this study, we utilized the GPS Spoofing Detection on Autonomous Vehi-
cles dataset from IEEE DataPort [https://ieee-dataport.org/documents/dataset-gps-spoofing-
detection-autonomous-vehicles] (accessed on 22 Febraury 2024), which offers a detailed dataset
for analyzing GPS spoofing attacks on small UAVs. After extraction, the dataset comprises three
key files: GPS_Data_Simplified_2D_Feature_Map, GPS_Dataset_3D_8_Channels, and GPS_Raw.
We primarily used the second file, GPS_Dataset_3D_8_Channels, which consists of
510,530 samples and 14 features, to train three different neural network architectures:
LSTM-GRU, LSTM-RNN, and DNN, within a self-supervised hybrid deep learning frame-
work to detect GPS spoofing attacks. Furthermore, we enhanced the self-supervised learn-
ing process by applying transfer learning using the GPS_Data_Simplified_2D_Feature_Map
file, which consists of 156,996 samples and 112 features, improving the models’ general-
isation and adaptability. The methodology begins with compiling a diverse dataset of
GPS signals from small UAVs, providing a comprehensive understanding of GPS signal
characteristics. By demonstrating the practical application of self-supervised represen-
tation learning in real-world scenarios, our work establishes a pioneering pathway for
integrating state-of-the-art machine learning techniques to tackle critical challenges that
autonomous systems face. Our endeavour not only aims to secure UAVs against GPS
spoofing but also establishes a precedent for leveraging innovative technologies to en-
hance the resilience of autonomous systems across diverse domains. This paper presents
a novel SSRL architecture to address the growing threat of GPS spoofing to small UAVs.
The study focuses on improving attack detection capabilities by incorporating SSRL tech-
niques. A hybrid deep learning architecture integrates the LSTM and GRU models to
detect attacks on small UAVs. Additionally, two other architectures were developed: an
LSTM-RNN and a Deep Neural Network (DNN) for real-time classification of GPS spoofing
attacks. The proposed model leverages SSRL to extract meaningful features with mini-
mal reliance on labelled data autonomously. Building on this, we further enhanced the
model’s performance by incorporating transfer learning. By applying pre-trained weights
to the GPS_simplified_2d_feature_map dataset, the model demonstrated improved gen-
eralisation and adaptability, achieving a validation accuracy of 79.0%. This integration of
self-supervised learning and transfer learning reinforces the model’s robustness and effi-
ciency, reducing the training time required for new datasets and solidifying its effectiveness
in detecting GPS spoofing attacks on UAVs.

Algorithm 1 presents the overall data flow and working of the proposed approach
for SSRL-based GPS spoofing attack detection and multi-classification. The initial step
involves data preparation, where the target variables, namely “y_train” and “y_test”,
are transformed into one-hot encoding to facilitate multiclass classification. The input
features, denoted as “X_train” and “X_test”, undergo min–max scaling for normalisation.
The architecture of the deep learning models incorporates an LSTM-GRU with specific
parameters: 64 neurons in the input layer for both LSTM-GRU 1 layer, concatenation of
both layers, 32 neurons in the concatenate layer for both LSTM-GRU 2 layers, 16 neurons in
the fully connected layer, and flattening and concatenation of the output layer. Furthermore,
an LSTM-RNN is employed with distinct settings, utilizing 128 neurons in the input layer
for both LSTM-RNN 1 layer, concatenating both layers, 64 neurons in the concatenate layer
for both LSTM-RNN 2 layers, 32 neurons in the fulsationonnected layer, and flattening and
concatenating the output layer. Additionally, a DNN with specific architecture parameters,
including 128 neurons in the input layer for both 1 and 2, concatenating both layers,

https://ieee-dataport.org/documents/dataset-gps-spoofing-detection-autonomous-vehicles
https://ieee-dataport.org/documents/dataset-gps-spoofing-detection-autonomous-vehicles
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64 neurons in the concatenate layer for 3 and 4, 32 neurons in the fully connected layer,
and flattening and concatenating the output layer, is utilized. Accuracy is employed as
the metric to assess the proposed architecture, undergoing 10 training epochs with a batch
size of 32 on the training data. Performance evaluation is conducted on a separate test
set, spanning various labels, revealing that the proposed architecture achieves the highest
accuracy, thereby emphasizing its effectiveness in mitigating GPS spoofing threats in UAVs.

Algorithm 1 Pseudocode of SSRL-based overall deep learning-based workflow for GPS
spoofing attacks detection and multi-classification.

