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Abstract: In this paper, we investigate the concept of polymorphism in the context of
artificial swarms; that is, collectives of autonomous platforms such as, for example, un-
manned aerial systems. This article provides the reader with two practical insights: (a) a
proof-of-concept simulation study to show that there is a clear benefit to be gained from
considering polymorphic artificial swarms; and (b) a discussion on the design of user-
friendly human–machine interfaces for swarm control to enable the human operator to
harness these benefits.
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1. Introduction
In the last few years, there has been an explosion in the availability of Unmanned

Vehicles (UxVs) or Unmanned Systems (UxSs), with Unmanned Aerial Vehicles (UAVs) [1],
Unmanned Ground Vehicles (UGVs) [2,3], Unmanned Surface Vehicles (USVs) [4], and
Unmanned Underwater Vehicles (UUVs) [5] (or Autonomous Underwater Vehicles
(AUVs)) [3,6] all making an appearance in the literature and, for that matter, in the real
world. The battlefields of Ukraine and the asymmetric conflicts in Asia and the Middle East
have seen to that [1]. For example, ref. [1] estimates that less than two months into Russia’s
invasion of Ukraine the entire Russian UAV fleet numbered in the hundreds; in early 2024,
less than two years later, Ukraine is deploying (and losing) 20 times that number on a daily
basis (source: 1st EDA Swarming Technologies Conference, February 2024), by the end of
2025, Ukarine’s annual drone prodution capability will reach 4 million (source: 1st EDA
Autonomous Systems Community of Interest (ASCI) meeting, November 2024).

All of these types of systems are commonly referred to as drones, likely using the
term from biology referring to entities that, while capable of independent operation and
decision making, commonly serve a greater purpose other than their own. A key aspect
contributing to the current proliferation of drones is their expendability or attritability.
These attributes refer to the fact that the loss of an individual is acceptable from the point of
view of the group, as their production cost is significantly lower than the strategic or even
tactical value of the actions that lead to their demise. As a result of increasing performance
and decreasing cost, unmanned systems can now be deployed for a variety of applications
in an ever-growing list of domains, while and at the same time be purchased and deployed
by stake holders in these domains who previously lacked the financial means for this.
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The predictable next step in this evolution is the appearance of collectives of such
platforms, capable of operating as a whole to an increasing extent. Such collectives may be
referred to as a swarm, though the term is not understood unanimously by everyone: some
argue for the need of self-organization and the emergence of properties while others claim
that the mere cooperation of multiple platforms in the same environment suffices to meet
the definition [7]. As discussed at ASCI late in 2024, the fact that soon these swarms will be
a reality is, by now, generally undisputed. It is when, not whether.

Be that as it may, sidestepping this discussion with the compromise that, if they are not
already, true swarms will be a reality in the very near future, we assume for the reminder
of this article that high levels of autonomy and self-organization are essential features of
swarming. From a scientific viewpoint, key challenges of swarming include, for example,
the development of suitable swarm intelligence algorithms [8], determining the level of
human control [9], and definition of suitable human–machine teaming approaches [10].

Among the many research topics that are being investigated worldwide and should
contribute to improving the usefulness of collective intelligence paradigms in artificial
swarms, one that appears to be receiving comparatively little attention, and is therefore
likely to deliver uniqueness and novelty, is that of polymorphism.

1.1. Contributions of This Article

In this paper, we investigate the concept of polymorphism in the context of artificial
swarms; that is, collectives of autonomous platforms, such as UAVs. As the concept has
been extensively studied in the field of biology, we do not make a broad case for its potential
benefits in general, but instead provide the reader with two practical insights:

1. A proof-of-concept simulation study to show that there is indeed some clear benefit
to be gained from considering polymorphic artificial swarms.

2. A discussion on the design of user-friendly human-machine interfaces (HMIs) for
swarm control to enable the human operator to harness these benefits.

1.2. Scope of This Article

To manage expectations and to avoid disappointment we scope our work as theoretical
investigations using generic models which we intentionally kept as simple as possible.
Consequently, the conducted simulation-based experiments were not intended to fully
capture real-world complexities such as environmental factors (which may influence,
e.g., the field strength of signals), telemetry from the platforms, physical aspects of fixed-
wing or rotary-based platform flight behaviours, etc., but are meant to provide abstract
insights into the generalizable benefits and disadvantages of polymorphic swarms.

Therefore, the parameter values for, e.g., UAVs’ flight speed (needed in Section 6.1) or
cost (considered in Sections 5.2 and 7.4) used in our simulations are educated estimates.
They were chosen without concrete data from practical applications nor from an operational
realization of the approach, as well as with a bias for opportune values for ease of analysis
of the results afterwards (see the section on parameter space exploration; Section 7.4).

Consequently, it should probably not be surprising that the principles (cf., Section 4.2)
and considerations (cf., Section 8) of HMI design discussed in this article, in parallel
to our theoretical investigations, lack the benefit of being informed from a real-world
implementation of the approach. While the reported investigations were conducted as part
of a UAV-based solution for real-time management of wildfires (FireMan project), and are
expected to be used eventually to assist fire fighting efforts in the vast forested regions
of Finland; no autonomous drone swarm is currently being deployed and the work on
designing (and tailoring it to the needs and wishes of the end users, i.e., fire fighters) is
restricted to initial principles and considerations.
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1.3. Outline of This Article

The next sections provide some background information on unmanned platforms
(Section 2), polymorphism, and polymorphic drone swarms (Section 3) in general, and the
concepts of operation of such swarms (Section 4), before we introduce a use case example
for a polymorphic swarm of UAVs in Section 5. To formalize this use case, Section 6
describes the underlying mathematical models and notation and Section 7 then provides
results from our investigations. Section 8 presents a visual representation/User Interface
(UI) and elaborates on considerations regarding the HMI for the use case. We end with a
conclusion and future suggestions (Section 9) and a reference list for the interested reader.

2. Unmanned Vehicles (UxVs)/Unmanned Systems (UxSs)
The term UxVs encompasses a broad range of platforms designed to operate with-

out a human physically present at the site of operation. These systems operate in air,
land, sea, and underwater environments (Note: we omit space-based platforms from our
considerations) in both civilian and military applications:

• Unmanned Aerial Vehicles (UAVs) [1]: These systems, currently the most common
type discussed in research and the media, operate in airspace and can greatly vary
in size, capability, and purpose. UAVs can be further categorized into fixed-wing,
rotary-wing, and hybrid designs, such as vertical take-off and landing (VTOL) aircraft.

• Unmanned Ground Vehicles (UGVs) [2,3]: UGVs navigate on the ground, where they
can be deployed in structured environments like roads and inside of buildings as well
as unstructured environments like off-road terrains and disaster zones. Examples of
them include autonomous cars and mobile robots (with, e.g., embedded robotic arms).

• Unmanned Underwater Vehicles (UUVs) [5,6]: These operate below the surface and
distinguish Autonomous Underwater Vehicles (AUVs) (autonomous) and Remotely
Operated Underwater Vehicles (ROVs) (requiring real-time human remote control).

