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Abstract: The rapid development and widespread application of Unmanned Aerial Vehicles (UAV)
have raised significant concerns about safety and privacy, thus requiring powerful anti-UAV systems.
This survey provides an overview of anti-UAV detection and tracking methods in recent years. Firstly,
we emphasize the key challenges of existing anti-UAV and delve into various detection and tracking
methods. It is noteworthy that our study emphasizes the shift toward deep learning to enhance
detection accuracy and tracking performance. Secondly, the survey organizes some public datasets,
provides effective links, and discusses the characteristics and limitations of each dataset. Next, by
analyzing current research trends, we have identified key areas of innovation, including the progress
of deep learning techniques in real-time detection and tracking, multi-sensor fusion systems, and the
automatic switching mechanisms that adapt to different conditions. Finally, this survey discusses
the limitations and future research directions. This paper aims to deepen the understanding of
innovations in anti-UAV detection and tracking methods. Hopefully our work can offer a valuable
resource for researchers and practitioners involved in anti-UAV research.

Keywords: anti-UAV detection; UAV tracking; anti-UAV systems; anti-UAV datasets

1. Introduction

In recent years, it has made significant progress for Unmanned Aerial Vehicles (UAV)
in intelligence and automation [1–5]. The ease of operation, low cost, and high efficiency
have contributed to the widespread application across various domains [6–11]. However,
the extensive use of UAV has also raised concerns regarding safety and privacy problems. In
urban areas, incidents of unauthorized or excessive UAV flights, as well as their exploitation
by illicit actors for criminal activities, have seriously infringed upon individual privacy,
endangered public safety, and disrupted social order.

The demand for anti-UAV technology is becoming increasingly important. As shown
in Figure 1, Anti-UAV detection and tracking is an early stage of anti-UAV technology,
aimed at addressing security issues caused by the widespread use of drones, such as illegal
entry into no-fly zones, threats to public safety, and unauthorized surveillance of sensitive
targets [12–15]. By accurately detecting and tracking illegal UAV, this process provides
support and data for subsequent countermeasures like interference, capture, or destruction.
In recent years, many anti-UAV methods [16–19] have been introduced to address the
issues caused by the misuse of drones. These methods predominantly rely on physical
countermeasures, such as UAV radar detection, radio frequency analysis, and acoustic
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detection [20,21]. Traditional radar systems exhibit limited effectiveness in detecting small
UAV, particularly in complex terrains and urban environments where there are numerous
reflections and interferences. The radio frequency and acoustic detection systems are
usually low-cost and easy to deploy, but they are very susceptible to electromagnetic and
noise interference in urban environments. These methods share a common characteristic:
they do not utilize visual information. Visual information holds unique advantages in
UAV detection, as it allows for more intuitive and precise identification and tracking
by capturing and analyzing the visual features of the UAV. However, the processing of
visual information also present several challenges: (1) UAV targets often undergo dramatic
scale changes, disappear frequently during flight, and tracking performance is heavily
influenced by camera motion [22,23]; (2) in infrared scenes, UAV targets have small scales,
low resolution, lack appearance information, and are easily overshadowed by background
information; (3) the flying of UAV in complex scenes can lead to target occlusion and
unstable flight paths.

Figure 1. Anti-UAV Systems: The detection and tracking of UAV represent the early stages of
anti-UAV technology.

The motivation of this paper is to summarize the advances in the field of anti-UAV
detection techniques, aiming to provide reference for researchers and engineers to develop
more efficient models. The contributions of this paper are concluded as follows:

• This paper surveys recent methods for anti-UAV detection. We classify the collected
methods based on the types of backbones used in the article and the scenarios in
which they are applied. The methods are classified by Sensor-Based methods and
Vision-Based methods. Typical examples are outlined to illustrate the main thoughts.

• We collect and summarize the public anti-UAV datasets, including RGB images,
infrared images and acoustic data. Additionally, the dataset links are also provided so
that the readers can access them quickly.

• The advantages and disadvantages of existing anti-UAV methods are analyzed. We
give detailed discussions about the limitations of anti-UAV datasets and methods.
Meanwhile, five potential directions are suggested for the future research.

This paper is organized as follows. Section 2 provides a detailed overview of the
relevant literatures. Section 3 gives the public datasets of anti-UAV detection and tracking.
Section 4 summarizes the advantages and disadvantages of anti-UAV detection and tracking
methods. Section 5 discusses the limitations of datasets and methods, as well as future
research directions. Section 6 concludes the paper.

2. Analysis of Surveyed Literatures

Since the increasing popularity of small drones and the rapid development of deep
learning technology, many innovative research papers [24–29] have been proposed in
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the field of anti-UAV detection and tracking. These scholarly articles not only explore
various efficient algorithms but also demonstrate the potentials of utilizing deep learning
for UAV identification and tracking. In this section, we describe the statistical data of the
state-of-the-art methods.

2.1. Stats of Surveyed Literatures

We mainly gather literatures of anti-UAV methods on Google Scholar, IEEE Xplore,
Web of Science, and some academic websites for investigation. The search keywords are
“Anti-UAV”, “UAV Detection”, “UAV Tracking”, “Deep learning for anti drone detection”.
The literatures were surveyed by the end of 31 August 2024. Notably, we select literatures
published within the last 5 years, which can represents the advances.

In the collection of several hundred results, we imposed certain restrictions to stream-
line our selection: (1) The literature must be written in English; (2) Owing to the rapid
development of technology, we limited our selection to literature published within the last
5 years; (3) We specifically targeted methodologies based on deep learning, computer vision
technologies sensor fusion; (4) Preference was given to literature published in well-known
academic journals and conferences, such as Drones, IEEE, CVPR, Science sub-journals, etc.

These primarily included journal articles, conference papers, arXivs, and various
competition documents. In this study, we classified them by the country and publication
time. Figure 2 summarizes the number of papers from different countries or regions around
the world and presents the distribution of publication dates. As shown in the left image,
it suggests that the number of literature keeps an increasing trend. It means that the field
has been attracting more and more attentions. In the right image, the data reflects that
China publishes the most of literatures, with an 68% ratio. This may be beneficial from the
increasing investment in drone field.

Figure 2. Stats of state-of-the-art methods. The left is based on the year, and the right is based on the
author’s country or area.