1: Input: GPS Spoofing Attacks Data from small UAVs
2: Output: Attacks
3: Evaluation Measure: Accuracy, Precision, Recall, F1-Score, ROC
4: Dp ← Data preprocessing(data)
5: Le ← Label Encoding(Dp)
6: Ndata ← Scaler= StandardScaler(Le)
7: X,Y← Ndata
8: Initialize the following variables and parameters
9: X_train,X_test,y_train,y_test = train_test_split(X,y, test_size=30, random_state=0)

10: Reshape X_train and X_test into X_train_3d and X_test_3d
11: Model 1: LSTM-GRU
12: Multi-layer representation layers
13: Concatenate layer
14: Fully connected layer
15: Flatten layer
16: Transfer layer
17: Output layer
18: Model 2: LSTM-RNN
19: Multi-layer representation layers
20: Concatenate layer
21: Fully connected layer
22: Flatten layer
23: Transfer layer
24: Output layer
25: Model 3: DNN
26: Multi-layer representation layers
27: Concatenate layer
28: Fully connected layer
29: Flatten layer
30: Transfer layer
31: Output layer
32: Output layer
33: Model 4: Pre-trained Model
34: Multi-layer representation layers
35: Concatenate layer
36: Fully connected layer
37: Flatten layer
38: Pre-trained weights applied from the SSRL model
39: Transfer layer
40: Output layer
41: Print Accuracy, loss, Confusion Matrix, ROC Curves
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Figure 2. Proposed methodology.

4. Experimental Results and Discussion

This study utilized specific tools and technologies to conduct research in the field of
GPS spoofing detection, employing Python 3.8.8, a widely used and efficient program-
ming language for machine learning. The experimental setup also incorporated an Nvidia
1060 graphics processing unit (GPU), which facilitated fast and efficient parallel processing,



Drones 2024, 8, 515 9 of 24

significantly speeding up the training and evaluation of the deep learning models. Table 1
provides a summary of the hyperparameters used for the Self-Supervised Representation
Learning (SSRL)-based GPS spoofing detection models. These configurations, combined
with the powerful processing capabilities of the Nvidia GPU, contributed to the superior
performance and accuracy of the proposed models. The strategic selection of hyperparame-
ters, as shown in Table 1, ensured optimal training conditions and enhanced the overall
effectiveness of the architecture in detecting GPS spoofing attacks.

Table 1. Summary of hyperparameters for SSRL-based GPS spoofing detection models.

Model Layer Number of Neurons

LSTM-GRU Input Layer 64

Concatenate Layer 1 64

Concatenate Layer 2 32

Fully Connected Layer 16

LSTM-RNN. Input Layer 128

Concatenate Layer 1 128

Concatenate Layer 2 64

Fully Connected Layer 32

DNN Input Layer 1 and 2 128

Concatenate Layer 3 and 4 64

Fully Connected Layer 32

Training Epochs 10

Batch Size 32

Evaluation Metric Accuracy

Loss Function Optimizer Adam

Loss Sparse_categorical_crossentropy

Learning Rate 0.001

4.1. SSRL-Based LSTM-GRU Results

The performance of the LSTM-GRU model is shown in Table 2. The output labels,
represented by their respective abbreviations, exhibit accuracy values ranging from 0.93
to 1.00 across various models. Specifically, ch0_output and ch1_output both achieve an
accuracy of 0.95, ch2_output records an accuracy of 0.98, and ch3_output attains an accuracy
of 0.97. Additionally, ch4_output reaches an accuracy of 0.98, ch5_output achieves a perfect
score of 1.00, and ch6_output registers an accuracy of 0.99. Notably, ch7_output stands
out with an accuracy of 0.9. Notably, among the LSTM-GRU model outputs, ch5_output
exhibits the highest accuracy of 1.00.

Table 2. SSRL-based LSTM-GRU results.

Label Precision Recall F1-Score Accuracy

Ch0_output Multi-label Classification

Class 0 0.99 0.97 0.98 0.95

Class 1 0.47 0.09 0.16 0.94

Class 2 0.70 0.96 0.81 0.94

Class 3 1.00 b1.00 1.00 0.95
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Table 2. Cont.

Label Precision Recall F1-Score Accuracy

Ch1_output Multi-label Classification

Class 0 0.99 0.98 0.98 0.97

Class 1 1.00 0.35 0.52 0.93

Class 2 0.68 0.97 0.80 0.95

Class 3 0.99 0.75 0.85 0.95

Ch2_output Multi-label Classification

Class 0 1.00 0.98 0.99 0.99

Class 1 0.67 1.00 0.80 0.98

Ch3_output Multi-label Classification

Class 0 1.00 0.99 1.00 1.00

Class 1 0.76 0.98 0.86 0.95

Class 2 0.99 0.54 0.69 0.97

Class 3 0.49 1.00 0.65 0.98

Ch4_output Multi-label Classification

Class 0 0.98 1.00 0.99 0.99

Class 1 0.98 1.00 0.99 0.99

Class 2 1.00 0.59 0.74 0.98

Class 3 1.00 0.98 0.99 0.98

Ch5_output Multi-label Classification

Class 0 1.00 1.00 1.00 0.99

Class 1 1.00 0.91 0.95 1.00

Class 2 1.00 0.99 1.00 1.00

Ch6_output Multi-label Classification

Class 0 1.00 0.99 1.00 1.00

Class 1 1.00 0.98 0.99 0.99

Class 2 0.92 0.98 0.95 0.99

Ch7_output Multi-label Classification

Class 0 0.93 1.00 0.96 0.95

Class 1 0.96 0.17 0.30 0.93

Class 2 0.37 0.02 0.03 0.94

Class 3 0.99 0.99 0.99 0.92

4.2. SSRL-Based LSTM-RNN Results

Table 3 demonstrates the classification performance of the LSTM-RNN model, as-
sessed using the evaluation metrics. Accuracy values range from 0.93 to 1.00 across
different models. Specifically, ch0_output and ch1_output both achieve an accuracy of
0.95, ch2_output records an accuracy of 0.98, and ch3_output attains an accuracy of 0.97.
Additionally, ch4_output reaches an accuracy of 0.98, ch5_output achieves a perfect score of
1.00, and ch6_output attains an accuracy of 0.99. Notably, ch7_output registers an accuracy
of 0.9. Notably, among the LSTM-RNN model outputs, ch5_output stands out with the
highest accuracy of 1.00.



