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Abstract: Robotic transport missions serve a variety of valuable purposes within similar
contexts. These include delivering packages in urban or remote areas, dispatching supplies
to disaster or conflict zones, and facilitating delivery operations. In such a context, this work
deals with the cooperation and control of multiple-robot systems involving heterogeneous
robot formation with sensing and actuation capabilities to perform load transportation
tasks. Two off-the-shelf unmanned ground vehicles (UGVs) working cooperatively with
one unmanned aerial vehicle (UAV) are used to validate the proposal. The interactions
between the UAV and the UGVs are not only information exchanges but also physical
couplings required to cooperate in the load’s joint transportation. The existence of an
obstacle between the two UGVs makes it impossible for them to meet each other. Thus, the
lifting, transport, and delivery of the load from one UGV to the other are performed by a
UAV with a suspended electromagnet actuator. Experiments are performed for a weight of
165 g (load + electronic board), which corresponds to up to 36% of the UAV’s mass.

Keywords: multi-robot systems; route planning and following; pick-and-place; autonomous
systems

1. Introduction
The automation of delivery processes using unmanned aerial vehicles (UAVs) stands

out due to the high levels of execution accuracy and velocity of such robots compared to the
traditional model of delivery, using manned vehicles on the ground [1]. Delivery companies
are seeking faster and more cost-effective methods for parcel distribution [2]. Allied to this,
the rapid advancement of aerial robot technologies is promoting a migration in the use of
UAVs from passive tasks, such as inspection and monitoring, to active ones, such as cargo
manipulation and transportation [3–5]. Thus, such devices can be incorporated into the
parcel delivery industry in a time- and cost-efficient manner.

It is important to highlight that robot modeling and control are influenced by the
flight mode—whether lifting, transporting, or delivering—each of which exhibits unique
dynamic characteristics affected by the weight and shape of the payload [6,7]. These issues
have motivated several research groups to investigate the potential of multi-agent systems
in order to overcome such limitations [8,9]. The use of multiple UAVs carrying a single
payload is a way to avoid some complexities using sub-optimal and non-agile motions
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or simplified models [10–14], distributing the cargo weight and reducing disturbances
to the aerial vehicle during transport. However, for long-distance missions, the battery
consumption may become the biggest villain. Therefore, these tasks can be more effectively
accomplished by employing heterogeneous robotic agents with varying capabilities.

1.1. Related Works

Recent advances in the control of multi-robot systems have showcased the potential for
synergistic collaboration between a UAV and static or mobile platforms, such as unmanned
ground vehicles (UGVs). The integration of UAVs and UGVs into collaborative systems
has opened up new opportunities for dealing with complex tasks that require both aerial
and ground perspectives. UAVs excel at rapid deployment and providing comprehensive
aerial views, while UGVs offer detailed ground-level interaction and manipulation capabil-
ities [15,16]. In cargo transportation scenarios, UAVs facilitate quick and agile deliveries,
while UGVs are better suited to handling heavier loads due to their greater load capacity.
However, UGVs are often limited by road networks, while UAVs, despite their ability
to traverse diverse terrain, face energy limitations [17]. They both ultimately need route
scheduling to optimize delivery to the customer. By exploiting their unique strengths in
unified structures, these systems provide innovative solutions for missions that require
both aerial and ground resources, offering significant advantages in various applications
due to the complementary nature of these robots [18,19].

Despite significant progress, UAV–UGV collaboration continues to face critical chal-
lenges in key areas, such as computational constraints due to the size and weight limi-
tations of UAVs and UGVs, which reduce their computational power, making real-time
operations difficult or even unfeasible. Additionally, communication network instabil-
ity disrupts seamless interaction and effective collaboration among the agents, directly
affecting coordination complexity, which increases with the number of agents. Further-
more, when physical barriers are present in the environment, complex scenarios involving
challenging terrains or unforeseen environmental conditions require advanced planning
and adaptability. In addressing these challenges, researchers aim to optimize the poten-
tial of collaborative UAV–UGV systems to ensure they operate reliably and efficiently in
real-world applications.

In such a context, a notable and emerging application of UAV–UGV cooperation for
load transportation is in last-mile delivery scenarios. These applications involve UAVs
delivering packages [20–23], UAVs taking off and landing on trucks navigating street net-
works [24–27], and deliveries determined by consumer preferences or predefined delivery
modes, completed by either trucks or drones [28]. With many countries approving regula-
tions enabling the use of small drones for package delivery, the last-mile package delivery
problem—requiring the autonomous navigation of UGVs and UAVs—has garnered sig-
nificant global research attention. However, achieving such tasks demands a high degree
of autonomy, alongside a control system capable of maintaining formation during naviga-
tion and dynamically rerouting to safe paths when obstacles obstruct the original route.
Within this context, the current study simulates the final step of a package delivery scenario,
focusing on the stage where the UAV must land back on a mobile terrestrial platform (e.g.,
a small truck) after delivering its payload. Specifically, this work examines the phase just
prior to the UAV’s landing, under the assumption that only the UGV encounters obstacles.

Given the limitations of a single robot, whether a UAV or a UGV, for load transporta-
tion, the collaboration between these mechanisms to enhance their real-world applications
has increasingly attracted the attention of researchers in recent years. Arbanas et al. [29]
present a heterogeneous formation composed of UAVs and UGVs in cooperation to ac-
complish load transportation missions. The UAV, equipped with two manipulator arms, is
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designed to pick up or deliver a load onto a UGV while navigating through an environment
with obstacles. In this setup, all robots have access to information about the load’s initial
and final positions, as well as a 3D occupancy map of the environment. This work presents
a high-level task-planning framework that enhances the unique capabilities of ground and
aerial robots to enhance their cooperative capabilities. Additionally, a task decomposition
method is employed to coordinate the robots’ movements, with their actions being guided
by Generalized Partial Global Planning. Following this, the same research group presents
in [30] a parcel transportation mission for a symbiotic multi-robot system composed by
an aerial manipulator cooperating with a lightweight UGV (L-UGV). Such work proposes
a decentralized control, tackling low-level and high-level structures. The first phase en-
compasses mapping and localization, motion planning for both the UAV and UGV, the
UAV landing on the L-UGV, and the pick-up of the L-UGV. The second one focuses on
decentralized ad hoc reasoning to determine the required actions for mission execution.