• Unmanned Surface Vehicles (USVs) [4,6]: These vehicles navigate water surfaces,
conducting maritime research, surveillance, and logistic missions. USVs include
both autonomous ships and smaller robotic boats. Examples of their designs include
catamarans, trimarans, and hydrofoils.

As a proper overview of the landscape of UxVs warrants a large review paper in
itself, we will restrict ourselves for the remainder of this article to the (currently) most
common representatives of such platforms: those operating in the aerial domain. Practically
speaking, the development and deployment of such UAVs [11] are guided by the principle
of using the right tool for the right job, and the various sub-types attest to that: fixed-
wing UAVs offer speed and endurance, rotary-wing UAVs provide agility and precise
control, and hybrid designs offer a versatile compromise. As UAV technology continues to
advance, the distinctions between these categories may blur, leading to new innovations
and applications that further expand the capabilities of aerial unmanned vehicles in both
the civilian and military spheres.

We briefly provide an overview below but then, in the interest of brevity, refrain from
discussing all the variations currently available on the market. UAVs, commonly referred to
as drones or aerial drones, represent a versatile and rapidly evolving segment of unmanned
systems that operate within various layers of airspace. Their applications span from
recreational and commercial to critical military and scientific roles, driven by advancements
in technology that have expanded their capabilities and accessibility. The categorization
of UAVs into fixed-wing, rotary-wing, and hybrid designs highlights [11] the diversity of
their operational uses and design complexities.
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2.1. Application Domains for UAVs

Currently, unmanned aircraft systems are being used in many different application
areas. Aerial photography, video production, logistics, police operations, firefighting,
infrastructure monitoring, and defence applications are a few of these domains. Aerial
drones are therefore saving lives, producing visually stunning content, converting manual
labour into more productive work, and offering safe alternatives to tedious and hazardous
jobs. UAVs are typically teleoperated aircraft of variable sizes. They are also sometimes
referred to as drones or Unmanned Aerial Systems (UASs). They can be classified into four
groups according to their size: micro, small, medium-altitude long-endurance (MALE),
and high-altitude long-endurance (HALE), ranging from less than a meter across to a
wingspan of almost 40 m [12]. Swarms of small drones are typically used to increase the
cost efficiency of operations, such as large-scale surveillance and search and rescue (see,
for instance, [13]).

2.2. Fixed-Wing UAVs

These traditional types of aerial devices are basically small planes without a human
pilot on board. As such, they resemble traditional aeroplanes, with their operation (i.e., re-
maining airborne) being very efficient. They are capable of relatively long-duration flights
at high speeds. They generally require a runway or catapult for take-off and a runway or
parachute for landing, making them well suited for applications such as large-area map-
ping, agriculture, and surveillance missions. As their name indicates, they are characterized
by their static wings, similar to conventional aeroplanes, which provide lift due to the
vehicle’s forward airspeed. Owing to this they can normally cover longer distances more
efficiently, lending themselves to transporting larger payloads, than so-called rotary-wing
UAV (see Section 2.3), making them the ideal choice for missions where the emphasis is
placed on endurance and/or speed.

2.3. Rotary-Wing UAVs

These devices feature one or more rotors (with quadcopters being quite popular) that
enable VTOL, hovering, and agile manoeuvring. This design is ideal for missions requiring
precise positioning, such as inspection of infrastructure, delivery of goods, or search-and-
rescue operations in complex or confined environments. The precise control and stability
of rotary-wing UAVs are extremely useful for applications such as detailed infrastructure
inspections, as they allow the steady and slow manoeuvring and thereby facilitate the
recording of high-resolution images of, for example, structures. They are also ideal for
delivery services in urban areas where space is limited, and for search-and-rescue missions
in challenging terrains, as they can hover and operate close to the ground or obstacles.

2.4. Hybrid Designs (Vertical Take-Off and Landing (VTOL) Fixed-Wing UAVs)

As is to be expected, there are already hybrid versions of UAVs combining the two
types discussed above. By combining elements of both fixed-wing and rotary-wing designs,
these UAVs offer the endurance and speed of fixed-wing UAVs with the vertical take-off,
landing, and hover capabilities of rotary-wing UAVs. Consequently, these are particularly
useful in applications where space for take-off and landing is limited but longer flight
times are needed. Vertical take-off and landing (VTOL) fixed-wing UAVs are particularly
advantageous in scenarios where the mission area is remote or inaccessible, and where
traditional runways are not available. They are used in applications ranging from logistic
deliveries in remote areas to environmental monitoring where they can swiftly cover large
distances and then hover or manoeuvre slowly for detailed observations.
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Their versatility makes them suitable for a wide range of missions, including rapid-
response scenarios and operations in mixed-terrain environments. However, the benefits of
either of the two types are likely to be reduced by deviating from the increasingly fine-tuned
designs of either. As we will argue in this article, when considering collectives of devices
there is a benefit in using both types (fixed-wing as well as rotary) in a swarm together (as
opposed to using only the hybrid type).

3. Polymorphism and Artificial Swarms of Drones
3.1. Polymorphism in Nature

In biology, the term polymorphism refers to the occurrence of two or more distinct sets
of characteristics (phenotypes) within a population [14]; i.e., naturally occurring differences
between the members of a group (as opposed to, e.g., self-inflicted differences such as a
tattoo). These differences can manifest themselves in the form of physical differences but
also as behavioural or bio-chemical traits. As such, polymorphism in a group supports
specialization of its members to perform specific tasks or to divide labour or tasks in an
efficient manner, and thus clearly has the potential for creating an evolutionary benefit by
increasing diversity and facilitating adaptability and survival in dynamic environments.

Polymorphism can occur for a number of reasons: the most common is genetic poly-
morphism, where different alleles (variations of a gene) exist within a population, causing,
for example, different colourings or morphology [15]. Another form is sexual dimorphism,
where male and female members of a species differ significantly, such as in birds, where
the male and the female have significantly different colouring or plumage. A third form is
so-called balanced polymorphism, where a species that is found across different environ-
ments has adapted to local particularities in these environments, to, for example, have a fur
colour adapted to provide better camouflage in either snow or high grass [16].

3.2. Division of Labour and Specialization in Social Insects

All eusocial insects are characterised by the division of labour between the breeder (the
queen) and worker castes. Beyond this division, there exists a continuum of specialisation:

• From those manifesting exclusively on a behavioural level (e.g., age polyethism [17]);
• through a form of division of labour that relies primarily on differences in size ([18]);
• to morphologically distinct castes among workers (as found, e.g., in many termites [19],

where soldiers can differ from the foragers to look like another species).