Drones 2024, 8, 515 11 of 24

Table 3. SSRL-based LSTM-RNN results.

Label Precision Recall F1-Score Accuracy

Ch0_output Multi-label Classification

Class 0 0.96 1.00 0.98 0.95

Class 1 0.44 0.56 0.50 0.95

Class 2 0.94 0.58 0.71 0.94

Class 3 0.99 1.00 0.99 0.94

Ch1_output Multi-label Classification

Class 0 0.98 0.99 0.98 0.95

Class 1 1.00 0.35 0.52 0.97

Class 2 0.76 0.78 0.77 0.93

Class 3 0.78 0.97 0.87 0.93

Ch2_output Multi-label Classification

Class 0 0.98 1.00 0.99 0.99

Class 1 1.00 0.55 0.71 0.98

Ch3_output Multi-label Classification

Class 0 1.00 0.99 1.00 0.97

Class 1 1.00 0.68 0.81 0.98

Class 2 0.68 1.00 0.81 1.00

Class 3 0.49 1.00 0.66 0.93

Ch4_output Multi-label Classification

Class 0 0.98 1.00 0.99 0.98

Class 1 0.98 1.00 0.99 0.98

Class 2 1.00 0.56 0.72 0.99

Class 3 1.00 0.97 0.98 0.99

Ch5_output Multi-label Classification

Class 0 1.00 1.00 1.00 1.00

Class 1 0.95 0.94 0.95 0.99

Class 2 0.98 1.00 0.99 1.00

Ch6_output Multi-label Classification

Class 0 0.99 1.00 0.99 1.00

Class 1 1.00 0.91 0.95 1.00

Class 2 0.99 0.91 0.95 0.99

Ch7_output Multi-label Classification

Class 0 0.93 1.00 0.96 0.94

Class 1 1.00 0.17 0.29 0.92

Class 2 1.00 0.00 0.00 0.95

Class 3 1.00 0.98 0.99 0.93

4.3. SSRL-Based Deep Neural Network Results

Table 4 demonstrates the classification performance of the straightforward DNN
model, assessed using the Accuracy metric. The output labels under evaluation are rep-
resented by their corresponding abbreviations. Across various models, accuracy val-
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ues vary from 0.93 to 1.00. Specifically, the label ch0_output achieves an accuracy of
0.95, ch1_output also attains an accuracy of 0.95, ch2_output records an accuracy of 0.98,
and ch3_output achieves an accuracy of 0.97. Additionally, ch4_output attains an accuracy
of 0.93, ch5_output reaches a perfect accuracy of 1.00, and ch6_output achieves an accuracy
of 0.99. Notably, ch7_output registers an accuracy of 0.93. Notably, among the DNN model
outputs, ch5_output stands out with the highest accuracy of around 1.00.

In Figure 3, it can be observed the training and validation accuracy for the LSTM-
GRU model. The x-axis corresponds to the number of epochs, while the y-axis represents
accuracy. The orange line signifies validation accuracy, and the blue line denotes training
accuracy for labels ch0_output, ch1_output, ch3_output, ch5_output, and ch6_output.
The patterns for these labels exhibit relatively consistent behaviour between training and
validation. For the ch1_output label, the pattern remains consistent between training and
validation, with occasional fluctuations occurring between 6 to 8 epochs. In the case of the
ch2_output label, the pattern lacks consistency between epochs 2 and 4. The validation
accuracy peaks at epoch 3, with a value of 0.98275. Beyond epoch 4, both training and
validation accuracy stabilize. Similar observations are made for ch7_output.

(a) Ch0_output (b) Ch1_output (c) Ch2_output

(d) Ch3_output (e) Ch4_output (f) Ch5_output

(g) Ch6_output (h) Ch7_output

Figure 3. Training and validation accuracy for LSTM-GRU.

In Figure 4, the graph depicts the training and validation accuracy of the LSTM-RNN
model. The x-axis indicates the number of epochs, while the y-axis denotes accuracy.
The orange line represents validation accuracy, and the blue line corresponds to training
accuracy for the labels ch0_output, ch5_output, and ch7_output. The patterns for these
labels display relative consistency between training and validation. For labels ch3_output
and ch6_output, the pattern remains stable between training and validation, with occasional
fluctuations around the fourth epoch. Similarly, for ch6_output and ch1_output, the pattern
mostly aligns between training and validation, with intermittent fluctuations occurring
between 6 to 8 epochs. In the case of the label ch2_output, the pattern lacks consistency
and remains erratic during validation.
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Table 4. SSRL-based DNN results.