Guérin et al. [31] propose a decentralized multi-robot strategy for load transportation
in industrial environments, where the UAV and a human operator collaboratively guide
the UGV team to move in a coordinated way. The UAV flies over the area to offer global
coverage and assist the UGVs during navigation, avoiding obstacles. The human operator
selects the waypoints. A camera mounted on the UAV is used to provide real-time localiza-
tion information to a UGV, the leader, to navigate in the scenario while the other UGVs,
the followers, take the leader as a target and follow it while carrying the loads.

A recent obstacle avoidance algorithm embedded in a formation controller to guide
a heterogeneous UAV–UGV team in a path-following task, making it possible to control
the reference path velocity given to the robots, is presented in [27]. The UAV returns after
delivering a package and needs to land on the UGV, its reference base, which will then
proceed with its route toward another delivery goal. The formation is considered as a
virtual structure. After executing the parcel delivery mission, the UAV lands on the UGV
by modeling a straight line structure formed between the robots, in which the distance
parameter decreases with time in order to bring them closer for a smooth and safe landing.

1.2. Aims and Contributions of the Work

Instead of building UAVs with better capabilities for load transportation, we propose
a collaborative strategy involving a UAV and two UGVs. In such a multi-robot system,
one UGV has a trailer for transporting the UAV and, consequently, for saving its battery
life. Since the UGV is not able to easily overcome obstacles such as ditches and broken
bridges, the use of the UAVs becomes a feasible solution. Specifically, the highlights of the
proposal’s contributions are as follows:

• High-level decentralized mission planning for a UGV–UAV formation cooperatively
working in transportation missions under environment constraints.

• The development of a lightweight electromagnet actuator driven by an Arduino Nano
microcontroller.

• Validation in real-world experiments, allowing for success in accomplishing the pick-
ing/delivery of cargo from/on moving UGVs.

To address these topics, this paper is organized as follows: Section 2 provides a detailed
explanation of the proposed mission planning algorithm and its integration with the multi-
robot system for load transportation. Section 3 outlines the experimental setup, including
the electronic module of the actuation system and the path parameters for the robots.
Subsequently, Section 4 presents the results of experiments conducted using the unicycle-
like mobile platform (UGV) and the quadrotor (UAV), highlighting the robots’ behavior
during navigation and discussing practical issues related to perception and navigation.
Finally, Section 5 summarizes the key findings and discusses future research directions.
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2. Mission Planning for Last-Mile Delivery Application
The load transportation plan studied here is designed for environments where it

is impossible for the ground robot to reach the other side of the map due to obstacles
such as a river, ditch, steep mountain, landslide, or broken bridge, among others. As a
result, the cargo must be transported from one side to the other, as illustrated in Figure 1.
Therefore, UAV–UGV cooperation emerges as a valuable approach.

Figure 1. UGV load transportation limitations due to specific environment constraints. A possible
solution for delivery packets in long-distance missions is the cooperation between UAV and UGVs in
the mission planning step.

In summary, the UGV carrying the cargo identifies the obstacle ahead and communi-
cates with the ground control station (GCS), requesting support to complete the mission in
a timely manner. Upon receiving the support request, GCS sends a command to one of its
bases containing robots on standby. The UAV–UGV robot team with the highest availability
departs to the estimated location of the other UGV to collect the payload and continue
the mission.

The main idea is that the UGVs are required to perform deliveries and must travel
long distances with the loads. However, they may encounter obstacles along the way
that make it impossible to go ahead with the delivery or that delay the transport. Thus,
when identifying the impossibility of completing the mission, the robot responsible for the
delivery sends a support request to the GCS closest to the final delivery destination city.
The operator responsible for managing the system will open an order to send the robots
with the highest availability among those available at the location. As the impediment to
the mission of the main UGV is due to the presence of an obstacle in the way, the use of
a UAV is essential for the collection of the cargo from the UGV that requested support,
and delivery to the supporting UGV is of paramount importance. Thus, the UGV that
departs on the rendezvous with the main UGV carries with it a UAV capable of tracking
the main UGV and collecting the cargo it carries.
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This work proposes a collaborative approach between aerial and terrestrial robots
for scenarios involving package transport and delivery, aiming to optimize the unique
characteristics of each type of robot and minimize the mission execution time. The eval-
uation focused on a proof-of-concept experiment for last-mile delivery in a controlled
environment, featuring an aerial robot, two ground robots, and a load. While the study suc-
cessfully demonstrates this collaboration in a simplified model, when it comes to real-world
applications, the scenarios often involve larger and more robust vehicles, such as trucks
and drones with a greater payload capacity and autonomy. In such cases, the presence of
unexpected obstacles must be addressed, requiring strategies for obstacle identification
and analysis of the ground robot’s ability to either overcome or avoid them to minimize
energy consumption and task completion time. This remains a suggestion for future work
to enhance the robustness and practicality of the proposed architecture.

2.1. Robot Modeling and Control
2.1.1. The Pioneer P3-Dx UGV

In this work, we utilized the Pioneer P3-Dx, a unicycle-like mobile robot, whose
kinematic model is described as shown in Figure 2. Given that navigation occurs solely in
the horizontal plane, the robot’s pose is represented by the vector x = [x y ψ]⊺, where x
and y denote the coordinates of the control point located at the center of the virtual axle
⟨r⟩, and ψ represents its heading relative to the x axis in the inertial frame ⟨w⟩. The linear
and angular velocities of the robot are denoted by u and ω, respectively, and the vector
u = [u ω]⊤ comprises these velocities. The non-zero constant a denotes the distance from
the origin of the body axes (the baseline connecting the two driven wheels) to the control
point of interest. Additionally, the mobile robot seeks a goal with a specific orientation,
represented by the reference frame ⟨g⟩.

