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Abstract: As the exploration of marine resources continues to deepen, the utilization of
Autonomous Underwater Vehicles (AUVs) for conducting marine resource surveys and un-
derwater environmental mapping has become a common practice. In order to successfully
accomplish exploration missions, AUVs require high-precision underwater navigation
information as support. A Strapdown Inertial Navigation System (SINS) can provide AUVs
with accurate attitude and heading information, while a Doppler Velocity Log (DVL) is
capable of measuring the velocity vector of the AUVs. Therefore, the integrated SINS/DVL
navigation system can furnish the necessary navigational information required by an AUV.
In response to the issue of DVL being susceptible to external environmental interference,
leading to reduced measurement accuracy, this paper proposes an end-to-end deep-learning
approach to enhance the accuracy of DVL velocity vector measurements. The utilization
of the raw measurement data from an Inertial Measurement Unit (IMU), which includes
gyroscopes and accelerometers, to assist the DVL in velocity vector estimation and to refine
it towards the Global Positioning System (GPS) velocity vector, compensates for the external
environmental interference affecting the DVL, therefore enhancing the navigation accuracy.
To evaluate the proposed method, we conducted lake experiments using SINS and DVL
equipment, from which the collected data were organized into a dataset for training and
assessing the model. The research results show that the DVL vector predicted by our model
can achieve a maximum improvement of 69.26% in terms of root mean square error and a
maximum improvement of 78.62% in terms of relative trajectory error.

Keywords: AUV; SINS; DVL; deep learning; underwater navigation

1. Introduction
AUVs have emerged as a research focus in the field of marine exploration in recent

years [1,2], as they are widely applicable to various underwater needs, such as seabed
mapping, archaeological surveys, environmental monitoring, underwater infrastructure
inspections, and military reconnaissance [3]. The prerequisite for an AUV to perform
tasks in unknown waters is its ability to obtain sufficiently accurate navigation information
(attitude, heading, velocity, etc.) to support the AUV in completing the required actions [4,5].
In water, the Global Navigation Satellite System (GNSS) can provide most of the required
navigation information. However, due to the rapid attenuation of radio signals in water,
underwater positioning cannot be accomplished, and GNSS is unable to provide accurate
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navigation information for AUVs [6]. Underwater navigation methods for AUVs generally
include geomagnetic field matching navigation, inertial navigation, acoustic navigation, etc.
Geophysical field matching methods obtain navigation information by matching real-time
measured physical feature data with pre-stored map data. For instance, a multibeam echo
sounder (MBES) can be utilized to acquire bathymetric maps for navigation information.
While MBES offer high precision, they are also costly and cumbersome, which limits their
practical application in geophysical field matching methods.

A single navigation method alone is often insufficient to meet the precision require-
ments for AUV navigation, so the combination of SINS and DVL is a commonly used
navigation method for AUVs. The combined navigation approach allows the two sensors
to complement each other’s strengths. It uses the error propagation variance of the SINS as
the system state equation, the DVL velocity measurement as the velocity reference, and
the difference in velocity between SINS and DVL as the observation value. Subsequently,
the SINS error states are estimated and compensated through a Kalman filter, therefore
enhancing the navigation accuracy. Despite this, the accuracy of the SINS/DVL combined
navigation system is still influenced by the precision of the SINS and DVL sensors [7–10].