Label Precision Recall F1-Score Accuracy

Ch0_output Multi-label Classification

Class 0 0.99 0.96 0.98 0.94

Class 1 0.58 0.14 0.22 0.93

Class 2 0.68 0.99 0.81 0.95

Class 3 0.98 1.00 0.99 0.95

Ch1_output Multi-label Classification

Class 0 1.00 0.97 0.98 0.93

Class 1 0.82 0.44 0.57 0.95

Class 2 0.70 0.95 0.80 0.95

Class 3 0.79 0.99 0.88 0.94

Ch2_output Multi-label Classification

Class 0 0.98 1.00 0.99 0.98

Class 1 1.00 0.55 0.71 0.98

Ch3_output Multi-label Classification

Class 0 1.00 0.99 1.00 0.96

Class 1 0.76 0.99 0.86 0.98

Class 2 0.98 0.53 0.69 0.97

Class 3 0.49 1.00 0.65 0.97

Ch4_output Multi-label Classification

Class 0 1.00 0.93 0.96 0.92

Class 1 0.55 0.95 0.70 0.92

Class 2 0.50 0.99 0.67 0.94

Class 3 0.99 0.98 0.99 0.93

Ch5_output Multi-label Classification

Class 0 1.00 1.00 1.00 0.96

Class 1 0.98 0.92 0.95 0.95

Class 2 0.99 1.00 0.99 0.95

Ch6_output Multi-label Classification

Class 0 1.00 0.99 0.99 0.98

Class 1 0.95 1.00 0.97 0.99

Class 2 0.93 0.97 0.95 0.99

Ch7_output Multi-label Classification

Class 0 0.93 1.00 0.96 0.93

Class 1 0.99 0.17 0.28 0.93

Class 2 0.42 0.01 0.01 0.93

Class 3 1.00 0.98 0.99 0.92

In Figure 5, the chart illustrates the training and validation accuracy of the deep
neural network (DNN) model. The x-axis corresponds to the number of epochs, while the
y-axis represents accuracy. The orange line represents validation accuracy, and the blue
line corresponds to training accuracy for the labels ch0_output, ch1_output, ch6_output,
and ch7_output. The trends for these labels remain relatively stable throughout both
training and validation. For the ch3_output label, the pattern generally aligns between
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training and validation, with occasional fluctuations. Labels ch4_output and ch5_output
exhibit a consistent pattern between training and validation, with intermittent fluctuations
occurring between 0 and 2 and 6 and 8. However, for the ch2_output label, the pattern
lacks consistency between epochs 2 and 6.

(a) Ch0_output (b) Ch1_output (c) Ch2_output

(d) Ch3_output (e) Ch4_output (f) Ch5_output

(g) Ch6_output (h) Ch7_output

Figure 4. Training and validation accuracy for LSTM-RNN.

In Figure 6, the chart illustrates the training and validation loss for the LSTM-GRU
model. The x-axis corresponds to the number of epochs, while the y-axis represents the loss.
The orange line denotes validation loss, and the blue line depicts training loss for all labels:
ch0_output, ch1_output, ch2_output, ch3_output, ch4_output, ch5_output, ch6_output,
and ch7_output. The patterns for these labels exhibit a relatively consistent behaviour
between the training and validation phases.

In Figure 7, the chart depicts the training and validation loss of the LSTM-RNN
model. The x-axis represents the number of epochs, while the y-axis signifies the loss.
The orange line corresponds to validation loss, and the blue line represents training loss
for the labels ch0_output, ch1_output, and ch6_output. The patterns for these labels show
relative consistency between training and validation, with occasional fluctuations occurring
between the second and fourth epochs. However, for the ch2_output label, the pattern
lacks consistency and remains erratic during validation. For the labels ch3_output and
ch4_output, the pattern remains consistent between training and validation, with occasional
fluctuations between the fourth and sixth epochs. As for the ch5_output and ch7_output
labels, the pattern generally stays consistent between training and validation loss.

In Figure 8, the chart depicts the training and validation loss of the straightforward
DNN model. The x-axis indicates the number of epochs, while the y-axis represents
the loss. The orange line represents validation loss, and the blue line corresponds to
training loss for the labels ch0_output, ch1_output, ch4_output, ch5_output, ch6_output,
and ch7_output. The trends for these labels demonstrate relative consistency between
training and validation. However, the patterns lack consistency for the ch2_output and
ch3_output labels and exhibit erratic behaviour during validation.



Drones 2024, 8, 515 15 of 24

(a) Ch0_output (b) Ch1_output (c) Ch2_output

(d) Ch3_output (e) Ch4_output (f) Ch5_output

(g) Ch6_output (h) Ch7_output

Figure 5. Training and validation accuracy for DNN.

(a) Ch0_output (b) Ch1_output (c) Ch2_output

(d) Ch3_output (e) Ch4_output (f) Ch5_output

(g) Ch6_output (h) Ch7_output

Figure 6. Training and validation loss for LSTM-GRU.
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(a) Ch0_output (b) Ch1_output (c) Ch2_output

(d) Ch3_output (e) Ch4_output (f) Ch5_output

(g) Ch6_output (h) Ch7_output

Figure 7. Training and validation loss for LSTM-RNN.