Figure 2. Spatial unicycle-type robot representation and polar modeling variables (in blue). The target
point is represented by xd = [xd yd ψd]

⊺.

The system of kinematics equations describing the motion of the robot over time in
the Cartesian plane is presented in [32]. In most applications, especially those performed at
high speeds, the robot’s kinematic model alone is not able to track and follow trajectories
and/or paths efficiently and accurately. Thus, for the design of motion controllers, it is
of paramount importance to consider the robot’s dynamic modeling. This UGV has an
embedded low-level controller that drives the two motors of the vehicles, enabling the use
of the aforementioned high-level commands of linear and angular velocities, u. To deal
with the dynamic effects caused by inertia and friction, a dynamic model first introduced
in [33] and updated in [34] was used.

The robot dynamic model in the compact form is presented by [35] as

Mu̇ + Cu = ure f , (1)
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where M and C are the Inertia and Coriolis matrices, respectively.
A positioning control can be achieved using inverse kinematics and considering a

desired trajectory. The reference velocity command can be defined as

ud = K−1(tanh ( ˙̃x) + Kp tanh(x̃)), (2)

where Kp is a positive definite gain matrix.
To contemplate applications in which the robot needs to navigate under high-speed

movements, and to evaluate a more realistic scenario, a dynamic compensation module is
adopted. Considering the (1), the adopted dynamic compensation control law is given by

ure f = M(u̇d + κ(ud − u) + Cu) (3)

in which the gain κ is a positive definite matrix and (ud − u) is the velocity tracking error.
The control signal u̇u is obtained by numeric differentiation considering the sampling time
of the control loop.

Now, the use of the proposed dynamic model and its properties is illustrated via the
design of an dynamic compensation controller. It receives the desired control signals ud

from the kinematic controller and generates a pair of linear and angular velocity references
ure f for the robot servos, as shown in the diagram block of Figure 3.

Figure 3. The dynamic control system in charge of guiding the robot to the target point.

2.1.2. The Parrot Bebop 2 UAV

To model the the UAV used in this work, we will refer to the description presented in

Figure 4. The translational coordinates of the quadrotor are represented as x =
[

x y z
]⊤

and its attitude is described by the vector η =
[
ϕ θ ψ

]⊤
, which contains the roll, pitch,

and yaw Tait–Bryan angles, both related to inertial reference frame ⟨w⟩. The Newton–
Euler dynamics correspondent to the used quadrotor, and its simplified form is presented
in Reference [35]. Such a simplification performs well for roll and pitch angles up to
approximately 30◦, corresponding to linear velocities of approximately 1.5–2 m/s [36].
In this way, the drone’s dynamic model can be succinctly and simplified, expressed as

ẍ
ÿ
z̈
ψ̈

 =


k1cψ −k3sψ 0 0
k1sψ k3cψ 0 0

0 0 k5 0
0 0 0 k7




uvx

uvy

uż

uψ̇

−


k2cψ −k4sψ 0 0
k2sψ k4cψ 0 0

0 0 k6 0
0 0 0 k8




vx

vy

ż
ψ̇

. (4)

Let us denote c. = cos(.) and s. = sin(.) for compact notation. We have q̈ = F1u − F2v.
Here, u ∈ [−1, 1] represents the normalized control signals. Specifically, uvx and uvy

correspond to pitch and roll commands, indirectly influencing the linear velocity along the
xB and yB axes. Additionally, uż and uψ̇ are related to the inputs for ż and ψ̇, respectively.
Finally, vx, vy, and ż denote the linear velocities along the x, y, and z axes in the UAV body
frame, while ψ̇ represents the angular velocity around the z axis in the global frame.

It is important to emphasize that, although the model does not encompass the dynam-
ics of the UAV, this formulation aims to illustrate the impact of high-level control signals
on the vehicle’s maneuvers.
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Figure 4. Parrot Bebop 2 description and pose variables, according to Tait–Bryan angle notation.

A near-hover model for the quadrotor can be written in the linear form:

u = (FKu)
−1(ẍre f + Kẋ ẋ), (5)

where F is a rotation matrix relating the coordinate systems ⟨w⟩ and ⟨b⟩, only dependent of

ψ, and x =
[

x y z ψ
]⊤

are the displacements in frame ⟨b⟩ and yaw heading. The ma-
trices Ku and Kẋ are diagonal matrices containing, respectively, the dynamic and drag
parameters for the model. The vector xre f contains the reference control signal for a de-

sired trajectory, and u =
[
uθ uϕ uż uψ̇

]⊤
is the vector of high-level commands, whose

entries are all in the interval [−1.0,+1.0].
The model parameters in Ku and Kẋ are obtained through an identification procedure,

as explained in [37]. Knowing such parameters, one can implement a feedback linearization
controller, such that the reference signal ẋre f can be obtained using PD feedback plus
a feedforward term, which corresponds to ẍre f = ẍd + Kd tanh ˙̃x + Kp tanh x̃. In this
formulation, xd is a trajectory to be tracked, x̃ = xd − x, ˙̃x = ẋd − ẋ, and Kd and Kp are
positive definite gain matrices.

So, we can rewrite the control law in (5) as

ud = (FKu)
−1(ẍd + Kd tanh ˙̃x + Kp tanh x̃ + Kẋ ẋ). (6)

The diagram block describing the implemented controller is shown in Figure 5.

Figure 5. The dynamic control system in charge of guiding the robot to the target point.