SINS utilizes an IMU to collect navigation information and computes the velocity of
the AUV through integration, which is further used for dead reckoning. This can provide
the navigation information required for an AUV [11]. The advantage of the IMU sensor
lies in its ability to operate independently, as it neither emits signals nor relies on external
units. It offers excellent anti-interference capabilities, allowing for the acquisition of high-
precision, low-latency, and high-rate navigation information in a short period of time [12].
However, due to the nature of integration, the cumulative error in navigation information
tends to increase as time progresses [13]. To enhance the navigation accuracy of the SINS,
scholars have conducted a series of studies. Properly calibrating the SINS equipment can
significantly improve the accuracy of the navigation information it provides. Calibration
methods have rapidly gained widespread attention, such as using a high-precision three-
axis turntable and the rotation of the system’s three sensitive axes to achieve the calibration
of error angles between the two systems [14]. The improved system-level fitting calibration
method can address the severe coupling errors in the estimation of the scale factor error of
the SINS using high-precision Ring Laser Gyros (RLGs) [15]. Additionally, a full-parameter
calibration method for a six-axis tilt inertial measurement unit can reduce the difficulty of
calibrating the tilt inertial assembly [16]. Moreover, a rapid analytical coarse calibration
algorithm can eliminate calibration errors caused by IMU orientation errors [17] and can
even achieve high-precision calibration of the SINS in polar regions [18]. When the SINS
collects data, it inevitably becomes subject to the influence of the system noise inherent
in the sensors. To address random noise, the Kalman filter can be used for estimation
and noise reduction [19], or the Kalman filter can be applied to filter the high-frequency
components of multi-resolution decomposed signals [20]. Additionally, wavelet domains
can be utilized for denoising with correlated thresholding [21]. Furthermore, optimization
techniques based on iterative rules can employ neural-fuzzy systems to predict SINS
positioning errors [22].

Acoustic navigation is primarily implemented through a DVL, which is a navigation
method based on the Doppler effect. It estimates the velocity vector of the AUV by calcu-
lating the Doppler frequency shifts of multiple beams reflected in different directions [23].
Due to its characteristic of not accumulating errors over time, the DVL can provide real-
time high-precision velocity measurements of the AUV. However, the stability of these
measurements is susceptible to interference from the external environment [24]. Most
DVL algorithms assume that the attitude of the AUV remains consistent from the time
of beam emission to the time of reception [25]. However, if the attitude changes dur-



Drones 2025, 9, 56 3 of 19

ing this period, it can lead to beam measurement errors, affecting the accuracy of DVL
measurements [13]. The factors that affect the measurement accuracy of the DVL primarily
include scale factor errors, misalignment angles, and random noise errors. To address
scale factor errors, current methods include GNSS-assisted calibration based on velocity
and position observations [23], as well as the use of a robust Invariant Extended Kalman
Filter (IEKF). This approach combines the linear error propagation equation of the DVL
calibration model based on the Lie group SO(3) with the theory of Statistical Similarity
Measure (SSM), which can reduce the impact of outliers on calibration accuracy [10].

To address the random noise errors in the DVL, an improved robust Kalman Filter
(KF) algorithm can be used to process the measurement noise variance of each DVL beam
separately [26]. Additionally, a fault diagnosis method based on the chi-squared rule and
a velocity tracking method based on a constant velocity model and the assumption of
slow movement of the AUV can effectively suppress the random noise generated by DVL
measurements [27]. When DVL measurement anomalies or beam loss occur, leading to a
decrease in DVL measurement accuracy, AI and data-driven methods can be employed
for predictive regression of the DVL [28–30]. To address installation misalignment angles,
in the early stages, the least squares method could be used for estimation [31]. Currently,
online calibration using Kalman filtering [32] or optimal estimation methods based on
algorithms such as Particle Swarm Optimization (PSO) can also be employed to calibrate
the DVL [33].

The accuracy of integrated navigation systems is still affected by the measurement
precision of various sensors, including those from the SINS and the DVL. Inspired by
Cohen [34], to enhance underwater navigation accuracy, this paper proposes an end-to-
end deep-learning framework to improve the velocity vector of the DVL. Using the raw
measurement data from IMU sensors, the method refines the DVL velocity readings. It
compensates for external environmental interferences affecting the DVL, therefore enhanc-
ing navigation accuracy. The Figure 1 is the conceptual framework of this paper. The
network utilizes raw IMU data to optimize the DVL velocity vector. During the training
process, the output of the network and the actual GPS velocity vector are used to calculate
the loss function. Finally, the optimized DVL velocity vector is integrated through the navi-
gation system to obtain the position. The GPS described in this paper uses RTK differential
positioning, which can achieve centimeter-level accuracy.
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Figure 1. Overview of the proposed method. The network utilizes raw IMU data to optimize the DVL
velocity vector. During the training process, the output of the network and the actual GPS velocity
vector are used to calculate the loss function. Finally, the optimized DVL velocity vector is integrated
through the navigation system to obtain the position.
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Figure 1. Overview of the proposed method.