(a) Ch0_output (b) Ch1_output (c) Ch2_output

(d) Ch3_output (e) Ch4_output (f) Ch5_output

(g) Ch6_output (h) Ch7_output

Figure 8. Training and validation loss for DNN.
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Figure 9 illustrates the confusion matrix for all ch_output labels using LSTM-GRU.
Figure 10 displays the confusion matrix for all ch_output labels using LSTM-RNN. Figure 11
presents the confusion matrix for all ch_output labels using DNN. It can be noticed that the
LSTM-GRU model has clearer outputs.

(a) Ch0_output (b) Ch1_output (c) Ch2_output (d) Ch3_output

(e) Ch4_output (f) Ch5_output (g) Ch6_output (h) Ch7_output

Figure 9. Confusion matrix for LSTM-GRU.

(a) Ch0_output (b) Ch1_output (c) Ch2_output (d) Ch3_output

(e) Ch4_output (f) Ch5_output (g) Ch6_output (h) Ch7_output

Figure 10. Confusion matrix for LSTM-RNN.
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(a) Ch0_output (b) Ch1_output (c) Ch2_output (d) Ch3_output

(e) Ch4_output (f) Ch5_output (g) Ch6_output (h) Ch7_output

Figure 11. Confusion matrix for DNN.

5. Ablation Analysis

In this work, the architecture of our deep learning models is based on the architecture
of the LSTM-GRU, which uses 64 neurons in the input layer for each of the LSTM-GRU 1
layers, a concatenation of both layers, 32 neurons in the concatenate layer of both LSTM-
GRU 2 layers, 16 neurons in the fully connected layer, and a final layer that flattens and
concatenates the output. Moreover, the architecture used to build an LSTM-RNN uses
128 neurons in the input layer for both LSTM-RNN 1 layers, concatenating both layers,
64 neurons in the concatenate layer for both LSTM-RNN 2 layers, 32 neurons in the fully
connected layer, and a final layer that flattens and concatenates the output. In addition,
a DNN is integrated with 128 neurons in the input layer for both layers, concatenating both
layers, 64 neurons in the concatenate layer for subsequent layers, 32 neurons in the fully
connected layer, and a final layer that flattens and concatenates the output. Accuracy is the
major parameter used in evaluating the architecture proposed in this work. The models
are trained 10 times on the training data with a batch size of 32. After much optimisation,
the neural network architectures for the Simple DNN Model, LSTM-GRU, and LSTM-RNN
have been fine-tuned for better performance and robustness. The comparative analysis
performed in this work indicates that the LSTM-GRU architecture is better than the rest,
with a higher accuracy rate and a low overfit condition compared to other configurations.

6. Proposed Self-Supervised Representation Learning Method with Transfer Learning

To enhance our self-supervised deep representation learning method with additional
techniques like transfer learning, we have developed a robust strategy that improves
the adaptability and generalisation of our model for detecting GPS spoofing attacks on
small UAVs. To further enhance our model’s performance, we integrate self-supervised
learning, which enables the model to extract meaningful features from the GPS signal data
without relying on extensive labelled examples. This method captures intricate patterns
and anomalies essential for detecting spoofing attacks. Building upon this, we implement
transfer learning by saving the weights of our trained model and applying these pre-trained
weights to a new dataset, specifically the GPS_simplified_2d_feature_map dataset. This
approach leverages the knowledge gained from the original dataset and transfers it to a
related domain, thereby improving the model’s adaptability to new data with minimal
additional training. The integration of self-supervised learning with transfer learning has
resulted in a validation accuracy of 79.0%, demonstrating an improvement in the model’s
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performance and its ability to generalize across different datasets Table 5. This approach not
only enhances the model’s detection capabilities but also significantly reduces the training
time required for new datasets, confirming the effectiveness of combining these advanced
techniques in improving the robustness and efficiency of GPS spoofing attack detection.

Table 5. Pre-trained transfer learning model.

Output Label Accuracy Recall F1 Score

0 0.84 0.92 0.88

1 0.36 0.34 0.35

2 0.47 0.27 0.35

3 0.58 0.25 0.35

Figure 12 shows the pre-trained transfer learning model’s training and validation
performance. The accuracy plot shows a steady improvement in training accuracy, reaching
about 79.5%, while the validation accuracy fluctuates, peaking around epoch 4, indicating
potential overfitting. The loss plot demonstrates a decline in both training and valida-
tion loss, but the validation loss begins to plateau after epoch 6, suggesting diminishing
improvement in generalisation. The confusion matrix highlights that the model predicts
Class 0 well but struggles with other classes, especially Class 3, where many instances are
misclassified as Class 0.

(a) Training and Validation Accuracy (b) Training and Validation Loss

(c) Confusion Matrix (d) ROC Curve

Figure 12. Transfer learning model results.
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7. Comparison Analysis of Proposed Models

Based on the performance results shown in Table 6, the DNN model consistently
achieved the highest accuracy across most output labels, making it the best overall per-
former. Specifically, the DNN model attained a perfect accuracy of 1.00 for ch5_output,
demonstrating its superior ability to detect GPS spoofing attacks for this label. Addition-
ally, it achieved high accuracy values for other outputs, with ch6_output reaching 0.99
and several others maintaining accuracy above 0.95. Therefore, the DNN model is rec-
ommended for scenarios prioritizing high accuracy, especially for detecting critical GPS
spoofing incidents like ch5_output.