2.2. Method Classification of Surveyed Literatures

Based on our comprehensive analysis of the collected literature, anti-UAV methods
have been effectively summarized and categorized, as illustrated in Figure 3 outlines the
mainstream approaches. These methods are divided into two categories: Sensor-Based
and Vision-Based.

Sensor-Based methods for anti-UAV detection and tracking represent one of the earliest
technologies [30] to tackle the challenges posed by unmanned aerial vehicles. For instance,
Radio Frequency (RF) and Acoustics play a significant role in anti-UAV systems. However,
they face certain challenges in dealing with more complex flying environments. To leverage
the complementary advantages of different sensors, these methods are often integrated
into multi-sensor systems [31].
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Figure 3. Hierarchical representation of the state-of-the-art methods of anti-UAV detection
and tracking.

Vision-Based methods apply to anti-UAV detection and tracking have significantly
improved in terms of accuracy and speed [32–38]. We divide it into three categories based
on real-time tracking performance, global perception ability, and practicality: Siamese-
Based, Transformer-Based, and YOLO-Based.

3. Anti-UAV Detection and Tracking Datasets

To address the challenges of anti-UAV detection, researchers worldwide have proposed
numerous datasets to train models. These datasets typically include a vast number of UAV
images, video sequences, sensor readings and corresponding environmental background
data. This section will provides a detailed description and discussion of these datasets.

Zhao et al. [20] proposed a multi-UAV dataset named DUT anti-UAV, which include
a detection dataset and a tracking dataset. The detection dataset contains 5200 images
for training, 2600 images for validation and 2200 images for testing. Each image comes
with an annotation file detailing the objects. The tracking dataset contains 20 sequences.
This dataset consists of RGB images, with a small number of close-range UAV images
collected from the internet included in the training set, while the rest are manually collected
mid-to-long-range UAV images. Although the dataset is extensive, it has a limited variety
of scene types.

Jiang et al. [23] designed a large-scale benchmark dataset that consists of 318 RGB-T
video pairs, each containing an RGB video and an infrared video, along with annotation
files for each video. The author recorded videos of different types of drones, primarily from
DJI and Parrot, flying in the air, which were used to collect tracking data. The recorded
videos capture scenes under two different lighting conditions(day and night), two types
of light modes (infrared and visible), and different backgrounds (trees, clouds, buildings).
Each video is saved as an MP4 file format, with a frame rate of 25 FPS. However, the
infrared scene dataset has a lower resolution, and there are fewer scenarios of drones flying
at long distances.

Yuan et al. [39] created a dataset named MMAUD, which integrates multiple sensor
inputs including vision, radar, and audio arrays. It encompasses various types of drones
and noise sequences. The speed, size, and estimated radar cross section of the drones are
also modeled with accuracy relative to ground truth values. The dataset simulates real-
world scenarios by incorporating the sounds of surrounding heavy machinery, capturing
the precise challenges faced when operating near vehicles, and thereby enhancing the
applicability. Notably, the dataset is accessible in two formats: rosbag format and file
system format, making it versatile for different applications.

Fredrik et al. [31] introduced a multi-sensor dataset that supplements audio datasets
with classes for drones, helicopters, and background noise. It is captured at three airports
in Sweden and utilizes three different types of drones: the Hubsan H107D+ (a small
first-person view drone), the high-performance DJI Phantom 4 Pro and the medium-sized
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DJI Flame Wheel (F450) [40]. The dataset includes 90 audio clips, 650 videos, with a total
of 203,328 annotated images. The audio data includes recordings of small drones, large
helicopters, and background sounds such as birdsong, wind noise, water flow, etc. The
IR videos have a resolution of 320 × 256 pixels, and the visible videos 640 × 512 pixels.
The maximum sensor-to-target distance for drones in the dataset is 200 m. For ease of
annotation, both videos and audio clips are trimmed to 10 s in duration.

The dataset proposed by Vedanshu et al. [41] is mainly composed of quadcopter
images. It contains 1847 images, most of which were taken from Kaggle [42] and some of
which were taken with smartphone selfies. Self-shot images are taken by considering visual
differences in distance (near, middle and far) analysis. The scenes are different between
training set and testing set.

Christian [43] collected 500 images of the DJI Phantom 3 quadcopter from Google’s
image search and numerous screenshots from YouTube videos. In this dataset 350 images
are used for training and 150 images for testing. It mainly focuses on individual drone
targets at close range, and due to the close capture distance, the scale ratio of the drone is
relatively large.

Zheng et al. [44] developed a large-scale dataset named DetFly, comprising over
13,271 images, each with a resolution of 3840 × 2160 pixels. These images are captured
by a drone shooting another flying target drone. The dataset notably includes some
challenging scenarios, such as strong and weak lighting conditions, motion blur, and
partial occlusions, which further enhance the dataset’s practicality and the complexity
of testing algorithms. Approximately half of the images feature UAV objects that are
smaller than 5% of the total image size. Although the image resolution is high, the
images contain only a single target and are exclusively of one type of UAV (DJI Mavic),
which may limit the dataset’s diversity.

Viktor et al. [45] introduced a dataset known as MIDGARD, which is automatically
annotated through the Ultra Violet Direction And Ranging (UVDAR) system. This dataset
is collected in various environments, such as rural areas, urban landscapes, as well as
modern and classical environments. Additionally, it includes many challenging scenarios,
such as the disappearance of micro UAV and situations where they are obscured. The
dataset also provides annotations, including the position of drones in the images and their
bounding boxes, as well as their approximate distances, supporting effective detection and
location training for UAV.

The dataset provided by the 3rd Anti-UAV competition [46] consists of infrared
images derived from video sequences. It is characterized by its large scale and the
richness of its content. This dataset includes scenarios where targets are present within
the image, targets are at the image boundaries, and targets disappear, among others.
It primarily supports the competition’s two tracks: Track 1, anti-UAV tracking (with
the target present in the first frame), and Track 2, anti-UAV detection and tracking
(with the target’s presence unknown in the first frame). However, some images contain
textual information from the equipment at the top, which may potentially interfere with
model training.