3.3. Specialization in Artificial Swarms

Artificial drone swarms, by contrast, are often comprised of a single type of device,
examples of which are the light quadcopters used to execute LED-based pre-choreographed
air shows or, at the other end of the sophistication spectrum, Shield AI’s V-BAT military
drones [20]. The reasons for this could be related to the following:

• The benefits of standardisation (including the ability to swap one unit or parts thereof
for another);

• Commercial advantages (for the manufacturer, e.g., the use of proprietary technology);
• Or simply “ease of use” considerations, since the human commander/operator only

needs to familiarise themselves with the characteristics of a single model.

At the same time, it is self-evident that, as applications for drone technology multiply,
so does the diversity of the associated technical requirements, which drives a form of
“speciation” based on the characteristics (e.g., form, size, shape, speed, endurance, sensors)
necessary or desirable to fulfil the intended purpose. The type of drone most suitable,
e.g., to conduct a high-altitude survey of the forest canopy [21] is unlikely to be the same as
that of a quadcopter tasked with detecting harmful chemical leaks inside a factory [22].
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The paradoxical result is that we end up with a plethora of drone models that, despite
their clearly complementary features, are rarely, if ever, used together to complete the kind
of complex mission that could benefit from combining the unique capabilities of multiple
types of UASs. It is almost certainly just a matter of time before this obvious oversight is
corrected and the corresponding opportunities are seized.

3.4. Polymorphism in Autonomous Swarm Operations

Based on the current state of affairs, there is arguably one aspect of this problem that
is less likely to be given much attention, at least in the short-to-medium term: the exploita-
tion of what amounts to polymorphism in autonomous swarm operations. Although it
is relatively straightforward to formulate a Concept of Operations (ConOps) in which
multiple drone types are used in conjunction to perform a task beyond the capabilities of
a single model [23,24], how individual units can call upon each other’s “skills” to work
better as a team, without human guidance, is a much trickier question [25]. For natural
swarms, we have a partial understanding of the mechanisms that have evolved to support
efficient division of labour in dynamic environments characterised by variable needs for
specialisation [26]. Achieving this in artificial swarms is an open challenge.

4. Concepts of Operation
4.1. Command and Control of Drone Swarms from the Human Factor Perspective

When it comes to highly automated drone operations from the human factor per-
spective, one must first take into account how the human operators who are monitoring
the operations from a distance can attain and sustain a sufficient level of situation aware-
ness (SA). Situation awareness from the operator’s perspective refers to “the perception
of environmental elements and events with respect to time or space, the comprehension of their
meaning, and the projection of their future status” [27]. Furthermore, automation awareness
(AA) becomes important in highly automated drone operations. AA has been previously
defined from the human’s perspective as “a continuous process that comprises of perceiving
the status of the automation, comprehending this status and its meaning to the system behavior,
as well as projecting its future status and meaning” [28]. It can be extremely difficult for
a human operator to develop and maintain both automation and situation awareness
in highly automated remote operation settings involving drone fleets. There have also
been numerous reports of incidents in safety-critical environments (such as the Boeing
757 crash in Cali, Columbia) where the human operator lost situation awareness [29]. Thus,
taking into account situational awareness (SA) and AA, or even artificial intelligence aware-
ness (AIA) (see, for example, [30]), becomes crucial, particularly in contemporary drone
swarm solutions. By giving operators instantaneous feedback on the swarm’s activities and
surrounding conditions, they can maintain awareness of the currently prevailing situation.

Second, reducing the amount of cognitive strain on operators by arranging information
so that it is easily absorbed is needed. Overcomplexity or an abundance of information can
cause mistakes and poor performance. To prevent the human operators of drone swarm
operations from having an excessive cognitive workload or, conversely, from having too
monotonous tasks, it is crucial to divide up the tasks between humans and automation
in an appropriate way. With respect to the former, it has been observed that multitasking,
interruptions, and task switching significantly increase cognitive workload (e.g., [31,32]).
For instance, psychological understanding of the limits of human thought and behaviour
is required here. Effective task distribution and switching ensures both the safety of
operations and the health of the human operators who are responsible for long-term remote
drone monitoring. Additional cognitive complexity for the operator is possible when
instead of a single UAV, a swarm of drones needs to be monitored and controlled [33].
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Nevertheless, in multiple-unmanned-vehicle supervisory control, operator boredom and
distraction can also become a significant issue (see, for example, [34]). All of these issues
can be effectively resolved with proper monitoring, command, and control interface design.

Third, the quality of the user interface solutions that the human operators are in-
teracting with is critical to user experience (see, e.g., [35]) and usability (see, e.g., [36]).
The operators cannot understand the current state of the object environment and take appro-
priate action if the remote monitoring and operation systems of the drones are difficult to
use. Human out-of-the-loop performance problems may arise from this [37], which may af-
fect safety-critical operations negatively. Similarly, it is crucial to establish a suitable level of
human operator trust in the automation of the drone and its interfaces, for instance, through
design. According to Lee and See [38], trust in this context is defined as “the attitude that an
agent will help to achieve an individual’s goals in a situation characterized by vulnerability
and uncertainty”. In this case, the automated drone’s command and control system is the
agent, collaborating with the human operator to accomplish the drone operation’s goals.
Conversely, appropriate trust is a well-calibrated level of confidence in the automated
system that corresponds with its capabilities. As opposed to an appropriate level of trust,
an overtrust or distrust in the system can lead to issues with safety or performance as well
as potentially deadly accidents (like the mid-air collision at Lake Constance [39]). As a
result, user-centred design must be used when creating human–machine or user interfaces
intended for drone monitoring and control. In order for users to make timely decisions
based on the analysed information, the same user interfaces may also be used to analyse
and visualize the data from drone sensors. These data visualizations must be clear and
easy to understand for users. Effective human control requires presenting, for instance,
the swarm’s status and mission progress in an easy-to-understand visual format.

At the moment, operations may also make use of some sophisticated UI output
techniques, such as using Artificial Intelligence (AI) to highlight or visualize pertinent
points of interest from the object environment. Large datasets can be quickly mined for
online information thanks to AI. Because drones can automatically identify the needed
objects from their environment and take appropriate action (like sounding an alarm for a
human operator), it is also possible to develop effective SA solutions. Eventually, drone
operations supported by augmented/mixed reality with a wealth of information will
also be feasible. This will make it possible to develop very novel kinds of information
visualizations and immersive representations of drone sensor data for the human users.