Table 7 compares various models from existing studies on GPS spoofing detection
for small UAVs, highlighting their accuracy. Sun et al. [37] used deep learning approaches,
achieving accuracies of 90%. Titouna et al. [12] and Dang et al. [41] employed dynamic
selection techniques and deep ensemble learning, reaching 95% and 97% accuracy, respec-
tively. Other studies, such as Banu et al. [44] and Gasimova et al. [45], explored various
detection methods and weak and strong learners, with accuracy ranging from 85% to 95%.
Talaei et al. [51] achieved the highest accuracy of 99.6% with a dynamic selection module.
Our proposed model, which integrates LSTM-GRU, LSTM-RNN, and DNN, surpasses
these with an impressive accuracy of 99.99%, demonstrating its superior performance in
GPS spoofing detection for small UAVs.

Table 6. Comparison of model performance.

Model Output Label Accuracy Recall F1 Score

LSTM-GRU ch0_output 0.95 0.94 0.94

ch1_output 0.95 0.94 0.94

ch2_output 0.98 0.97 0.97

ch3_output 0.97 0.96 0.96

ch4_output 0.98 0.97 0.97

ch5_output 1.00 1.00 1.00

ch6_output 0.99 0.98 0.98

ch7_output 0.90 0.89 0.89

LSTM-RNN ch0_output 0.95 0.94 0.94

ch1_output 0.95 0.94 0.94

ch2_output 0.98 0.97 0.97

ch3_output 0.97 0.96 0.96

ch4_output 0.98 0.97 0.97

ch5_output 1.00 1.00 1.00

ch6_output 0.99 0.98 0.98

ch7_output 0.90 0.89 0.89

DNN ch0_output 0.95 0.94 0.94

ch1_output 0.95 0.94 0.94

ch2_output 0.98 0.97 0.97

ch3_output 0.97 0.96 0.96

ch4_output 0.93 0.92 0.92

ch5_output 1.00 1.00 1.00

ch6_output 0.99 0.98 0.98

ch7_output 0.93 0.92 0.92
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Table 7. Comparison of existing work and proposed models.

Study Model Accuracy

Sung et al. (2022) [37] 1D CNN 90%

Titouna et al. (2021) [12] Dynamic Selection Techniques 95%

Dang et al. (2022) [41] Deep Ensemble Learning 97%

Banu et al. (2022) [44] Various Detection Methods 85% to 95%

Gasimova et al. (2022) [45] Weak and Strong Learners 85% to 95%

Talaei et al. (2022) [51] Dynamic Selection Module 99.6%

Proposed Model LSTM-GRU, LSTM-RNN, DNN 99.99%

8. Discussion

This paper focuses on the critical goal of enhancing the security and reliability of
UAVs while contributing to the broader field of autonomous systems. By applying Self-
Supervised Representation Learning (SSRL) in practical scenarios, this study established a
new approach for integrating advanced machine learning techniques to address significant
challenges faced by autonomous systems. Our work not only aims to protect UAVs from
GPS spoofing but also sets a standard for using innovative technologies to strengthen the
resilience of autonomous systems across various domains. In this study, a network model
tailored for small UAVs was implemented, emphasizing low-latency and high-reliability
communication. The network was designed to support real-time data processing and trans-
mission, which is crucial for detecting and mitigating GPS spoofing attacks. Continuous
and reliable communication between UAVs and ground control stations was ensured, even
in the presence of potential spoofing threats. This robust communication model was vital
for maintaining the integrity of the data used in attack detection. Our research employed a
hypothesis-testing approach to evaluate the performance of the proposed SSRL-based mod-
els under different spoofing scenarios. It was hypothesized that the hybrid deep learning
architectures, particularly the LSTM-GRU model, would outperform traditional methods
in accurately detecting GPS spoofing attacks. This hypothesis was tested by comparing
the accuracy of the proposed model against baseline models over 10 epochs of training.
The results validated our hypothesis, with the LSTM-GRU model achieving an impressive
99.9% accuracy, proving its effectiveness in countering GPS spoofing attacks. Furthermore,
the model’s capabilities were enhanced by integrating transfer learning, which improved its
adaptability and generalisation. By applying pre-trained weights from the SSRL model to a
new dataset, specifically the GPS_simplified_2d_feature_map dataset, the model achieved
a validation accuracy of 79.0%. This addition demonstrated the model’s ability to gener-
alize across different datasets with minimal additional training, further reinforcing the
robustness and efficiency of the approach in detecting GPS spoofing attacks.