In summary, the overview of the mentioned datasets is presented in Table 1. Some
examples from these datasets are shown in Figure 4. Table 2 also provides the corresponding
available links. All links have been verified as valid before 28 March 2024.
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Figure 4. Some samples selected from different datasets in DUT Anti-UAV [20], Jiang’s Dataset [23],
Fredrik’s Dataset [31], Vedanshu’s Dataset [41], Christian’s Dataset [43], Det-Fly [44], MIDGARD [45],
3rd-Anti-UAV [46]. The Chinese characters are the shooting time and place of the images.

Table 1. Detailed descriptions of some open datasets for anti-UAV detection and tracking.

Dataset Name Main Characteristics Image or Video Number Complexity Multi-Sensors Scene UAV Type

DUT Anti-UAV [20]

Images and videos of various scenes
are from around DUT, such as the sky,
dark clouds, jungles, high-rise build-
ings, residential buildings, farmlands
and playgrounds

Image 10,000
Video 20 Medium NO RGB Not available

Jiang’s Dataset [23]

DJI and Parrot drones are used to cap-
tured video from the air. The video
records two lighting conditions (day
and night), two light modes (infrared
and visible light), and a variety of
backgrounds (buildings, clouds, trees)

Video_RGB 318
Video_Infrared 318 Large NO RGB and Infrared DJI and Parrot drones
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Table 1. Cont.

Dataset Name Main Characteristics Image or Video Number Complexity Multi-Sensors Scene UAV Type

MMAUD [39]

This dataset is built by integrating
multiple sensing inputs including
stereo vision, various Lidar, radar,
and audio arrays

Multi-category Large Yes Infrared Not available

Fredrik’s Dataset [31]
This dataset is captured at three airports
in Sweden and three different drones
are used for the video shooting

Audio 90
Video_RGB 285

Video_Infrared 365
Large Yes Infrared DJI Phantom4 Pro,DJI Flame Wheel

and Hubsan H107D+

Vedanshu’s Dataset [41]

The majority of the dataset’s images
are collected from Kaggle and the re-
maining are captured using a smart-
phone camera

Image 1874 Medium NO RGB Not available

Drone Detection [43]

Images of the DJI Phantom 3 quad-
copter obtained through Google im-
age search and dozens of screenshots
from YouTube videos

Image 500 Small NO RGB DJI Phantom 3 quadcopter

Det-Fly [44]
This dataset uses a flying drone (DJI
M210) to photograph another flying
target drone (DJI Mavic)

Image 13,271 Medium NO RGB DJI M210 and DJI Mavic

MIDGARD [45]

This dataset is automatically gener-
ated using relatively Micro-scale Un-
manned Aerial Vehicles and position-
ing sensor

Image 8776 Medium NO Infrared Not available

3rd-Anti-UAV [46]
This dataset consists of single-frame
infrared images derived from
video sequences

Video Sequence large NO Infrared Not available

Table 2. Available websites of open-source datasets.

Dataset Name Available Link Access Date

DUT Anti-UAV [20] https://github.com/wangdongdut/DUT-Anti-UAV 22 January 2024

Jiang’s Dataset [23] https://github.com/ucas-vg/Anti-UAV 22 January 2024

MMAUD [39] https://github.com/ntu-aris/MMAUD 22 January 2024

Fredrik’s Dataset [31] https://github.com/DroneDetectionThesis/Drone-detection-dataset 15 March 2024

Vedanshu’s Dataset [41] https://drive.google.com/drive/folders/1FJ09dOOa-VFMy_tM7UoZGzOA8iYpmaHP 15 March 2024

Drone Detection [43] https://github.com/creiser/drone-detection 11 April 2024

Det-Fly [44] https://github.com/Jake-WU/Det-Fly 15 March 2024

MIDGARD [45] https://mrs.felk.cvut.cz/midgard 21 March 2024

3rd-Anti-UAV [46] https://anti-uav.github.io 28 March2024

4. Anti-UAV Detection and Tracking Methods

In this section, we reviewed the literatures on anti-UAV detection and tracking from
recent years. It starts from early Sensor-Based methods [47–50], such as radio frequency sig-
natures and acoustics. Then, it mainly focus on Vision-Based detection methods [34,51–55].
Various methods have been proposed to address the challenges posed by the dramatic
scale changes [56–62] during flight, frequent disappearances, and unstable flight paths of
UAV. These methods [63–69] primarily focus on leveraging advanced image processing
and deep learning technologies to enhance the accuracy of UAV identification and tracking
in complex environments.

4.1. Sensor-Based Methods

The Sensor-Based anti-UAV detection methods mainly rely on non-visual technologies
such as radio frequency spectrum monitoring and acoustic signal analysis. These techniques
detect the presence of UAV by sensing the physical characteristics of radio and sound
waveforms signals [70–73]. Figure 5 shows the general Sensor-Based methods. It involves
multiple technologies aimed at addressing UAV threats in different environments.

https://github.com/wangdongdut/DUT-Anti-UAV 
https://github.com/ucas-vg/Anti-UAV
https://github.com/ntu-aris/MMAUD
https://github.com/DroneDetectionThesis/Drone-detection-dataset
https://drive.google.com/drive/folders/1FJ09dOOa-VFMy_tM7UoZGzOA8iYpmaHP
https://github.com/creiser/drone-detection
https://github.com/Jake-WU/Det-Fly
https://mrs.felk.cvut.cz/midgard
https://anti-uav.github.io
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Figure 5. Overview of general Sensor-Based methods. The classifiers can be SVM or KNN.

4.1.1. RF-Based

By monitoring RF signals within a specific area, a large amount of radio signal data is
collected. Based on this data, non-relevant interference signals are filtered out by analyzing
the technical parameters, frequency characteristics, and specific UAV communication proto-
cols of these signals. Subsequently, precise feature recognition of the UAV communication
signals is achieved using machine learning algorithms. In the process of RF-Based UAV
detection, features are first extracted from the received RF signals. These extracted features
are then compared with a database of UAV radio frequency characteristics to achieve
UAV identification.

Xiao et al. [47] proposed a method to detect and identify small UAV using RF signals
from UAV downlink communications. This process involves framing and preprocessing
continuous time-domain signals, extracting cyclostationary and spectral features. The fea-
tures extracted are utilized to train Support Vector Machine (SVM) and k-Nearest Neighbors
(KNN) classifiers. The performance of the classifiers is tested under various Signal-to-Noise
Ratio (SNR) conditions. They also described the features of different micro UAV signals.
This method is applicable in more general cases and can be implemented through ma-
chine learning approaches, yet it is susceptible to environmental noise interference, such
as signals from WiFi and Bluetooth, which may affect the detection and identification of
UAV signals.