4.2. Human–Machine Interface Principles for Controlling a Swarm of Drones

Designing a user-friendly human–machine interface for drone swarm control is a
critical part of a successful swarming application. A number of scholarly articles have
examined human–machine interface solutions for multi-UAV control. In general, manage-
ment by consent or management by exception can be used to control UAVs [40]. From the
standpoint of human factors, the latter has issues such as automation bias, which occurs
when people accept computer-generated recommendations even in the presence of unre-
liable systems. Goodrich & Cummings [40] cite the work of Ruff et al. [41] and conclude
that the management-by-consent approach—where an automated solution requires human
approval prior to execution—is better for managing multiple UAVs than the management-
by-exception approach, which gives the operator a window of time to reject the automated
solution. For controlling up to four UAVs, management by consent seemed to offer the
highest situation awareness ratings, performance scores, and trust. All things considered,
there is some evidence to suggest that human operators may not be able to manage several
vehicles that require assistance with payload and navigation, especially in the event of
unreliable automation (see [40] for a review).
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A discussion of the most fruitful ways for the swarm and its human operator(s) to
interact is found in [42]. First off, it is obvious that many of the benefits of using swarms
are negated by low-level “micro-management” of each unit within the swarm. Second, it is
still critical to maintain some degree of control over the swarm’s goals and actions in real
time. Saffre et al. [42] offer two families of control methods—direct and indirect—that can
be used to create HMIs for drone swarms that are suitable—that is, concurrently powerful,
flexible, intuitive, and easy to use—and that would enable a single operator to coordinate
the actions of a swarm. They come to the conclusion that while indirect methods enable the
specification of more abstract long-term objectives at the “operational” level, which makes
them naturally complementary, direct approaches are better suited for short timescales [42].
Practically speaking, a lot of applications involving multiple UAVs use the direct control
approach; however, as swarm operations and AI advance, it is clear that indirect control
will become more prevalent in the future.

The use of planners has also been proposed for the coordination of multiple unmanned
vehicles [43]. Planners are computer programs that create plans automatically in order to
meet user-specified requirements. When complex, variable, and interdependent behaviour
is required, as in missions where multiple UAVs take on different roles at different times,
plan libraries used for this creation are helpful. Miller et al.’s [44–46] Playbook is an example
of a planner that uses an adaptive automation approach.

The human operators need to be given access to decision-support tools so they can
make prompt, accurate decisions—especially in complex and dynamic situations. The infor-
mation presented in the HMI must be understood by the human operator in order for them
to make the best decisions possible during UAV swarm operation(s), taking into account
the psychological aspects of human decision making. Hart et al. [47] conducted a thorough
literature review on decision models’ human factor aspects and how to apply those to the
context of UAVs. Moreover, Bjurling et al.’s [48] findings indicate that human-in-the-loop
simulation research and related HMIs must facilitate communication among various drone
swarm tiers (e.g., subswarms, individual UAVs, and their sensors), as failure to do so may
result in an increased cognitive load on the human operator.

Lastly, Chen et al. [49] provide a comprehensive set of interface guidelines related to the
supervisory control of multiple robots. Chen et al. [49] go into detail about the adaptability
of systems and switch-off, as well as refocusing the human operator’s attention on the entire
swarm after they have managed one unmanned system. Lewis [43] provides guidelines for
the design of multi-unmanned vehicle systems, which are based on a proposed taxonomy
of operator task complexity. Specifically, Lewis [43] offers an overview of models that break
down the human operator’s interactions with unmanned vehicles UGVs and UAVs) into a
series of control episodes.

5. A Use Case Example of a Polymorphic Drone Swarm, and the Human
Control Thereof

Use cases for polymorphic drone swarms are not hard to find. Many of these be-
long to the general category of Intelligence, Surveillance, Reconnaisance (ISR) missions
(cf., e.g., [50]), in which an area is to be monitored and/or relevant objects or events must
be spotted, identified and (possibly) tracked. It may be worth mentioning that in our use
case the role of drones is confined to observation without actuation [51].

5.1. Distinguishing Between Detection and Identification in ISR Missions

The necessity for cooperation between multiple types of UASs in ISR missions springs
from the fact that different phases of the mission usually require different capabilities [50].
For instance, if the area of interest is relatively large, better results in terms of detection
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will often be achieved by flying the drones at high altitude for long periods, to maximise
coverage. Performance in this phase could be measured, for example, by the time between
the beginning of an event and it being noticed/reported by the swarm, or by the fraction of
events that are discovered before they somehow lose relevance (e.g., the intruder has left
the scene, or an isolated fire incident has already spread beyond control).

Conversely, it is often the case that detection is only the first necessary step, for instance,
when the nature of the phenomenon being monitored implies the presence of true and false
positives. In these circumstances, the same high altitude that increased one kind of drones’
detection range and improved coverage may prevent them from achieving conclusive
disambiguation, simply due to the distance from which the observation is made.

For instance, a bright spot on a thermal image may be a positive indication of, e.g., a
chemical process of fuel reacting with an oxidizing agent, commonly referred to as a fire (be
it a controlled or an uncontrolled fire) or of the presence of a life form (but not whether it
is a bear, a hiker, or a human in combat gear). Making that determination (identification)
would likely be best achieved by using another type of UAS (e.g., a low-flying quadcopter),
which in turn would have been highly inefficient in the first (detection) phase.

5.2. An ISR Scenario Focusing on Surveillance and Monitoring for a Polymorphic Swarm

Accordingly, we investigated a scenario in which fixed-wing drones with long en-
durance, flying at high speed and high altitude, are used for event detection, whereas
quadcopters with short endurance, flying at low altitude and slower speed, are called
upon for disambiguation. The study involved quantifying the influence of key parameter
values (frequency and half-life of relevant events, number and endurance of the two types of
drones, etc.) and comparing the performance of different cooperative strategies (e.g., what
exploration pattern do fixed-wing drones follow, when do quadcopters take off, how are
targets for disambiguation prioritised, and what fraction of the fleet is kept in reserve?).

For the proof-of-concept simulation study, two types of UAS were considered:

1. Fixed-wing drones that operate at a higher altitude, fly faster and further, carry sensors
that cover a large area, and are expensive (e.g., EUR 80,000 per unit).

2. Quadcopters that operate at lower altitude, is comparatively slow and has a shorter
range, has limited field of view, is cheap (e.g., EUR 10,000 per unit).

5.3. Human Factors and HMI Aspects of the Use Case and the Proof of Concept

In the use case, multiple drones work together in a polymorphic drone swarm. When
designing, deploying, and integrating polymorphic drone swarms, the human factor
aspects are vital; cf., [52]. Effective interaction between the human operator and the
swarm is needed via an appropriate HMI to enable seamless collaboration and mission
performance [53]. In that context, two separate aspects of relevance emerge:

1. Mission planning and coordination (discussed in Section 8.1);
2. Real-time monitoring and feedback to the human operator (discussed in Section 8.2).

In our use case, there are different drone capabilities in various numbers available
to the human operator planning and triggering the mission. Decisions for the operator
include how many drones of which type should be deployed for the mission. How to
communicate this information and how to enable the user to amend the settings (in advance
or during the mission) are key user interface design issues. Furthermore, the human
operator(s) must comprehend the drone ranges, event detection probabilities, and the
surveyed environment thoroughly in order to start the mission. To give the operators a
clear and simple understanding of these parameters, the provided interface should clearly
visualize the ranges of the drones, probability functions, and the operating environment.
We re-raise these questions in Section 8 after introducing the use case specifics.
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6. Materials and Methods
The planned ConOpss in our case study is that fixed-wing aircraft(s), with higher

speed and longer detection range, are used to spot relevant events and to direct the
slower quadcopter(s) to the corresponding location to inspect them. We do not make
any assumption regarding the events or the process of inspection but, depending on the
application domain (cf., Figure 1), it may be disambiguation between true and false positive
(wildfire start vs. controlled heat source [54], such as a BBQ), delivery of first aid to a
disaster victim, tagging of wildlife [55,56], interception of an enemy vehicle, etc.