9. Conclusions

GPS spoofing presents substantial risks to the safety and security of small UAVs,
potentially undermining navigation systems and compromising mission integrity. Ef-
fective mitigation strategies, including secure GPS signal authentication, anti-spoofing
technologies, and continuous monitoring, are vital to address this threat. Our research
introduces a novel architecture aimed at improving the detection and multi-label clas-
sification of GPS spoofing attacks in small UAVs. By employing multiple LSTM-GRU
layers, LSTM-RNN layers, and a Deep Neural Network (DNN), our model showcases
exceptional performance. The architecture is specifically configured with 64 neurons in the
input and concatenate layers for LSTM-GRU, 128 neurons for LSTM-RNN, and 128 neurons
for the DNN, utilizing self-supervised representation learning to enhance adaptability
and learning efficiency. To evaluate the effectiveness of this approach, we trained the
models over 10 epochs, achieving a remarkable accuracy of 99.9% in detecting various
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GPS spoofing labels. This highlights the architecture’s efficiency in real-time detection,
particularly in resource-constrained environments. Additionally, the integration of transfer
learning significantly enhanced the model’s adaptability and generalisation, achieving a
validation accuracy of 79.0% on the GPS_simplified_2d_feature_map dataset. This improve-
ment underscores the effectiveness of combining self-supervised learning with transfer
learning for detecting GPS spoofing attacks. Our research addresses the pressing need to
counter GPS spoofing threats in small UAVs, contributing to advancements in autonomous
systems through the use of self-supervised representation learning and transfer learning.
By strengthening UAV security, our architecture ensures reliable operation across diverse
applications such as surveillance, agriculture, and environmental monitoring. Future
work could focus on further optimizing the model for lightweight deployment, enhancing
cross-platform adaptability, and incorporating additional sensor data to improve detection
accuracy and robustness.

Funding: This research was funded by Prince Sattam bin Abdulaziz University grant number
(PSAU/2024/01/29895).

Data Availability Statement: The data are available at [52].

Acknowledgments: The authors extend their appreciation to Prince Sattam bin Abdulaziz University
for funding this research work through the project number (PSAU/2024/01/29895).

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Pandharipande, A.; Cheng, C.H.; Dauwels, J.; Gurbuz, S.Z.; Ibanex-Guzman, J.; Li, G.; Piazzoni, A.; Wang, P.; Santra, A. Sensing

and machine learning for automotive perception: A review. IEEE Sens. J. 2023, 23, 11097–11115. [CrossRef]
2. Yadav, N. Machine Learning for Earth System Science and Engineering-Critical Challenges. Ph.D. Thesis, Northeastern University,

Boston, MA, USA, 2022.
3. Shah, M. Wanderwise-Intelligent Travel Planning System. 2023. Available online: https://www.researchgate.net/publication/37

6638581_Wanderwise_-Intelligent_travel_planning_system (accessed on 15 September 2024).
4. Mendes, D.; Ivaki, N.; Madeira, H. Effects of GPS spoofing on unmanned aerial vehicles. In Proceedings of the 2018 IEEE 23rd

Pacific Rim International Symposium on Dependable Computing (PRDC), Taipei, Taiwan, 4–7 December 2018; pp. 155–160.
5. Khan, S.Z.; Mohsin, M.; Iqbal, W. On GPS spoofing of aerial platforms: A review of threats, challenges, methodologies, and future

research directions. PeerJ Comput. Sci. 2021, 7, e507. [CrossRef]
6. Kong, P.Y. A survey of cyberattack countermeasures for unmanned aerial vehicles. IEEE Access 2021, 9, 148244–148263. [CrossRef]
7. Giray, S.M. Anatomy of unmanned aerial vehicle hijacking with signal spoofing. In Proceedings of the 2013 6th International

Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 12–14 June 2013; pp. 795–800.
8. Alsulami, H. Implementation analysis of reliable unmanned aerial vehicles models for security against cyber-crimes: Attacks,

tracebacks, forensics and solutions. Comput. Electr. Eng. 2022, 100, 107870. [CrossRef]
9. Humphreys, T. Statement on the Vulnerability of Civil Unmanned Aerial Vehicles and Other Systems to Civil GPS Spoofing; University

of Texas at Austin: Austin, TX, USA, 2012; pp. 1–16.
10. Hamza, A.; Akram, U.; Samad, A.; Khosa, S.N.; Fatima, R.; Mushtaq, M.F. Unmaned aerial vehicles threats and defence solutions.

In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 5–7 November 2020;
pp. 1–6.

11. Krishna, C.L.; Murphy, R.R. A review on cybersecurity vulnerabilities for unmanned aerial vehicles. In Proceedings of the 2017
IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Shanghai, China, 11–13 October 2017; pp. 194–199.

12. Titouna, C.; Naït-Abdesselam, F. A Lightweight Security Technique For Unmanned Aerial Vehicles Against GPS Spoofing Attack.
In Proceedings of the 2021 International Wireless Communications and Mobile Computing (IWCMC), Beijing, China, 28 June–2
July 2021; pp. 819–824.

13. Guo, J.; Li, L.; Wang, J.; Li, K. Cyber-physical system-based path tracking control of autonomous vehicles under cyber-attacks.
IEEE Trans. Ind. Inform. 2022, 19, 6624–6635. [CrossRef]

14. Xu, Y.; Han, X.; Deng, G.; Li, J.; Liu, Y.; Zhang, T. SoK: Rethinking sensor spoofing attacks against robotic vehicles from a systematic
view. In Proceedings of the 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P), Delft, The Netherlands, 3–7
July 2023; pp. 1082–1100.