4.1.2. Acoustic-Based

Although sound waves and electromagnetic waves differ in nature, Acoustic-Based
and RF-Based detection methods share certain similarities due to the fundamental prop-
erties of their respective waves [30]. Acoustic-Based [74,75] detection methods play a
complementary role in anti-UAV technology. These methods leverage the unique sounds
produced by a UAV’s propellers as they disturb the airflow during flight. The sound
characteristics differ depending on the type of UAV, flight speed, and environmental condi-
tions. High-sensitivity microphones are used to capture these sounds, and the system then
extracts and analyzes the sound signals to identify the presence of a UAV.

Yang et al. [48] introduced a low-cost UAV detection system that utilizes multiple
acoustic nodes and machine learning models to detect and track UAV through the anal-
ysis of audio signals. This study employs two types of features: Mel-frequency cepstral
coefficients and Short-Time Fourier Transform (STFT), which are trained using SVM and
Convolutional Neural Networks (CNN), respectively. Each model was tested individually
during the evaluation phase. The results indicated that the STFT-SVM model yielded the
best outcomes, demonstrating high detection accuracy and robustness. Unlike optical
methods, acoustic detection is not affected by visual obstructions such as fog or darkness,
hence offering robustness against visual impairments. However, the system is sensitive to
noise. In noisy environments, surrounding sounds might mask the UAV’s acoustic features,
leading to degraded system performance.
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4.1.3. Multi-Sensors-Based

Multi sensor detection methods involve integrating and analyzing data from different
types of sensors [76–80] to improve the accuracy and efficiency of detecting and tracking
targets. The key steps mainly include sensor selection, data preprocessing, data fusion,
pattern recognition, and decision specification. Among them, data fusion [81,82] is a key
technology that combines data from multiple sensors into a representative information.

Fredrik et al. [31] explored the process of designing an automatic multi-sensor UAV
detection system. The discussion cover various sensors used for UAV detection, including
radar, visible light cameras, thermal infrared cameras, microphones, radio frequency
scanners, lasers, etc. Even with slightly lower resolution, its performance was comparable
to cameras operating within the visible spectrum. The study also examined detector
performance as a function of the distance from the sensor to the target. Through multi-
sensors fusion, the system’s robustness is enhanced beyond that of individual sensors,
aiding in the reduction of false positives. However, the fusion of data from multiple sensors
requires sophisticated algorithms and computational resources, potentially impacting the
real-time capabilities of the detection system.

Xie et al. [83] proposed a framework that integrates RF and visual information. The
complementarity of these two modalities alleviates the limitations of single-sensor ap-
proaches, which are prone to interference. The authors also introduced a denoising method
based on image segmentation (ISD-UNet), providing a novel approach to eliminating noise
in RF data. Compared to traditional signal processing denoising techniques, deep learning-
based methods can better preserve the local features and spatiotemporal information of RF
signals. The authors constructed their own RF-visual dataset across multiple scenarios, but
this dataset has not been made publicly available.

The approach based on RF signals utilizes feature engineering and machine learning
techniques for effective detection and identification of micro UAV. It is particularly suited
for scenarios requiring differentiation among various UAV types. The method is reported
to be low-cost, easily scalable, and applicable for acoustic signal detection. The Multi
Sensors-based method enhances detection robustness and accuracy by integrating data
from various sensors. The advantages of Sensor-Based methods include their ability to
operate under various lighting conditions and to penetrate certain obstacles. However,
these methods also have limitations; for instance, acoustic detection is susceptible to
interference from environmental noise, and radio frequency spectrum monitoring struggles
with UAV employing autonomous flight or encrypted communications.

4.2. Vision-Based Methods

In recent years, many novel methods have been proposed based on visual information
to address the challenges in anti-UAV in real-world applications [84–89]. Vision-Based
approaches are more prevalent in anti-UAV tasks because they offer greater flexibility,
higher accuracy, and higher efficiency [22,90–93]. Vision-based algorithms detect and
track targets by analyzing drone features such as shape, color, and texture in single-frame
images or video sequences, with notable examples including the Siamese network [94–96],
Transformer [97,98], and YOLO [99–104] series. These techniques are mainly applied in
natural and infrared scene contexts [36,105–108]. Natural scenes refer to visible-light-based
environments, while infrared scenes rely on thermal radiation imaging technology, using
infrared cameras to detect the thermal radiation characteristics of objects. Since infrared
imaging [109,110] does not require external light sources, it has a clear advantage at night.
During flight, drones generate significant heat from components like motors and batteries,
leading to relatively high thermal radiation, making them more distinguishable in infrared
images. The design process of Vision-Based methods is shown in Figure 6. The left visual
data, such as images or video sequences, is input and processed by the detection network.
Detected targets are then directly marked and presented in the original input.
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Figure 6. Overview of general Vision-Based methods. The input can be a video sequence or an image
in RGB or infrared scenes. The Chinese characters are the shooting time and place of the images.

4.2.1. Siamese-Based

The Siamese-Based is a deep learning model based on the siamese architecture.
Siamese is a common network in single target tracking [111–115]. Typically, it consists of
two similar sub-networks, with each sub-network responsible for processing one input
data. The similarity between two inputs is evaluated by comparing the outputs of the
two sub-networks. Given its excellent performance, Siamese-Based networks have gained
significant popularity in the field of target tracking, becoming a popular method for learn-
ing the similarity between target templates and corresponding regions in search image
in tracking applications [116,117]. Bertinetto et al. [118] first conceptualized the tracking
task as a similarity matching problem between the target template and the search region,
Siamese has become a focal point of research in the field of target tracking.

Huang et al. [119] designed a Siamese framework composed of template branch and
detection branch, named SiamSTA, and applied it to track UAV in infrared videos. Facing
the challenges of small scale and rapid movement of UAV in infrared scenarios, SiamSTA
integrates local tracking and global detection mechanisms. The local tracking approach
employs both spatial and temporal constraints to restrict the position and aspect ratio of
candidate proposals generated within the nearby area, thereby suppressing background
interference and accurately locating the target. Simultaneously, to address the situation
where the target is lost from the local region, a three-stage global re-detection mechanism
is introduced. This mechanism utilizes valuable motion features from a global view by
employing a change detection-based correlation filter to re-detect the target. Finally, a
state-aware switching strategy is adopted to adaptively apply local tracking and global
re-detection based on different target states. The spatiotemporal attention mechanism and
three-stage re-detection mechanism may heighten the computational complexity of the
algorithm and affect tracking speed.