For the successful experimental evaluation of the proposed high-level task allocation
planner, all utilized robots must have the following prerequisite skills: dynamic stability for
the preselected set of tasks and the ability to localize themselves, plan and execute obstacle-
free trajectories, as well as an infrastructure through which they can share information and
negotiate task allocation. The controllers presented for the UGV (3) and the UAV (6), were
designed using the feedback linearization technique, which assumes perfect knowledge
of the model parameters. Under these assumptions, the proposed controllers make the
system asymptotically stable when closing the loop, as presented in [35].
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In this work, we assume that the map of the environment is a priori known and that
each vehicle knows its exact position. In practice, this is difficult to achieve without the
utilization of self localization and map building algorithms. We leave this part of the system
for future work and development, but, for now, we can achieve this through a combination
of a motion tracking system and a priori known environment.

2.2. The Proposed Case Study for the Last-Mile Multi-Robot System

As aforementioned, UGVs have greater autonomy in the navigation time, a higher
payload capacity, and greater traction. However, they often become stuck due to obstacles
that cannot be circumvented, as well as suffer from sensory limitations and occlusions.
On the other hand, UAVs provide a broad field of view and rapid coverage of search
areas, making them ideal for mapping and monitoring tasks. Nevertheless, they are
limited by their low payload capacity relative to their size, as well as a short operational
flight time. However, the complementary skills offered by each vehicle can overcome the
specific limitations of the other. Consequently, coordinated operations between UGVs
and UAVs can generate highly advantageous synergies, including multi-domain sensing
and improved line-of-sight communications. Thus, the objective here is to introduce a
collaborative and exploratory approach using UGVs and UAVs.

Let us imagine a delivery agency that has regional branches (or headquarters) in
cities strategically distributed to optimize the vehicle routing according to the goods to be
transported. Each of these agency management and transportation posts has a number of
unmanned vehicles available, capable of navigating autonomously to deliver the loads. All
robots communicate with each of the GCSs, as suggested in Figure 6. In addition, all GCSs
communicate with each other naturally and periodically in order to track the progress of
deliveries. Operators are responsible for managing orders, deliveries, and keeping the entire
system running. In our study and proof of concept, the miniature robots are Pioneer P3-DX
and Bebop 2.Therefore, in order to prevent possible ambiguities, all images are referred to
these robots, which here represent specialized vehicles for last-mile delivery missions.

To have an ideal and efficient system for outdoor load transportation, first, the pro-
posed system focuses on autonomous UGV-UAV cooperation in an indoor monitored
environment. Here, we focus on the autonomous last-mile delivery application in the
presence of insurmountable obstacles by using only UGV robots.

2.3. The Cooperative Load Transportation Strategy

Figure 7 depicts an overview of the scenario configuration and the robots used in
this work. For the moment, note that the markers used by the motion capture system
are fixed in the robots to determine their posture in real time. To perform the missions,
reference control signals for navigation are sent individually to the robots into the formation,
closing the control loop. The vehicles’ modeling and control are described in the following
subsections. In order to facilitate understanding, the main UGV, responsible for cargo
delivery, is referred to as UGV A, and the support UGV, which finishes the mission given
by UGV A is labeled as UGV B. Finally, the aerial robot is referred to simply as UAV.

The last-mile delivery mission is planned considering that UGV A navigates in an
obstacle-free environment, despite navigating in a reactive mode in order to adapt to
the scenario conditions. To explain the stages of the task execution, we use the scenario
presented in the center of Figure 7, which contains the UGVs and the UAV with their
respective directions of movement, in addition to the load, the trailer platform, and the
representative obstacle.

In the proposed approach, the decision for the UGV to remain in motion, rather
than stopping and waiting for the UAV–UGV team to take over the load, is based on
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optimizing the overall efficiency of the operation. By maintaining motion, the system
minimizes idle time and ensures that the UAV can dynamically track and synchronize
with the UGV, enabling a seamless and efficient load transfer process. This is particularly
advantageous in scenarios where the UGVs are traveling in opposite directions or where
mission completion time is critical. Stopping the UGV would introduce unnecessary delays
and reduce the system’s throughput, especially in situations involving multiple deliveries
or tight operational deadlines. This continuous motion strategy exemplifies the benefits
of collaboration between heterogeneous robots, taking advantage of the UAV’s ability to
adjust its trajectory and execute precise maneuvers to complete the load transfer efficiently.

Figure 6. An example of a delivery agency and the route management proposed.

Our proposed strategy is split into six stages, illustrated in Figure 8 and explained below:

(i) Setup, Figure 8a: In the first step, UGV A receives its mission and initializes its
movement with the load onboard. UGV B still waits for its task allocation;

(ii) Assistance, Figure 8b: UGV A faces an obstacle ahead and emits a request for assis-
tance. While it reduces its velocity, a meeting request is sent to UGV B;

(iii) Collect Cargo, Figure 8c: UAV collects the load on UGV A, while both the UGVs
remain in motion. UAV takes off from UGV B and moves toward UGV A to identify
and pick up the transported load;

(iv) Delivery, Figure 8d: UAV collects the load and transports it to the moving UGV
B, estimating its instantaneous position and velocity to delivery the load on it with
precise accuracy;
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(v) Successful Mission, Figure 8e: Once its pickup-and-delivery mission is successfully
completed, UAV delivers the load on top of UGV B and prepares to land on the trailer.
Meanwhile, UGV A continues its movement;

(vi) Go Home, Figure 8f: UGV A and B return to their GCS or perform a last-mile delivery
mission.

To clarify, in our proposed system, the mission of the robot formation (UAV–UGV B)
that collects the loads is defined by the GCS. Depending on the operational requirements,
the UGV may perform either of the following:

• Cooperate with the UAV to perform a last-mile delivery directly to the customer.
• Navigate back to the GCS or a designated hub to transfer the packages for further

processing or delivery.

Figure 7. Mission scenario description and the robots used in this work. Image (1) shows the real-
world scenario where the experiments were conducted. Images (2) and (3) highlight the load and the
actuator, respectively. The real-world devices are depicted in images (4–6): the Pioneer 3-DX and its
trailer, as well as the Bebop 2 UAV with the markers used for motion capture. Image (6) provides a
complete view of all robots used in this work, including the UGV, UAV, cargo, and the trailer coupled
to the UGV. At the center, the virtual representation used in subsequent discussions is illustrated.