Wild-fire detection: an evolving-area phenomenon

Monitoring of dangerous wildlife: a moving species

Figure 1. Specific instances of the generic use case: (top) detection and subsequent identification
of heat signatures of (relatively) static events such as a starting or growing forest fire (as discussed
in [54]); (bottom) detection, identification, and possibly tracking of dangerous mammals on the
basis of heat signatures, as discussed in [56]. The former simulates the slow evolution of an area
phenomenon while the latter is a species moving around but not extending the area (contrary to
the former, where size and shape can change over time). The generic use case in this article only
considers the detection (spotting) of a possible event by a fixed-wing AUV and the subsequent
identification and classification through a rotary UAV; whether the source of the event is mobile or
not is not considered.

We first discuss the map and the agents (UAVs on the map) in Section 6.1, define
events (Section 6.2) and how to measure the performance of the swarm (Section 6.3), and
then provide the algorithms used (Section 6.4).

6.1. The Map (Test Environment) and the Airspeed of the Two Types of Platforms Used

The test environment is a 10 × 10 km square (100 km2) centred on the base from which
all UAVs take off. The characteristics of the two types of UAVs involved are as follows:

• Fixed-wing UAVs: Travel at an airspeed of 30 m/s (108 km/h) and can perform a 180◦

turn in 6 s. They can detect events up to a range of 500 m.
• Quadcopters: Travel at an airspeed of 10 m/s (36 km/h) and can change direction

“instantly”. They can detect and inspect events up to a range of 50 m.

By default (benchmarking), both types of drones have an endurance (battery life) that
exceeds the duration of the numerical experiment (so they do not have to go back to base).
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6.2. Events

Events are generated stochastically and progress through a series of states. Figure 2
(events), Figure 3 (actions), and Figure 4 show how certain actions change the state of
an event.

6.2.1. Event Generation

Events are generated at a statistically fixed rate throughout the simulation and last for
a duration that obeys an exponential decay rule (i.e., both the initiation and termination of
events occur with a constant probability: the probability to start is 1.0

60 and the probability
to stop is 1.0

1800 ). This means that, on average, one new event starts every 60 s. The half-life
of an event is half an hour (1800 s). It is an exponential decay so it can last much shorter or
much longer, but 30 s is the average. This method was chosen because a similar process
governs many natural phenomena, such as the decay of radioactive isotopes. Note that
the resulting distribution of event longevity has a “long tail”, meaning that, although by
definition the average duration of an event is equal to the value of the half-life parameter,
some may last a substantially shorter or longer time.

6.2.2. Event State Progression

Events can be in 5 mutually exclusive states, as illustrated in Figure 2:

• Unknown: The event has not yet been spotted;
• Missed: The event has terminated before ever being detected;
• Spotted: Detected by a fixed-wing UAV but not (yet) inspected by a quadcopter;
• Lost: Spotted by a fixed-wing UAV but terminated before it could be inspected;
• Inspected: Spotted by a fixed-wing and inspected by a quadcopter while ongoing.

From an algorithmic and decision-making point of view, the Lost state has two
substates: Checked and Unchecked. It is critical to remember that, as far as the swarm
is concerned, a Lost event that is Unchecked is indistinguishable from a Spotted event;
i.e., it is still marked for inspection by a quadcopter even though it is no longer active. A
Lost event can transition from Unchecked to Checked in two ways: its location falls again
within the detection radius of a fixed-wing UAV (which, noticing its absence, may call off
inspection) or a quadcopter comes within 50 m of the target coordinates (inspection radius)
and makes the same determination (i.e., there is no longer anything to investigate there).

Figure 2. Events, after occurring, i.e., becoming active (blue error), are in one of 5 states. The transition
between these is determined by actions of the different UAV types. See also Figure 3.
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Figure 3. The transition between states for events is determined by the actions of the UAVs. Note the
uncertainty within the swarm with regard to the actual state of a Spotted event as well as with regard
to the actual number of active events. Swarm performance is measured as the number of Missed,
Lost(Checked), and Inspected events (green) over the total number of created events (blue).

6.3. Swarm Performance

Swarm performance is a function of the distribution of events between the three end
states (Missed, Lost(Checked), and Inspected) at the end of the numerical experiment,
with the Inspected state being obviously the most desirable. This is illustrated in Figure 3.

6.4. Algorithms

The behaviour algorithms for the different UAVs are straightforward; see Figure 4.
The challenge is the allocation of targets/waypoints to all the UAVs, a process that

is shown in the right-most flow diagram of Figure 4 as the box labelled re-assign all UAVs.
This process of dividing tasks (waypoints) over the swarm is detailed in the next section.

Figure 4. Simple flow diagrams for all three acting entities in the simulation: fixed-wing UAVs,
quadcopters, and the centralized database, where events are logged and from which the Autonomous
Underwater Vehicles (AUVs) receive their orders. The algorithms discussed in Sections 6.4.1 and 6.4.2
are used in the green box.

6.4.1. Algorithm: The Division of Labour

Allocating quadcopters to events when there are multiple drones and events (a set-
matching problem to which we could not identify a universal solution in the literature)
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is challenging. Although it is relatively trivial to solve for small sets using “brute force”,
the general case is NP-complete, and therefore much less tractable, even in the static case
(when sets are defined a priori and element characteristics do not change over time).

In the dynamic situation considered here, events are being discovered in real time
and quadcopters are on the move (constantly changing the proximity relationship between
elements of the two sets). This called for a simple match-making method capable of quick
and frequent updates at a low computational cost. We settled for the following. Whenever
change is detected (an event has been spotted for the first time or has just been checked),
the match-making procedure is called, which consists of only two steps:

1. The distance vectors between all quadcopters and all targeted events (Spotted and
Lost but still unchecked) are calculated and ranked by increasing length.

2. This ordered list of vectors is sequentially read (and the corresponding pairings
created) until there are either no more events to be allocated to a drone or no more
drones to assign to an event (under a “one-to-one” rule).

This can result in suboptimal pairings (both in terms of longest and average distance
between quadcopters and events), but no advanced yet tractable variant could be identified
that consistently outperformed the simplest version, possibly due to the high dynamicity.

6.4.2. Algorithm: Searching

In the absence of spotted events, two search algorithms were used.

• The simplest (“random”) consists in allocating a randomly chosen waypoint on the
periphery of the map to the UAV and repeating this procedure every time a waypoint
is reached (excluding points on the same border, i.e., mandatory “bouncing”).