Fang et al. [120] combined the high-speed multi-stage detector YOLOv3 with Siamese
networks to create a real-time multi-scale object tracking model for infrared scenes, named
SiamYOLO. This model utilizes a global real-time perception mechanism to initially identify
candidate targets, and then leverages spatiotemporal information to eliminate distractions
and obtain true UAV targets. In the multi-scale fusion operation, a channel attention mech-
anism is introduced to enhance target-specific features while suppressing non-UAV target
features. Additionally, the spatiotemporal information of candidate targets is utilized along
with Kalman filtering to accurately locate real UAV targets from their flight trajectories.
Their approach is validated through comparative experiments on their self-constructed
dataset, demonstrating a balance between tracking accuracy and speed compared to other
competitive models.

Huang et al. [121] proposed a new method called Siamese Drone Tracker (SiamDT),
which uses a dual semantic feature extraction mechanism (DS-RPN) to generate candidate
proposals in order to address the issue of small drone tracking in dynamic backgrounds
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and cluttered environments. The authors also introduced a branch specifically designed to
suppress background interference. Experiments conducted on the self-built Anti-UAV410
dataset demonstrated that SiamDT can effectively distinguish the target from the back-
ground, thereby improving the accuracy of drone tracking.

Shi et al. [122] developed a Siamese tracker based on graph attention, termed GASiam,
which builds upon SiamR-CNN [123] as its foundation and introduces the following
improvements: (1) Enhanced the feature extraction capability for infrared UAV targets by
refining the MobileNetV2 [124]. (2) Introduced a graph attention module for local tracking,
utilizing local feature matching to enhance the embedding of information between the
target template and search region. (3) Designed a switching strategy in conjunction with a
three-stage global re-detection function, allowing the network to adaptively choose between
local tracking and global re-detection strategies to enhance the speed of re-capturing
targets after loss. The effectiveness of the graph attention module and switching strategy
depends on appropriate parameter settings and sufficient model training, which may
require extensive experimentation to optimize.

Cheng et al. [125] designed a method for long-term anti-UAV target tracking that
incorporates a Siamese network and a re-detection module. To address the issues of target
repositioning and updating templates in extended duration tracking of UAV targets, a
hierarchical discriminator is employed to produce target localization response maps based
on the Siamese network’s output. Furthermore, reliability criteria are established to assess
the confidence of the response maps. When the confidence level of the output is low,
the algorithm triggers the re-detection module and refreshes the template. Compared to
the strong baseline SiamRPN++ [111], the success rate and accuracy of this method are
improved by 13.7% and 16.5% respectively.

Xie et al. [126] proposed a novel spatio-temporal focused Siamese network, named
STFTrack. This method adopts a two-stage object tracking framework. Firstly, a siamese
backbone based on feature pyramid is constructed, enhancing the feature representation
of infrared UAV through cross-scale feature fusion. By integrating template and motion
features, the method directs previous anchor boxes towards suspicious regions for adaptive
search area selection. This effectively suppresses background interference and generates
high-quality candidate targets. Secondly, it proposes an instance-discriminative region-
CNN based on metric learning to further refine the focus on infrared UAV within candidate
targets. Finally, the method effectively addresses similar distractors and interference arising
from thermal cross talk. However, the generalization ability in natural scenes has not been
fully validated yet.

4.2.2. Transformer-Based

In recent years, there have been notable improvements in CNN-based algorithms
for tracking targets. However, these CNN-based trackers often struggle to maintain the
relationship between the template and the spatial search area. Transformers have been
successfully applied to target tracking due to their efficient and effective global modeling
capabilities [127–130]. The use of self-attention mechanisms in fusion modules fully exploits
global context information, adaptively focusing on useful tracking information.

Yu et al. [22] devised a novel unified Transformer-Based Tracker, termed UTTracker.
UTTracker comprises four modules: multi-region local tracking, global detection, back-
ground correction, and dynamic small object detection. The multi-region local tracking
module is used to handle target appearance changes and multi-region search to track targets
in multiple proposals. The global detection module addresses the challenge of frequent
target disappearance. The combined background correction module aligns the background
between adjacent frames to mitigate the impact of camera motion. The dynamic small object
detection module is utilized for tracking small objects lacking appearance information.
UTTracker achieves robust UAV tracking in infrared mode, and serves as the foundation of
the second-place winning entry in the 3rd Anti-UAV Challenge [46].
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Tong et al. [131] proposed a spatiotemporal transformer named ST-Trans for detecting
low-contrast infrared small targets in complex backgrounds. By introducing the spatiotem-
poral transformer module, ST-Trans captures the spatiotemporal information across consec-
utive frames, enhancing the detection performance of small targets in complex backgrounds.
This characteristic is particularly suitable for long-range small-scale UAV detection, as these
targets are often difficult to discern in single-frame images. In practical applications, it is
necessary to balance its computational complexity with real-time requirements.

4.2.3. YOLO-Based

You Only Look Once (YOLO) [132] is a widely used deep learning algorithm due to its
classification or regression-based single-stage object detection approach, which is character-
ized by its simplicity in structure, small model size, and fast computation speed [133–136].
The integration of YOLO algorithm [137–140] and anti-UAV technology is constantly devel-
oping, leading to a surge in research outcomes and applications.

YOLOv3-Based: Hu et al. [141] introduced an improved method for UAV detection
using YOLOv3 [142], tailored for the anti-UAV field. By leveraging the last four feature
maps for multi-scale prediction, the method captures more texture and contour information
to detect small targets. Additionally, to reduce computational complexity, the number of
anchor boxes is adjusted according to the size of UAV calculated from the four scale feature
maps. Experimental results demonstrate that this approach achieves the highest detection
accuracy and most accurate UAV bounding boxes while maintaining fast speed.