The proposed approach focuses on scenarios where UGVs encounter obstacles that
are impassable or inefficient to bypass. In environments with frequent or large obstacles,
the deployment strategy could be optimized by pre-assessing the terrain using mapping
and planning algorithms. For example, the UAV could be used proactively to survey the
environment and identify the most efficient path for the UGVs while reserving its energy
for critical load transfer tasks. This adaptive strategy will be explored in future work to
enhance efficiency in complex environments.
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(a) Setup. (b) Assistance.

(c) Get cargo. (d) Delivery.

(e) Successful mission. (f) Go home.

Figure 8. The stages of the proposed UAV–UGV cooperation strategy for load transportation in
hard-to-navigate terrestrial environments.

3. Experimental Setup
This section presents and analyzes a real experiment in which the UAV–UGV coopera-

tion should perform a load transportation mission in the face of an obstacle. First, we briefly
discuss the basic techniques and technologies used for our experimental setup, illustrated
in Figure 9. As one can see, the UGVs are the nonholonomic unicycle Pioneer 3-DX mobile
platform, and the UAV is the Parrot Bebop 2 quadrotor. To measure the vehicle positions
along their navigation, the motion capture system OptiTrack is used. The high-level control
code runs in MATLAB©. The algorithms run in an off-board station, at a rate of 30 Hz, com-
puting the control signals that are sent to the robots via the ROS (Robot Operating System).
The communication between the ROS and MATLAB is achieved through the AuRoRA Plat-
form (https://github.com/neroUFV, accessed on 7 January 2025), a proprietary MATLAB
library, which emulates the necessary ROS nodes and topics. All robots run an Ubuntu
distribution plus ROS to execute the high-level mission planner. The cargo, electromagnet,
and trailer are represented by physical objects, which also have their positions captured by
the OptiTrack system.

The load is a hollow cube, which can be filled with rectangular-shaped loads. Its top
face has a metal plate, to enable magnetic interaction with the actuator. Once energized,
the electromagnet creates a magnetic field capable of supporting up to 2.5 kg, which is
about eight times the UAV payload capacity.

https://github.com/neroUFV
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Figure 9. An overview of the hardware setup used to run the experiment. The Optitrack cameras
compose the motion capture system, responsible for tracking all the rigid bodies in the arena.

3.1. Electronic Module of the Actuation System

The actuator introduced in Figure 7 is controlled by two modules using the Arduino
Nano microcontroller. Our proposal consists of two printed circuit boards (PCB), named
“Transmitter” and “Receiver”. Both boards communicate through a Wi-Fi module attached
to each PCB. At this point, it is important to mention that due to the distance and interfer-
ence from very close communication channels, an antenna is attached to the Transmitter to
increase the signal gain. This is necessary because the Receiver is onboard the UAV, which
also communicates by Wi-Fi wireless network with the Ubuntu-ROS Master computer.

In order to drive the electromagnet and read the Receiver channels of the Wi-Fi module,
the Transmitter PCB communicates directly with MATLAB via USB serial communication,
as shown in Figure 10a. The main code sends a bit to the Transmitter indicating the moment
to activate/deactivate the electromagnet. When reading the data received, the Transmitter
sends a signal to the Receiver board. In turn, the Receiver PCB, besides the circuit to
handle the data received from the Transmitter, also has a power module to supply the
electromagnet when it receives the command to be activated, as can be seen in Figure 10b.
In addition, Table 1 presents the list of components used for the development of the actuator
system, both for the Transmitter PCB and the Receiver PCB.

It is worth noting that tasks such as lifting and transporting the load increase the
UAV’s energy consumption. However, this work demonstrates the feasibility of harnessing
UAVs for short-duration tasks that are essential to mission success. Future optimizations
could include the integration of energy-efficient path-planning algorithms and load-sharing
strategies between the UAV and UGVs. For extended operations, hybrid UAV systems
or charging stations positioned along the mission route could be implemented to address
energy limitations.

For the purpose of optimizing the battery use of the actuator system, a strategy for
operating the electromagnet is proposed here, which is represented in Figure 11. Once the
current posture of the load and the electromagnet is known, it is possible to determine the
distance between both objects. If this distance is lesser than a threshold, the solenoid actu-
ates and attaches the load. Notice that this strategy prevents the electromagnet from being
activated if the UAV misses the target and also ensures battery savings. In addition, such
an approach can be understood as a volume over the metal plate where the electromagnet
can be activated, as can be seen in Figure 11b.
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Table 1. List of components for Transmitter (T) and Receiver (R).

Quantity Item PCB

2 Arduino Nano R3.0 T/R
2 Wireless Module Nrf24l01 2.4 GHz T/R
1 Transistor BC 548 B R
2 LED T
1 Push Button T
4 Resistors T/R
1 Electromagnet/Solenoid 20 mm R
- PCB Pin Header Male/Female Connector T/R

(a) (b)

Figure 10. Electromagnet PCBs: (a) Transmitter. (b) Receiver.

Similarly, to deliver the load onto the UGV, the position of the load is monitored
relative to the geometric center of the ground robot. Thus, the load is only delivered if it
can be guaranteed that it is within a safe region.

The precision positioning capability of the drone and ground robots is crucial for
the successful execution of object capture and precision landing tasks in the proposed
system. In this context, several methodologies can be employed to enhance the accuracy of
positioning and control during operation. For instance, visual markers such as ArUco or
AprilTags are widely used for robust and reliable object detection and pose estimation, both
for load transportation [38–41] and autonomous landing [42–44]. These markers provide
clear patterns that can be easily recognized by the drone’s onboard camera, enabling the
accurate localization of the load and landing platform. Additionally, feature-based methods,
such as those leveraging Scale-Invariant Feature Transform (SIFT) or Speeded-Up Robust
Features (SURF), can identify distinct features of the objects and environment, further
improving the positioning accuracy. Recently, deep learning models have been increasingly
adopted for visual-based pose estimation, offering improved performance in dynamic and
complex environments [7].