• The other consists in predefining an optimal search pattern (“lawnmower”) in which
the distance between two consecutive legs is equal to or lower than twice the detection
radius (depending on the nearest division of the depth of the area to be searched).

Finally, the UAVs may be allocated exclusive territories within the search area. When
it is subdivided (into two, three, or four separate “domains”, depending on the number of
drones), all territories have an identical surface (i.e., 50 km2, 33.3 km2, or 25 km2).

Figure 5 illustrates this division and the two search patterns. Whenever a UAV is
assigned an exclusive territory, its search pattern is confined to the corresponding region.

Figure 5. Search patterns and territories for 2 (left) or 3 (right) UAVs. All territories (in either
figure) have the same surface. All drones follow the “lawnmower” search pattern, apart from one
(right figure, bottom right drone), which follows the “random” variant. Dashed circles indicate the
observation radius r, which is used to compute the position of the various waypoints.
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7. Results Indicating the Benefits of Applying Polymorphism to
Artificial Swarms

Our main concern however is to better understand the interplay between multiple
types of UAVs in a hybrid swarm and how the composition of the latter (in terms of the
number of units of each type) affects its overall performance. The key factor to consider is
that if the different types have different characteristics (aerodynamics, endurance, sensors,
payload, etc.), making them better at conducting one part of the mission (e.g., event detec-
tion) but worse at completing another (e.g., inspection, disambiguation, or neutralisation),
and if furthermore resources are limited (essentially a given in any realistic application
scenario), then a conservation law is necessarily at play, Meaning that there is a trade-off in
that improving one aspect will come with a detrimental effect on another.

Indeed, investing into more units of one kind implies that as a result there will be fewer
of the other(s), which in turn has implications for the overall performance of the hybrid
swarm (assuming that both phases of the mission must be completed for it to be considered
a success). Before we discuss our results with regard to the composition of the swarm
(Section 7.3) we first provide some benchmarks (Section 7.1) and have a quantitative look
at the impact of division of labour in the case of the random (as opposed to “lawnmower”)
search pattern (Section 7.2).

7.1. Benchmarking

Benchmarking was performed with a very small number of drones of each type
(one fixed-wing, one quadcopter; one fixed-wing, two quadcopters; and two fixed-wing,
one quadcopter) patrolling the area for a total of 4 h (i.e., 4 times the maximum half-life
value under consideration). Figure 6 shows that, as should be expected, the fraction
of events that completely escape detection (Missed) decreases as a function of half-life,
the number of fixed-wing UAVs, and when shifting from the random to lawnmower
search pattern. Nevertheless, it is worth observing some less obvious characteristics
such as, for instance, the fact that, for the chosen parameter values (search area size,
speed, and detection radius) two units performing a random walk strongly outperform a
single UAV following an optimal lawnmower across all considered values of the half-life
parameter (though the effect is predictably weaker for statistically longer events). It does
not end here, of course, because the different search patterns have different advantages and
disadvantages: e.g., when the target is moving then the random walk is more likely to find
it, over time. On the other hand, a random walk in 2D remains somewhat local in its search,
suggesting that (for static targets) in known environments a pre-planned lawnmower has
the potential to significantly outperform it.

7.2. Division of Labour for Random Searches

Another interesting result is the quantitative evaluation of the impact of the division
of labour when all participating UAVs are following a random search pattern: somewhat
counter-intuitively, the increased risk of duplication of efforts when no mutually exclusive
territories are imposed barely affects overall performance (see Figure 7). This leads us to the
useful conclusion that only when combined with an optimal search strategy (e.g., “lawn-
mower”) is spatial division of labour (territories) clearly beneficial to collective efficiency,
at least in this region of parameter space.
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Figure 6. Effect of search pattern on detection rate. A total of 1000 realisations per parameter value.

Figure 7. Effect of territoriality on detection rate. Total of 1000 realisations per parameter value.

7.3. Swarm Composition

In our proof-of-concept scenario, fast, high-altitude fixed-wing drones with a wide
detection cone (500 m radius at ground level) are used for event discovery because their
characteristics allow them to cover more space per unit of time. Conversely, slow, low-
altitude quadcopters with a narrower field of view are used for closer inspection of the
discovered events. If we assume that each fixed-wing UAV costs as much as four quad-
copters, and the budget is sufficient to acquire five of the latter, we have four4 options.
At one end of the spectrum, four fixed-wing drones will be supported by four quadcopters,
maximising long-range discovery at the expense of close-range inspection. At the other
end, a single fixed-wing UAV will be supported by 16 quadcopters, with the opposite
result. As it turns out, for the chosen parameter values, the optimum overall performance
is achieved with a swarm of threefixed-wing UASs and eight quadcopters (see Figure 8).

In summary, whereas when a single fixed-wing aircraft is tasked with patrolling
the entire area of interest (lawnmower pattern), the 16-strong quadcopter fleet achieves
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a ≈95% inspection rate of all discovered events (with an intermediate half-life value of
30 min), the discovery rate itself is less than 50% (i.e., over half of all simulated events
terminated before they could be spotted by the high-altitude unit, meaning they were
completely missed by the swarm). This translates into a mediocre actual inspection score
of ≈45%. By contrast, for the optimal swarm composition, this figure increases to ≈63%,
despite the inspection rate of already discovered events dropping to ≈90%.

Figure 8. Performance measures for hybrid swarms of different composition. “Spotted” is the % of
all created events that are detected (Spotted), “inspected (once detected)” is the fraction of Spotted
events that were inspected (Inspected), and “inspected (overall)” is what we are really after, namely,
the fraction of all created events that were also inspected (the value being the product of the other
two). Event half-life = 1800 s. Total of 1000 realisations per combination of parameter values.

7.4. Parameter Space Exploration

We conducted a systematic simulation-based exploration of the parameter space for
any number of fixed-wing drones and quadcopters between 1 and 10 (i.e., 100 different
combinations). For practical reasons, we used the most generic scenario in which all
UAVs are patrolling the entire surveillance area (i.e., no exclusive territories) and all
are performing a random walk following the rules described in the previous section.
Furthermore, the half-life of events was set to a constant 1800 s (30 min). In order to make
the potential use of our results more intuitive, we used a crude cost model, assuming the
price of each quadcopter to be EUR 10,000 and each fixed-wing UAV EUR 40,000, meaning
that, at the lower end (one of each), we have a global price tag of EUR 50,000, whereas at
the higher (ten of each), we are looking at a figure of EUR 500,000. While this economic
study is useful in the sense that it provides insights into cost effectiveness; it nevertheless
falls short of a sensitivity analysis to evaluate how variations in cost parameters, such as
the assumed CAPEX above, could influence the optimal swarm composition.