YOLOv4-Based: Zhou et al. [92] designed a network deployed on UAV edge devices
for detecting and tracking invasive drones, named VDTNet. This method uses YOLOv4 as
the backbone, and further improves inference speed through model compression techniques.
To compensate for the accuracy loss caused by model compression, the authors introduced
SPPS and ResNeck modules integrated into the network’s Neck, where SPPS replaces the
original SPP module with a 7 × 7 pooling. Finally, the proposed method was deployed on
the onboard computer of the drone and conducted real-time detection in both ground-to-air
and air-to-air test scenarios. On the FL-Drone dataset, the method achieved an mAP of 98%
with a latency of 11.6 ms.

YOLOv5-Based: Fardad et al. [143] developed a method for small UAV detection and
classification based on YOLOv5 [144], integrating Mosaic data augmentation and Path Ag-
gregation Network [145] architecture to enhance the model’s ability to detect small objects.
The model is trained using publicly air-to-air datasets merged with challenge datasets to
increase the number of small targets and complex backgrounds. The enhancement of detec-
tion accuracy is pursued through the amalgamation of Faster R-CNN [146] and Feature
Pyramid Network [147]. Experimental results demonstrate that YOLOv5 performed well
in the detection challenge.

Vedanshu et al. [41] utilized different versions of YOLO models to detect small UAV,
namely YOLOv5 [144] and YOLOv7 [148]. The results indicate that YOLOv5 performs
on datasets with color adjustments, while YOLOv7 performs better on RGB datasets. In
the analysis of different distances, YOLOv5 exhibits good accuracy in near, medium, and
far-distance scenes, particularly in complex backgrounds. Conversely, YOLOv7 shows
poorer detection performance in far-distance and complex background scenarios.

YOLOV7-Based: Li et al. [149] created a motion and appearance-based infrared anti-
UAV global-local tracking framework to address issues such as UAV frequently appearing,
disappearing, unstable flight paths, small sizes, and background interference. GLTF-MA
consists of four modules: Periodic Global Detection module, Multi-stage Local Tracking
module, Target Disappearance Judgment module, and Boundary Box Refinement module.
GLTF-MA achieves optimal performance in the 3rd Anti-UAV Challenge and the anti-UAV
benchmark [23], particularly in scenarios involving fast motion and low resolution.

YOLOV8-Based: Huang et al. [150] proposed an improved model called EDGS-
YOLOv8, focused on detecting small-sized UAV, based on YOLOv8. In the detection
head, they used the DCNv2 deformable convolutional network to handle local details
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and scale variations of drones. Additionally, they applied Ghost convolution and the
C3Ghost module in the neck part to compress the model, reducing its size to 4.23 MB,
making it more suitable for deployment on edge devices. Although the model optimizes
computational efficiency, the introduction of complex mechanisms such as EMA and DCNv
has led to a decrease in FPS. According to comparison experiments, the improved model’s
FPS dropped from 96.2 FPS (for the baseline YOLOv8n) to 56.2 FPS. Both the model size and
FPS decreased after the improvements, making it less efficient than the baseline YOLOv8n.

In summary, Siamese-Based methods are well-suited for real-time single-target track-
ing, Transformer-Based methods excel in processing complex scenes and capturing long-
range dependencies, and YOLO-Based [151,152] methods emphasize speed and real-
time capabilities, suitable for rapid detection and tracking. In practical applications, the
choice of method should be based on the specific environment, task requirements, and
resource constraints.

4.3. Discussions on the Results of Methods

According to the methods used in this paper, the anti-UAV detection and tracking
technology is classified. Table 3 classifies some representative methods and experimen-
tal results.

4.3.1. Evaluation Metrics

For the different methods, as shown in Table 3, the evaluation metrics used are distinct.
To better understand the evaluation criteria for these methods, the evaluation metrics
used in Table 3 are listed here: Accuracy, F1 score (F1), Precision, mAP, Recall, Success rate
(Success), tracking average accuracy (acc).

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

F1 =
2 · Precision · Recall
Precision + Recall

, (2)

Precision =
TP

TP + FP
, (3)

Recall =
TP

TP + FN
, (4)

mAP =
1
N

N

∑
i=1

APi, (5)

where TP represents the true positives, TN represents the true negatives, FP represents
false positives, and FN represents false negatives. The mean Average Precision mAP),
where N denotes the number of classes and APi denotes the Average Precision for the
ith class.

success =
1
T

T

∑
t=1

δ(IOUt > T0), (6)

acc =
1
T

T

∑
t=1

IOUt × δ(vt > 0) + pt × (1 − δ(vt > 0)), (7)

where IoUt defines the Intersection over Union (IoU) between the tracked bounding box
and its corresponding ground-truth bounding box. To denotes the set threshold. vt is the
ground-truth visibility flags of the target, and δ indicates an indicator function. When the
target is truly visible, vt = 1 and δ(vt > 0) = 1. When the target is invisible, vt = 0 and
vt(vt > 0) = 0. pt denotes the prediction indicator function. When the prediction is empty,
pt = 1, otherwise pt = 0.
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Table 3. Different categories of methods and their detailed descriptions.

Category Methods Datasets Results Experimental Environment

Sensor-Based

RF-Based Xiao et al. [47] Mavic Pro, Phantom3 and
WiFi signals

With SVM, the Accuracy more than 0.90
at − 3 dB SNR; With KNN, the Accuracy
more than 0.90 at −4 dB SNR

receiver with 200 MHz on 2.4 GHz
ISM frequency

Acoustic-Based Yang et al. [48] The six nodes recorded au-
dio data

With SVM, result of training STFT
F1 = 0.787, With SVM, result of training
MFCC F1 = 0.779

C = 10i, where i = 1, 2, ..., 14, 15;
γ = 10i, where i = −15, −14, ...,
−2, −1

Multi-Sensors-Based

Fredrik et al. [31]
365 infrared videos, 285
visible light videos and an
audio dataset

The average of infrared sensor
F1 = 0.7601, The average of Visible
camera F1 = 0.7849, The audio sensor
F1 = 0.9323

camera, sound acquisition device,
and ADS-B receiver

Xie et al. [83]

Self built multiple background
condition UAV detection
datasets containing visual
images and RF signals

AP = 44.7, FPS = 39

NVIDIA GeForce GTX 3090
Hikvision pan-tilt-zoom (PTZ)
dome camera, and TP-8100
five-element array antenna