Despite their effectiveness, these methods face certain limitations in real-world sce-
narios. For example, visual markers require proper placement and may be affected by
lighting conditions, reflections, or occlusions. Similarly, feature-based approaches can
struggle in low-texture or uniform environments, where distinct features are scarce. Deep
learning models, while powerful, demand significant computational resources and may
require extensive training data tailored to the specific operating environment. To mitigate
these challenges, sensor fusion techniques, combining data from cameras, inertial mea-
surement units (IMUs), and LiDAR, can be employed to enhance the localization accuracy
and robustness.
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(a) (b)

Figure 11. The actuator control strategy: (a) Error measurement. (b) Situation in which the electro-
magnet will be activated to pick up the cargo.

Moreover, real-world applications often involve external factors such as wind dis-
turbances, vibrations, and varying terrains that further complicate precision positioning.
These factors necessitate the development of adaptive control strategies to ensure stable
operation under diverse conditions. By integrating advanced sensing and control method-
ologies, the system’s reliability can be significantly improved, paving the way for practical
deployments in urban and industrial environments. This discussion underscores the im-
portance of evaluating and addressing real-world limitations to enhance the applicability
and contribution of the proposed system.

The physical couplings used in this work are designed to simplify the attachment
and detachment processes during load transfers, relying on an electromagnet actuator.
We acknowledge that this introduces mechanical complexity and potential failure points.
To mitigate this, future iterations of the system can explore alternative coupling mechanisms,
such as soft robotic grippers or magnetic couplings with redundant systems, to enhance
reliability. Additionally, predictive maintenance strategies could be integrated to monitor
and prevent failures in critical components.

3.2. Path Parameters for the Robots

A robot can accomplish a load transportation task after traveling by a set of waypoints
or after following a predefined path. In this work, we choose line- and super-ellipse-shape
(also known as a Lamé curve) paths. Each one is better described in Table 2. For all of
them, we consider vp = 0.7 m/s if the path is followed by a UAV, and vp = 0.4 m/s if
the path if followed by a UGV. For the line-shape path, the αp is a parametrization factor
used to construct a trajectory with initial and final velocities equal to zero, where t is
the current time, and t f the trajectory final time. xi and x f are the initial and final UGV
desired positions.

The Land Path is a line-shape trajectory to position the UAV immediately behind
the trailer platform (which is moving), and perform a smooth and precise landing on it,
anticipating its movement velocity. It is important to mention that the trailer movement
must be estimated for a safe and smooth landing.
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Table 2. Load transportation paths.

Path-Shape Description

Line x = vp

(
[xi yi]

⊤ + αp[x f − xi y f − yi]
⊤
)

, with α = 3
t2

f
t2 − 2

t3
f
t3,

where xi and x f are the desired initial and final position of the path.

Super-Ellipse x = vp

[
| cos (2πωpt)|2/mapsign(cos(2πωpt))
| sin (2πωpt)|2/nbpsign(sin(2πωpt))

]
,

with m = 5, n = 2, ap = 3, bp = 1, and ωp = 4π
t f

Land Path x = vp

(
[xi yi zi]

⊤ + αp[x f − xi y f − yi z f − zi]
⊤
)

,

with α = 3
t2

f
t2 − 2

t3
f
t3.

To elucidate and validate the proposed approach, three robots are utilized: two ground
robots and one aerial robot. Each robot in the formation performs an individual task,
defined as a specific route. At a certain point, the robots initiate cooperative operations.
The selected paths represent high-level sub-tasks performed by either a UGV or a UAV–
UGV heterogeneous formation. The UAV is required to find the load, and the UGV B is
required for the pickup/delivery task.

In the load transportation mission, each robot has a specific mission and a set of tasks
that are represented in the state machine diagrams in Figure 12. The blocks that contain
movement actions make use of the previously defined paths, as shown in Table 2. In general,
the main UGV, known as “UGV A”, starts its main mission by traveling along the initial
delivery route for the packages to be transported. Along the way, it maps and identifies the
objects in the work environment (see Figure 12a). When it identifies obstacles that prevent
the task from continuing, it triggers a support call so that a UGV–UAV formation can assist
in the process and the delivery mission can be successfully completed. In addition, UGV A
is commanded to travel along a “meeting route”, which in this work has been defined as a
straight line (see Table 2) due to the characteristics of the obstacle considered in the proof
of concept, as will be discussed in Section 4. At this point, the missions of the support UGV,
known as “UGV B”, and the UAV start up, are as described in Figure 12b,c.At first, UGV
A must navigate along a predefined route until it reaches the “meeting route” defined for
this robot, which is not the same as the route defined for UGV B, since there is an obstacle
between them and the environment they are in, possibly with different characteristics
and shapes, requiring dedicated path planning. The illustrative route defined for UGV
B was defined as a super-ellipse (see Table 2). As the UGVs approach each other at a set
distance, the UAV takes off and begins the process of collecting the cargo from UGV A and
delivering it to UGV B. Throughout the process, information is exchanged between the
agents and the GCS in order to determine the current progress of the mission and keep
decision-making coherent. Once the packets have been transferred to UGV B, the UAV
begins the process of landing on the mobile platform attached to the UGV, from which the
UAV took off at the start of the mission. The algorithm dedicated to landing identifies and
locates the platform and then adopts a trajectory tracking strategy (called “land path”; see
Table 2) to reduce the distance between the UAV and the platform until it is safe to land.
At the end, both UGVs are informed that the UAV has landed safely and that the packages
have been transferred to UGV B as planned. Thus, UGV A returns to its command base,
since it has finished its contribution to the main mission, which is the transportation of
packages. On the other hand, the UGV–UAV formation still has to deliver the packages to
the appropriate destination, and this becomes its task. At the end, the group returns to its
respective command base, having completed the mission.
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(a) UGB-A or main UGV. (b) UGV-B or support UGV. (c) UAV.