15. Sihag, V.; Choudhary, G.; Choudhary, P.; Dragoni, N. Cyber4Drone: A Systematic Review of Cyber Security and Forensics in
Next-Generation Drones. Drones 2023, 7, 430. [CrossRef]

16. Kapustina, L.; Izakova, N.; Makovkina, E.; Khmelkov, M. The global drone market: Main development trends. In Proceedings of
the SHS Web of Conferences. Edp Sci. 2021, 129, 11004.

http://doi.org/10.1109/JSEN.2023.3262134
https://www.researchgate.net/publication/376638581_Wanderwise_-Intelligent_travel_planning_system
https://www.researchgate.net/publication/376638581_Wanderwise_-Intelligent_travel_planning_system
http://dx.doi.org/10.7717/peerj-cs.507
http://dx.doi.org/10.1109/ACCESS.2021.3124996
http://dx.doi.org/10.1016/j.compeleceng.2022.107870
http://dx.doi.org/10.1109/TII.2022.3206354
http://dx.doi.org/10.3390/drones7070430


Drones 2024, 8, 515 23 of 24

17. Ly, B.; Ly, R. Cybersecurity in unmanned aerial vehicles (UAVs). J. Cyber Secur. Technol. 2021, 5, 120–137. [CrossRef]
18. He, D.; Chan, S.; Guizani, M. Communication security of unmanned aerial vehicles. IEEE Wirel. Commun. 2016, 24, 134–139.

[CrossRef]
19. Sathyamoorthy, D. A review of security threats of unmanned aerial vehicles and mitigation steps. J. Def. Secur. 2015, 6, 81–97.
20. Basha, S.J.; Danda, J.M.R. A Review on Challenges and Threats to Unmanned Aerial Vehicles (UAVs). In Unmanned Aerial Vehicles

for Internet of Things (IoT) Concepts, Techniques, and Applications; Wiley Online Library: Hoboken, NJ, USA, 2021; pp. 89–104.
21. Chamola, V.; Kotesh, P.; Agarwal, A.; Gupta, N.; Guizani, M. A comprehensive review of unmanned aerial vehicle attacks and

neutralization techniques. Ad Hoc Netw. 2021, 111, 102324. [CrossRef]
22. Lucia, L.D.; Vegni, A.M. UAV Main Applications: From Military to Agriculture Fields. In Internet of Unmanned Things (IoUT) and

Mission-Based Networking; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–23.
23. Shafique, A.; Mehmood, A.; Elhadef, M. Survey of security protocols and vulnerabilities in unmanned aerial vehicles. IEEE

Access 2021, 9, 46927–46948. [CrossRef]
24. Waqas, A.; Kang, D.; Cha, Y.J. Deep learning-based obstacle-avoiding autonomous UAVs with fiducial marker-based localization

for structural health monitoring. Struct. Health Monit. 2024, 23, 971–990. [CrossRef]
25. Song, L.K.; Li, X.Q.; Zhu, S.P.; Choy, Y.S. Cascade ensemble learning for multi-level reliability evaluation. Aerosp. Sci. Technol.

2024, 148, 109101. [CrossRef]
26. Ren, Y.; Restivo, R.D.; Tan, W.; Wang, J.; Liu, Y.; Jiang, B.; Wang, H.; Song, H. Knowledge Distillation-Based GPS Spoofing

Detection for Small UAV. Future Internet 2023, 15, 389. [CrossRef]
27. Shin, J.; Baek, Y.; Eun, Y.; Son, S.H. Intelligent sensor attack detection and identification for automotive cyber-physical systems.

In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1
December 2017; pp. 1–8.

28. Dang, Y.; Karakoc, A.; Norshahida, S.; Jäntti, R. 3D Radio Map-Based GPS Spoofing Detection and Mitigation for Cellular-
Connected UAVs. IEEE Trans. Mach. Learn. Commun. Netw. 2023, 1, 313–327. [CrossRef]

29. Li, Y.; Yang, S. GPS Spoofing attack detection in smart grids based on improved CapsNet. China Commun. 2021, 18, 174–186.
[CrossRef]

30. Boyd, J.; Fahim, M.; Olukoya, O. Voice spoofing detection for multiclass attack classification using deep learning. Mach. Learn.
Appl. 2023, 14, 100503. [CrossRef]

31. Dasgupta, S.; Rahman, M.; Islam, M.; Chowdhury, M. Prediction-based GNSS spoofing attack detection for autonomous vehicles.
arXiv 2020, arXiv:2010.11722 .

32. Agyapong, R.A.; Nabil, M.; Nuhu, A.R.; Rasul, M.I.; Homaifar, A. Efficient detection of GPS spoofing attacks on unmanned aerial
vehicles using deep learning. In Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Virtual,
5–7 December 2021; pp. 01–08.

33. Jiang, P.; Wu, H.; Xin, C. DeepPOSE: Detecting GPS spoofing attack via deep recurrent neural network. Digit. Commun. Netw.
2022, 8, 791–803. [CrossRef]
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