Vision-Based

Siamese-Based

Huang et al. [119] 2nd Anti-UAV [46] Precision = 88.8%, Success = 65.55%, av-
erage overlap accuracy = 67.30% Not provide

Fang et al. [120] 14,700 infrared images
self-built

Precision = 97.6%, Recall = 97.6%,
F1 = 0.976, acc = 70.3%, FPS = 37.1

2.40 GHz Intel Xeon Silver 4210R
CPU, 3× NVIDIA RTX3090 GPU
and PyTorch 1.8.1 with CUDA 11.1

Huang et al. [121] 410 self built infrared tracking
video sequences Precision = 68.19% Not provide

Shi et al. [122] Jiang’s dataset [23] and 163
videos self-built Precision = 94.9%, Success = 71.5% 4× NVIDIA Geforce RTX 2080 Su-

per cards, Python 3

Cheng et al. [125] Jiang’s dataset [23] Precision = 88.4%, Success = 67.7% NVIDIA RTX 3090 GPU and Pytorch

Xie et al. [126] Jiang’s dataset [23] and LSOTB-
TIR [153]

Precision = 92.12%, Success = 66.66%,
Accuracy = 67.7%, FPS = 12.4

Intel Core i9-9940X@3.30 GHz, 4×
NVIDIA RTX 2080Ti, Python 3.7 and
PyTorch 1.10

Transformer-Based

Tong et al. [131] Collect and organize data on
anti-UAV competitions Precision = 88.39% Intel i9-13900K, GeForce RTX

4090 GPU

Yu et al. [22] 1st and 2nd Anti-UAV [46]
1st TestDEV: AUC = 77.9%,
Precision = 98.0%; 2st TestDEV:
AUC = 72.4%, Precision = 93.4%

4× NVIDIA RTX 3090 GPU, Python
3.6 and Pytorch 1.7.1

YOLO-Based

Hu et al. [141] 280 testing images, self-built Precision = 89%, mAP = 37.41%,
FPS = 56.3

Intel Xeon E5-2630 v4, NVIDIA
GeForce GTX 1080 Ti, 64-bit Ubuntu
16.04 operating system

Zhou et al. [92] FL-Drone [154] mAP = 98% NVIDIA RTX3090

Fardad et al. [143] 116,608 images from [44,155] mAP = 98%, Recall = 96% 4× Tesla V100-SXM2 graphic cards

Vedanshu et al. [41] 1874 images from Kaggle [42]
and self-built

mAP = 96.7%, Precision = 95%,
Recall = 95.6% Not provide

Li et al. [149] 3rd Anti-UAV [46] acc = 49.61% Not provide

Fang et al. [150] Det-Fly [44] Precision = 0.914, Recall = 91.9% NVIDIA A40

4.3.2. Results of the Methods

From Tables 3 and 4, we can see that early anti-UAV detection and tracking methods
[120,149,156] need the support of sensors. The advantage of Sensor-Based methods is that
they are not affected by field of view occlusion or changes in target scale However, the ef-
fectiveness of these methods is susceptible to a variety of factors, including electromagnetic
interference, environmental noise, detection distance.

Recent Vision-Based approaches have opened up new paths from a visual perspec-
tive, complementing the shortcomings of earlier Sensor-Based methods. Although each
classification method is sorted by publication time, it is difficult to evaluate all the meth-
ods because these methods use different datasets. From [31,48,120] we get Vision-Based
approaches tend to provide higher F1 score in anti-UAV approaches compared to methods
that rely on sensors. Vision-Based methods can capture rich information about the environ-
ment and the target, including shape, color, which helps to improve the accuracy of target
detection and recognition. In contrast, the information provided by sensors, such as RF or
acoustic, may be limited.In addition, YOLO-Based methods [141] have higher inference
speed compared to Siamese-Based methods [120,126]. In the pursuit of real-time object
tracking, YOLO-Based methods are preferred.
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Table 4. Analysis of the advantages and disadvantages of the classified methods.

Category Methods Advantages Disadvantages

Sensor-Based

RF-Based
Long distance monitoring
No need for line of sight

The communication protocol of UAV may undergo periodic changes
Many UAV can dynamically switch communication frequencies
Prone to interference from devices like WiFi and signal towers

Acoustic-Based Low cost
Multiple acoustic nodes monitoring

Susceptible to interference from environmental noise
Short sound propagation distance limits the listening range.

Multi-Sensors-Based High accuracy
Has good adaptability to complex environments

High model complexity and large computational load
Multimodal data fusion is challenging

Vision-Based

Siamese-Based
Suitable for real-time single target tracking
Low computational cost
Fast inference speed

Brief occlusion can cause Siamese networks to lose track
Sensitive to scale changes

Transformer-Based Excel in processing complex scenes
Robust against challenging scenarios

Not sensitive to sparse small UAV features
Large computational load, insufficient real-time performance

YOLO-Based
Emphasize speed and real-time capabilities
Suitable for rapid detection or tracking
Balance between inference speed and accuracy

Sensitive to obstruction by obstacles
Easy to be affected by weather conditions

5. Discussions
5.1. Discussions on the Limitations of Datasets

Anti-UAV detection and tracking datasets are crucial foundation for training machine
learning models and evaluating the performance of anti-UAV technologies. However,
existing public datasets have some limitations.

• Lack of multi-target datasets: In the publicly available datasets we have collected, most
are focused on single-target tracking, with minimal interference from surrounding ob-
jects (such as birds, balloons, or other flying objects). There is a lack of datasets related
to multi-target tracking in complex scenarios. This limitation creates a significant gap
between research and actual application needs. With the rapid development of small
drone technology, scenarios involving multiple drones working in coordination are
expected to become increasingly common in the future. However, existing datasets
are insufficient to fully support research and development in these complex scenarios.

• Low resolution and quality: Some datasets suffer from low-resolution images and
videos, which can hinder the development and evaluation of high-precision detection
and tracking algorithms, especially when identifying small or distant drones. The
illumination can be a factor to impact the appearance of drones.

• Scenarios: Although some datasets have a large number of images, many images have
similar scenes and mainly focus on specific conditions or environments, such as urban
or rural environments, day or night scenes. It limits the generalizability of evaluation
techniques in the real world.

• UAV types: Existing datasets may only include a few types of drones, whereas, in
reality, there is a wide variety of drones with different appearances, sizes, and flight
characteristics. Recently, many bionic drones are being produced and appear in many
scenes. It has stronger concealment.