Figure 12. Task planning for each robot based on state machine representation.

4. Results and Discussion
Two experiments illustrate the functioning UAV–UGV cooperation for load trans-

portation and the robot control performed using the system proposed here. In all the
experiments, the UGVs move independently from other robots. Only the UAV has to worry
about the exact position of both ground robots to perform the pickup and delivery of the
loads. Such a setup clarifies the idea of an obstacle that UGVs are not able to overcome,
and then the need for cooperation arises for a multi-robot system. The operation of the
proposed strategy and the load transportation algorithm can be seen in the video of the full
experiment, available at https://youtu.be/GDdqWQX0Hd8 (accessed on 7 January 2025).
It is important to mention that the experimental load of 165 g, which corresponds to up to
36% of the UAV’s mass, was chosen to validate the proof of concept using the available hard-
ware, which includes a Bebop 2 drone with a limited payload capacity. While this weight is
below the maximum capacity of commercial UAVs, the objective was to demonstrate the
feasibility of collaborative transportation between robots using the well-known motion
control laws, presented in this paper. For practical applications, the proposed system can
be scaled to utilize UAVs and UGVs with greater payload capacities. Future work will
involve experiments with heavier loads and upgraded robotic platforms to demonstrate
applicability in real-world scenarios.

https://youtu.be/GDdqWQX0Hd8
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For each experiment, the sequence of actions can be checked, following the proposed
strategy (Section 2.3). Table 3 provides a summary of the robots’ actions for each step of the
proposed strategy, the strategy commands, the aiming in the task, and time stamp.

Table 3. Sequence of events of the experiments. “Seq” indicates the sequence of the events, and “Time”
indicates the moment (in mm:ss format) the action starts in the experiment.

Seq. Time Step ActionExp 01 Exp 02

03:00 05:05 Start Beginning of the experiment
1 03:04 05:10 Setup The UGV A starts its mission, transporting the load
2 03:05 05:12 Assistance UGV A meets the obstacle and requests support from UGV B, which initiates its

movement towards the point closest to the obstacle
3 03:25 05:26 Collect Cargo The UAV takes off and changes the reference point of the UAV and sends it to an

estimated position above the UGV
4 03:39 05:45 Delivery Collect the load and transport it to the top of the UGV B
5 04:04 06:20 Successful While the UGVs are moving, the UAV lands on the trailer coupled to the UGV B
6 04:04 06:19 Go Home UGV A goes to the GCS to finish its mission while UGV B transport the load
7 04:12 06:29 Transportation End UGV B finishes its mission

These experiments show that with the implemented strategy, one can successfully co-
ordinate a heterogeneous squadron to collect, transport, and deliver the load cooperatively,
with the possibility that the UAV takes off and lands on the moving UGV.

The quadrotor’s motion, crucial for the successful mission execution, is depicted in
Figure 13a. While condensed within a tight time scale, the figure illustrates the entire
trajectory executed by the UAV. The take-off action necessitates the fulfillment of specific
stability constraints before it can commence execution. This explains the notable delay
between the take-off set point value and the actual execution, a delay that is not evident
during the subsequent smooth trajectory actions. Analyzing Figure 13, one can observe
each stage in which the UAV is required to perform its task. When it is identified that the
UGV B is close enough to the UGV A, the UAV takes off and initiates its mission tracking
the UGV A. Once it has been able to estimate the position and velocity of UGV A, the UAV
begins the process of collecting the load. Then, it delivers it to UGV B, and only then lands
on the formation’s trailer system, finishing the task. After completing their mission, both
UGVs return to their GCSs.

Figure 13. Tracking performance of the UAV: (a) UAV position; (b) UGV A; (c) load, (d) UGV B,
and (e) trailer.

https://youtu.be/GDdqWQX0Hd8?t=180
https://youtu.be/GDdqWQX0Hd8?t=305
https://youtu.be/GDdqWQX0Hd8?t=184
https://youtu.be/GDdqWQX0Hd8?t=310
https://youtu.be/GDdqWQX0Hd8?t=185
https://youtu.be/GDdqWQX0Hd8?t=312
https://youtu.be/GDdqWQX0Hd8?t=205
https://youtu.be/GDdqWQX0Hd8?t=326
https://youtu.be/GDdqWQX0Hd8?t=219
https://youtu.be/GDdqWQX0Hd8?t=345
https://youtu.be/GDdqWQX0Hd8?t=243
https://youtu.be/GDdqWQX0Hd8?t=380
https://youtu.be/GDdqWQX0Hd8?t=244
https://youtu.be/GDdqWQX0Hd8?t=379
https://youtu.be/GDdqWQX0Hd8?t=252
https://youtu.be/GDdqWQX0Hd8?t=389
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4.1. Robots’ Behavior During Navigation

To make the proposed collaborative strategy clearer, this section discusses the behavior
of each robot separately during the experiments. First of all, the UGV A robot is the one that
performs the initial transportation of the load. During the execution of its mission, when
reaching position xo, shown in Figure 14, it faces an insurmountable obstacle. From there,
it starts a secondary mission, which aims to follow a path close to this obstacle while
maintaining a safe distance. Given the prismatic profile of the obstacle, the planned path is
a straight line (described in Table 2), starting at the point xi and ending at x f . For validation
purposes, it is assumed that by the last point of the reference, the load has already left UGV
A and has been transported to UGV B by the UAV. With the lifting confirmation, UGV A
returns to its command base (GCS), where it will wait for the assignment of a new mission.

Figure 14. Tracking performance of the UGVs in the experiments. The gray dashed regions represent
the period in which the robots are executing a stage of the strategy. Tracked positions for both UGVs:
(a) real-time autonomous take-off, tracking, and landing of UAV on a moving UGV platform and
(b) x-y view of the UGVs’ performed routes and desired trajectory/positions.