Using the above-provided crude model and the data collected through simulation, we
can identify the optimal composition for the hybrid swarm, taking into account mission
success criteria. For instance, if the acceptable threshold is that 50% of all events must
be inspected, a swarm comprised of three fixed-wing drones and four quadcopters (EUR
160,000) offers the best “value for money”, because of the law of diminishing returns (see
Figure 9). If the target is 67% (for the same performance variable), it is 5 of the former
and 10 of the latter (EUR 300,000). Combining multiple criteria is of course also feasible,
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for example, 50% inspection and 75% detection thresholds are simultaneously achievable
but require a minimum of six fixed-wing aircraft and three quadcopters (EUR 270,000).

Naturally, our quantitative results are merely illustrative, in the sense that they are
sensitive to parameter values such as the size of the area of interest, the airspeed of the
UAVs, the detection range of their sensors, etc., all of which were selected largely arbitrarily
for the purpose of this proof-of-concept simulation study. Nevertheless, they demonstrate
that, should these parameter values be available (i.e., when the mission specifics and
the model of drone to be deployed are known), identifying the optimal swarm size and
composition is feasible.

Figure 9. Sample result of the systematic parameter space exploration, emphasising the law of
diminishing returns (e.g., performance quickly plateaus when adding quadcopters to the swarm for
any number of fixed-wing drones). Total of 1000 realisations per combination of parameter values;
event half-life = 1800 s. Note: “successful inspection” implies that the event was spotted by a
fixed-wing UAV then reached by the quadcopter dispatched for confirmation before it terminated.

8. Human–Machine Interface (HMI) Considerations for the Use Case
In Section 5.3, we identified mission planning and coordination, real-time monitoring

of swarm operations, as well as feedback from the swarm to the human operator, as
important aspects that the human-machine interface (HMI) needs to account for. The UI
used by us is shown in Figure 10 but there are a number of considerations we would like
to share with the reader. The features described below correspond with the overarching
mission requirements of our use case. These can potentially be extended or adapted to
individual mission objectives (such as, e.g., long-term surveillance of a large area vs. a
rapid response in a small sub-area) where they are likely to offer advantages if designed
and tuned appropriately.

8.1. Mission Planning and Coordination

In our proof-of-concept demo, there are different drone capabilities in various numbers
available for the human operator when planning the mission. For instance, via the HMI, it
needs to be instructed how many fixed-wing drones one will deploy in a single mission.
One related key HMI question is: What is the right kind of user interface element to
communicate this number of drones to the user and how can the user change it?
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Currently, these elements are sliders, but whether this is the best solution remains in
question (the interface shown in Figure 10 was not designed with the user in mind). User
tests, where users experiment with different options, would be well suited to answer this.

Secondly, at the moment, the demo does not include an HMI solution for the user to
direct a specific drone to a particular location on a map. This could be implemented in
the interface in the case of the polymorphic swarm being deployed into a real application.
In other words, instead of abstracting the user out of the more detailed flight pattern
planning, the solution would require the user to consider and tag relevant places on the
map to help the swarm conduct its mission more effectively.

Figure 10. The UI for the simulation with fixed-wing UAVs (green) and quadcopters (blue and green).

Thirdly, the current HMI enables the operator to activate or deactivate the lawnmower
pattern for the drone flight paths. When it is active (i.e., the lawnmower pattern is on),
the drones fly a deterministic pattern for a homogeneous coverage of the area. The advan-
tage of this search pattern is that, assuming no drones are lost, no place is left unvisited
and the search times can be optimal (depending on the planning of the pattern). If the
lawnmower pattern is deactivated, a biased random walk is conducted, which cannot
guarantee full coverage. This approach includes a pseudo-randomly generated biased
random walk flying pattern, which is less predictable, and there are no hard guarantees
that every part is visited in a certain amount of time.

However, a random walk is resilient against the loss of a drone, as one of the down
sides of the approach is that the areas covered by the drones can overlap.

Fourthly, the human operators need to plan the operational mission by taking into
account the detection and disambiguation capabilities of both the quadcopters and the
fixed-wing drones. The planning HMI should enable operators to specify exploration
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patterns, determine when to deploy the quadcopters for disambiguation, and rank targets
according to a precise comprehension of the surrounding circumstances.

Fifthly, in order to use the fixed-wing drones and quadcopters effectively, the human
operators must also be aware of their features, capabilities, and limitations. In the final
deployment, the HMI should offer extensive training modules, including simulations
and tutorials, to acquaint operators with the characteristics of fixed-wing drones and
quadcopters. Finally, the human operators need to think about the mission’s financial
limitations (see Section 2.1) and how cost-effectively various fleet configurations work.
A cost–benefit analysis tool integrated into the user interface would help the operators to
evaluate the economic and performance effects of different hybrid fleet configurations.

8.2. Real-Time Monitoring and Feedback

The human operators must understand the drone ranges, event detection probabilities,
and the surveyed environment thoroughly to start the mission. To give the operators
a clear and simple understanding of these parameters, the provided interface should
clearly and visually represent the ranges of the drones, probability functions, and the
operating environment.

During the mission, to detect events and monitor the performance of both drone types
(fixed-wing and quadcopters) the human operators require up-to-date information on the
mission’s relevant factors. These factors include real-time information on the conducted
event identification, classification, and both drone types’ operational statuses. To help
the human operators make quick decisions, a dashboard-type user interface should show
real-time data such as detection timelines, drone locations, drone battery levels, event
categorization status, and mission progress.

Furthermore, it is important to notify the human operators of important developments,
successful or unsuccessful detections, and the results of the disambiguation. The operators
must be made aware of important occurrences or circumstances that call for quick action or
judgment. To enable prompt decision making, the interface should have configurable alerts
and notifications that notify operators of significant events, changes in the drone’s status,
or possible problems.

In response to evolving conditions or new developments during a mission, operators
may need to dynamically modify the mission goals and the swarm’s operational plans.
From the HMIs perspective, this requires possibilities for the human operators to make
quick changes, such as reorienting the mission’s focus or modifying the deployment strategy
of the quadcopters or exploration patterns. To assist operators in interpreting the results,
comparing strategies, and optimizing mission parameters in real time, the interface should
incorporate data analysis tools and decision-support features.

Lastly, the success of the mission depends on the effective use and management of
resources, including the various drone types. The HMI should have tools for managing
and monitoring the resources online during the mission. It should show important metrics,
such as drone endurance, event frequency, and reserve fleet status for proper resource
management to be conducted by the human operators.

9. Conclusions
9.1. Challenges for the Design of Polymorphic Artificial Swarms

From the machine intelligence perspective, a key challenge in the implementation
of polymorphic drone swarms amounts to a generalisation of the more fundamental
problem to be solved whenever considering any application of collective intelligence
design principles: How to generate the desired swarm behaviour for the lowest possible
computational cost, using exclusively local information and communication.
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As a rule, most commonly referred to artificial swarms (such as those used in aerial
light shows) are not “intelligent” at all (nowhere near as capable of adaptive problem
solving as a bee colony for example), they simply execute a sequence of pre-programmed
moves. Other so-called swarms, though already more sophisticated in the sense that they
can respond to changing conditions in real time, are simply flying in formation by following
some prescribed relative orientation and separation rules, which is more accurately referred
to as “flocking”. In addition, researchers have explored the potential of combining swarm
approaches with machine learning [57] or optimization techniques (such as, e.g., genetic
algorithms [58]) [59]. While showing potential, this path leads us further away from how
collectives of, e.g., social insects, solve problems in the real world.