5.2. Discussions on the Limitations of Methods

In the task of anti-UAV, there are some limitations for current methods.

• Insufficiency of uniform assessment rules. Although many methods utilized their
own metrics for experimental comparison, it still lacks of uniform assessment rules.
Meanwhile, considering many approaches are designed and implemented under
different running environments, it faces challenges to provide a fair evaluation
of methods.

• Uncertainty of the model’s size. Quite a number of literatures do not provide the
models’ size. This is important for real-time applications because the light-weight
models are more likely to be deployed in embedded devices.

• Difficult to achieve the trade-off between performance and accuracy: For rapidly flying
UAV, it has large requirements for accurate detection in short time. The algorithms
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that achieve high performance always with high complexity, that is, it needs more
computation resources.

• Insufficient generalization ability: Due to the lack of diversity in the dataset, the
network model may overfit to specific scenarios during training, resulting in in-
sufficient generalization ability. This means that performance may decrease when
the model is applied to a new and different environment. Especially in the contin-
uous day-to-night monitoring scenarios, it is difficult for one model to cover all
day’s surveillance.

• The detection and tracking of UAV swarms remain underdeveloped: Current tech-
nologies face significant challenges in handling multi-target recognition, trajectory
prediction, and addressing occlusions and interferences in complex environments.
Particularly, during UAV swarm flights, the close distance between individuals, along
with varying attitudes and speeds, makes it difficult for traditional detection algo-
rithms to maintain efficient and accurate recognition.

5.3. Future Research Directions

The development of anti-UAV is an important means to address the growing threat
of UAV, especially in areas such as security monitoring, military defense, and civil avia-
tion. The future research directions for anti-UAV detection and tracking may include the
following five aspects.

• Image super-resolution reconstruction: In infrared scenarios, anti-UAV systems
often operate at long distances [157] where the image resolution is not only very low
but also often encountering many artifacts. Super-resolution techniques enable the
recovery of additional details from low-resolution images, making the appearance,
shape, and size of UAV clearer. When the drone moves quickly or away from
the camera, super-resolution technology can help restore lost image details and
maintain tracking continuity. However, image super-resolution usually requires
significant computing resources, and algorithms need to be optimized to balance
computational efficiency and image quality. Therefore, image super-resolution
reconstruction can be considered as a critical technology for small UAV target
detection and tracking.

• Autonomous learning capability: As UAV technology becomes increasingly intelligent,
UAV can autonomously take countermeasures when detecting interference during
flight. For example, they might change communication protocols, switch transmission
frequencies to avoid being intercepted, or even dynamically adjust flight strategies.
This advancement in intelligence imposes higher demands on anti-UAV detection
and tracking algorithms. To effectively address these challenges, anti-UAV detection
and tracking algorithms need to possess autonomous learning capabilities and be
able to make real-time decisions, thereby adapting to and countering the evolving
intelligent behaviors of UAV. This not only requires algorithms to be highly flexible
and adaptive but also to maintain effective tracking and countermeasure capabilities
in complex environments.

• Integration of multimodal perception techniques: In Section 3, we have discussed in
detail the advantages and disadvantages of Sensor-Based and Vision-Based methods.
However, these two approaches can play complementary roles in anti-UAV technology.
While Sensor-Based methods may be affected by environmental noise, Vision-Based
methods can provide additional information to compensate for these interferences.
Therefore, combining these two approaches can significantly enhance UAV detection
and identification capabilities under various environments and conditions. Although
Section 3 has discussed Multi-Sensors-Based methods, these approaches have pri-
marily been explored at the experimental stage, indicating considerable room for
improvement in practical applications.

• Countering multi-agent collaborative operations: With the continuous advance-
ment of drone technology, the trends of increasing intelligence and reducing costs
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are becoming more evident, leading to more frequent scenarios where multiple
intelligent UAV work collaboratively. This collaborative operation mode offers
significant advantages in complex tasks; however, it also presents new challenges
for anti-drone technology. Existing detection and tracking algorithms may perform
well against single targets, but when faced with multiple intelligent UAV operating
collaboratively, they may experience decreased accuracy, target loss, and other
issues. Therefore, developing anti-drone technologies that can effectively counter
multi-agent collaborative operations has become a critical direction for current
technological development.

• Anti-interference capability: In practical applications, anti-UAV systems need not only
to detect and track UAVs but also to possess strong anti-interference capabilities. It
is crucial to accurately distinguish between similar objects such as birds, kites, and
balloons, thereby significantly enhancing anti-interference performance and ensuring
stable operation in various complex environments.

6. Conclusions

In this paper, we conduct a systematic review of Vision-Based anti-UAV detection
and tracking methods. This paper summarizes the mainstream methods for anti-UAV
detection tasks, and sheds light on the advances in time. It aims to providing the help to
address the issues of unauthorized or excessive UAV flights. A detailed analysis of all the
surveyed papers is presented to provide readers a good understanding of the advances in
the anti-UAV field.

This review mainly covers several aspects, namely, the datasets, the methods, and the
future research. Firstly, nine anti-UAV datasets are collected, coupled with visual images,
detailed descriptions and the access links. The datasets are discussed from multi-target, low
resolution and quality, scenarios, and UAV types. Readers can have a good understanding
of the related datasets and find what they want quickly.

Secondly, we review a series of anti-UAV methods. We propose a hierarchical represen-
tation to classify them into Sensor-Based and Vision-Based. Representative approaches are
illustrated to show the main thoughts and characteristics. The advantages and disadvan-
tages are also summarized. It can be concluded that Vision-Based methods have become
the hot topic. Three categories, Siamese-Based, Transformer-Based, and YOLO-Based, are
being attached more importance.

Finally, we highlight five future directions. Researchers and engineers around the
world could easily grasp the recent advances of Vision-Based anti-UAV methods and
find valuable data for practical applications. This can foster their efficiency largely. It
is expected that this review can provide technique support for the applications such as
security monitoring, military defense, and civil aviation.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicles
RF Radio Frequency
SVM Support Vector Machine
CNN Convolutional Neural Networks
KNN k-Nearest Neighbors
SNR Signal to Noise Ratio
YOLO You Only Look Once
STFT Short-Time Fourier Transform
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