Temporally, as illustrated in Figure 14a, at t1, UGV A moves until it approaches the
obstacle and then maintains a motion that enables the collection and transposition of the
load; at t2, the load is collected by the UAV and UGV A remains in its rectilinear motion
until the UAV departs toward UGV B; at t3, UGV B is returning to its GCS, after finishing
its mission; and, finally, at t4, UGV A has already reached its command base and is awaiting
the delegation of a new task. Now, turning to UGV B, at the moment UGV A identifies
the obstacle and approaches it, a command is sent to another GCS (in practical terms,
the closest one after the obstacle) requesting a cooperation for transposing and delivering
the package to the destination. At t1, UGV B is allocated to supply the demand of UGV
A. Thus, when approaching the obstacle, as stated earlier, UGV A maintains a smooth
displacement, to make the load delivery while moving. When it becomes close enough to
the obstacle, UAV takes off and meets UGV A. During the process of collecting the load,
UGV B remains in motion, in this case, with a super-ellipse profile, as shown in Figure 14,
at time instant t2. After collecting the load, UAV navigates toward UGV B and makes
the delivery to the designated location. Next, at time t3, when the load has already been
deposited on top of the UGV B, the UAV begins the process of landing on the trailer. For the
rest of the experiment, UGV B carries the cargo on itself and UAV, as seen at time t4. Finally,
UGV B makes its way to the delivery destination and then returns to its respective GCS.

The main idea (contribution) of this paper is to demonstrate the execution of the
collection and delivery of a load on ground robots, by lifting using a drone, with all agents
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in motion. Although simplistic in terms of logistics, the experimental demonstration
presented here is a proof of concept for a more advanced system with numerous branches
of the carrier network and collection and delivery points, whose resource allocation strategy
can adopt one of the strategies presented in [9,22,28]. In a broader context, a more complex
system may be responsible for managing the transportation of load and optimizing the
distribution of tasks according to the routes, agility, and load capacity of each vehicle.

The sensing and actuation capabilities of the robotic formation were designed for
a controlled experimental setup. However, we recognize the need for robust sensing
and actuation systems in real-world applications. For instance, advanced vision systems
and LiDAR sensors could improve obstacle detection, object localization, and situational
awareness. Actuation mechanisms with higher precision and reliability could enhance
load manipulation and stability. Future work will explore these advancements, along
with sensor fusion techniques and real-time decision-making algorithms, to address the
challenges posed by complex and unpredictable environments.

4.2. Practical Issues Related to Perception and Navigation

Integrating the proposed application into urban environments characterized by terrain
irregularities, moving obstacles, and interference from other vehicles, animals, and pedes-
trians necessitates the incorporation of advanced sensing technologies and sophisticated
decision-making frameworks. Ground and aerial robots would benefit from high-resolution
3D mapping systems and obstacle detection technologies, such as LiDAR and stereo or
monocular vision, to accurately perceive and navigate uneven terrain while identifying
static and dynamic hazards [45,46]. The main challenges associated with these applications
include the following: (i) achieving efficient and precise navigation within space-restricted,
tight, and complex environments; (ii) developing path planning algorithms for multi-robot
systems under diverse load conditions; (iii) reducing the high energy demand of robotic
transportation systems; (iv) ensuring reliable online re-planning capabilities in dynamic
and unpredictable scenarios; and (v) stabilizing large cable swings and load oscillations [47].
All of these challenges require extensive sensing and actuation capabilities, along with
significant computational loads for perception and decision-making processes.

Understanding and mapping the terrain in the upcoming path of an aerial or a ground
robot is one of the most challenging problems in field robotics. Vision-based techniques,
including semantic segmentation and object detection algorithms, can help classify and
prioritize obstacles, enabling the robot to make informed decisions [45]. To handle moving
obstacles, such as pedestrians, cyclists, and vehicles, predictive motion-planning strate-
gies like Dynamic Window Approach (DWA) [48,49], artificial potential fields [50–52],
or trajectory prediction models based on recurrent neural networks (RNNs) [53,54] could
be employed. These strategies allow robots to anticipate obstacle trajectories and ad-
just their path dynamically. Additionally, combining LiDAR data with computer vision
can enhance environmental perception by fusing depth and semantic information, im-
proving the reliability of navigation decisions in cluttered scenarios [55,56]. UAVs can
complement ground robots by providing aerial assistance for obstacle detection, route opti-
mization, and real-time monitoring [57–59]. Moreover, the integration of vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) communication protocols would ensure seamless
coordination among robots and infrastructure, improving safety and efficiency. These
methodologies, although outside the scope of this work, represent essential advancements
for applying the proposed approach to dynamic, complex urban environments.
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5. Concluding Remarks
In summary, this work addresses the problem of cooperative load transportation

by proposing a practical solution for autonomous navigation. We predefined high-level
missions for a team composed of one UAV and two UGVs, simulating a typical last-
mile delivery mission. The envisioned application scenario includes autonomous packet
transportation, where the UAV is employed for picking and placing packets, while UGVs
handle ground-based transportation. Our centralized robot coordination approach takes
advantage of hierarchical task decomposition, addressing both low-level motion planning
and high-level mission specifications within a multi-layered system.

These applications encompass urban, suburban, and rural delivery scenarios, where
the cooperative control of UAVs and UGVs significantly enhances operational efficiency
and reliability. Furthermore, the system’s inherent versatility extends its suitability to
diverse domains, including military, agricultural, industrial, and educational environments,
underscoring its potential for intuitive and effective load transportation across a wide range
of contexts.

As future work, we propose conducting a sensitivity analysis that could explore
factors such as the maximum load the UAV can carry or the maximum speed the UGVs
can navigate. This analysis would be valuable in identifying critical operational limits and
optimizing the feasibility of UAV–UGV cooperative missions.
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