By way of contrast, a “true” swarm would rely on self-organisation to make au-
tonomous decisions and implement a collective response that stands the best chance of
achieving any number of objectives. Designing a rule set capable of achieving this result is
already an ambitious goal when all units are “interchangeable” (i.e., have the same physical
and logical characteristics). Generalising to the case in which this is no longer true (e.g.,
the swarm is comprised of units that have different flight characteristics, different payloads,
different sensors and actuators, etc.) is even more challenging.

In the example of detection and disambiguation that was used as a proof-of-concept
illustration in this paper, we opted for a simple “hard-coded” division of labour approach:
fixed-wing drones are tasked with detection and have the authority to call upon “subordinate”
quadcopters to perform a disambiguation mission on possible events. Although fit for purpose,
this design is obviously crude and the long-term goal should be to realise a more flexible form
of organisation within the swarm, whereby individual units are not permanently assigned to
a single role but are instead predisposed to performing the functions for which they are best
equipped, unless circumstances force them to take on some other task (e.g., when something
urgent must be performed in response to a stimulus and there is no better-suited unit available
nearby). Earlier work by some of the authors considered, e.g., a force-based model [60] to
drive the behaviour of individual drones, a stochastic approach [61] to continuously allocate
and re-allocate tasks between UAVs, and discussed design challenges arising from the desire
to control a swarm through as few parameters/threshold values as possible [42].

It is anticipated that a combination of signalling, whereby individuals would be
“advertising” their capabilities to each other, and threshold-based decision making could
provide such flexible resource allocation, as it does in natural swarms. This should be the
subject of future work as it bears the promise of a reusable approach to the formation and
successful deployment of polymorphic swarms “on-demand” (i.e., notwithstanding the
precise characteristics of the units involved).

9.2. Human Factors Considerations for a Real Deployment

In the future, a real deployment of a polymorphic drone swarm system could enhance
performance in exploration and surveillance missions while guaranteeing efficient human–
machine cooperation by taking into account the appropriate human factors and HMI design
considerations. In addition to the mentioned specific human factor aspects, deployment of
a polymorphic drone swarm should also consider general human factor topics.

Among general human factor considerations are the following:

• Skill levels of the human operators
To guarantee the functioning and safety of the system in real swarming-based op-
erations, the polymorphic swarm system’s human–machine interface should be de-
signed to be easy to use by human operators with a variety of background skill levels.
The human–machine interface could also potentially adapt its behaviour based on the
skill level of the user in question.
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• Qualifications and experience of the human operators
Training on swarm behaviour, control techniques, and emergency protocols should be
provided for the human operators before real operations. These types of training will
ensure that the operators understand the grounds for the swarm’s behaviour, how to
command it, and how to act in subnormal (e.g., accident) situations.

• Human-in-the-Loop (HITL)
Establishing a proper degree of human participation in the decision-making processes
of the polymorphic swarm is needed. Routine tasks should be automated by the
system, but human intervention should be permitted when needed. A key issue here
is when to keep the human in/on/off the loop for the operation of the swarm.

• Interaction between drone types
In a polymorphic drone swarm similar to the one described earlier in this paper,
a seamless transition from detection to disambiguation depends on effective communi-
cation between the fixed-wing drones and quadcopters. To ensure that different drone
types cooperate to accomplish the mission objectives, the designed system solution
should have a communication module that enables reliable and transparent informa-
tion exchange between different drone types. The user should be kept informed about
the functioning of this module and potential discrepancies.

• Alerts and notifications
To inform the human operators of any problems, irregularities, or possible risks in
the swarm’s functioning, the human–machine interface should incorporate prompt,
clear alerts and notifications. A typical solution here would be a text-type log file of
the alerts and notifications. However, a more elaborate solution could incorporate
intuitive visualisations of the alerts with clear instructions on how to proceed forward.

• Legal and ethical perspectives
Naturally, one must pay attention to legal and ethical concerns when using drone swarms,
especially in populated areas. Firstly, one must make sure that the polymorphic drone
swarm operations adhere to both national and international laws and relevant ethical
guidelines. From the ethical perspective, especially privacy aspects should be considered
in civilian applications. In military applications, rules for engagement should also be
considered, taking into account the relevant ethical, legal, and cultural factors. Features
that encourage ethical use should also be integrated into the final HMI.

• System customization
The HMI design could feature an interface adaptable to the unique requirements
and inclinations of its users. This could also include, for instance, implementing
feedback mechanisms to collect human operator input and gradually increase the
system’s adaptability and usability related to particular user preferences via the
gathered feedback.

9.3. Future Work

Without stating specific work packages or planned projects, it should be clear that the
results presented in this article are generic and theoretical. We very much expect that any
tailoring of the approach to a specific environment, application, or domain would have to
be tuned accordingly. This will very likely affect the performance. Similarly, there are a host
of different platforms that are commercially available, all with different specifications and
capabilities. Any applied use of our work would have to start by considering the available
platforms and payloads from which to create the polymorphic swarm. The values we used
for UAV performance or cost were largely educated estimates; future work would consider
more realistic values, which would depend on the specifics of the application.
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Thus, future work is needed in the testing of the proposed drone solutions through
deployment under real-world settings. This will lead to more representative parameters
with regard to operational cost. Using these, a cost–benefit analysis should be conducted,
as well as a sensitivity analysis regarding changes in cost parameters and the impact of
different drone configurations on mission success. With a real use case to study, significant
additional future work is needed in the testing of the HMI design with real users.

We hope to be able to corroborate our results through data collected from a real
polymorphic swarm, deployed in the manner and to the ends suggested by this article,
but this represents another and ambitious engineering effort.

Furthermore, while forest fires are increasingly common, it will still be difficult to
compare performances of various swarms/swarm compositions on different deployments.

The first steps towards this are being taken; cf., [62]. For the time being, we present a
method that, given correct input values for the various parameters, would return the following:

1. An optimal fleet composition to achieve the best performance within a given budget.
2. The minimal requirements (still in terms of fleet composition but without budget

constraints) to achieve a target performance (detection/disambiguation rate).

In the absence of specific values for all parameters (such as, e.g., drone characteristics
and price, sensor range, search area, . . .), we do not claim that our quantitative fleet
planning method is immediately applicable for a real deployment.

9.4. Summary

Overall, for polymorphic drone swarms to be successfully integrated into a variety of
applications, from monitoring and surveillance to search-and-rescue operations, human
factor considerations are essential. Achieving optimal performance and safety in the
operation of such swarms requires striking a balance between automation and human
control, as well as making sure that the HMI is user-friendly. This paper has been a step
towards articulating the relevant factors needed to be considered in this endeavour.
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