To this end, we conducted experiments on a lake using both SINS and DVL equipment,
collected data, and created a dataset to validate the effectiveness of the method proposed
in this paper.

Summarizing the contributions of this paper as follows:

• We propose a deep-learning-based method for improving DVL measurements. This ap-
proach can compensate for external interferences during the DVL speed measurement
process, therefore enhancing the accuracy of the DVL velocity vector.
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• To facilitate further research in this field, we plan to make the test dataset and re-
lated code files publicly available and store them in a GitHub repository for every-
one’s use. (https://github.com/Graceful-ZSP/DVL-Improved.git) (accessed on 29
December 2024)

The remainder of this paper is organized as follows: Section 2 introduces the calcula-
tion principle of the DVL velocity vector and the model network framework proposed in
this paper. Section 3 describes the relevant equipment used for data collection, the physical
connections between the devices, and the location and process of data collection. Section 4
presents a qualitative and quantitative analysis of the results obtained from the model.
Section 5 summarizes the work presented.

2. Principles and Network Framework
2.1. DVL Velocity Calculation

The DVL is an instrument that utilizes the Doppler effect of acoustic signals for
velocity measurement and is widely used in the field of underwater navigation. The
Doppler effect describes the phenomenon where there is a difference in frequency between
the waves received and the waves emitted by a source when there is relative motion
between the wave source and the receiver. The DVL emits multiple acoustic beams at
various angles into the water and receives the echo signals that return after interacting with
underwater objects, such as the sea floor. If there is relative motion, the frequency of the
returning acoustic waves will change according to the Doppler effect. The DVL measures its
velocity relative to the water column or the seafloor by analyzing the frequency difference
(Doppler shift) between the emitted sound waves and the received echoes. It is represented
by Equation (1):

fr = ft

(
1 ∓ vbeam

c
1 ± vbeam

c

)
(1)

where fr is the received frequency, ft is the transmitted frequency, vbeam is the velocity of the
beam relative to the medium, c is the speed of sound in the medium (water). Considering
that the speed of the DVL is much slower than the speed of sound, the change in frequency
can be simplified to Equation (2):

∆ f ≈ 2 ftvbeam
c

(2)

Each beam’s velocity in a specific direction can be represented by Equation (3):

vbeam =
c

2 ft
∆ f (3)

The sensor configuration of the DVL is in an X-shaped arrangement, also known as
the Janus Doppler configuration. The Figure 2 shows a schematic diagram of the DVL
beam directions:

By observing the geometric relationship between the DVL beams and the DVL body,
the directions of the beams in the DVL body frame can be represented as (4):

bt =
[
cos φi sin α sin φi sin α cos α

]
1×3

(4)

https://github.com/Graceful-ZSP/DVL-Improved.git
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where (i = 1, 2, 3, 4) represents the beam number, and φ and α are the yaw and pitch angles
relative to the vehicle body frame, respectively. All four beams have the same pitch angle,
while the yaw angle is expressed as Equation (5):

φi = (i − 1)
π

2
+

π

4
(5)
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Figure 2. A schematic diagram of the DVL’s four beams, which are arranged in an X-shaped layout.
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We can define a transformation matrix B as shown in Equation (6):

B =




b1

b2

b3

b4




4×3

(6)

Then, the relationship between the DVL velocity vb
b and the beam velocity measure-

ments vbeam can be represented through matrix B as shown in Equation (7):

vbeam = Bvb
b (7)

Based on the aforementioned relationship, using the least squares (LS) estimator, the
DVL estimated velocity is obtained as shown in Equation (8):

v̂b
b = argmin

vb
b

∥∥∥y − Bvb
b

∥∥∥
2

(8)

where y is the measured value of the beam velocity, based on the ideas of Braginsky and
others [35], Equation (8) can be transformed into Equation (9).

v̂b
b = (BT B)−1BTy (9)

At this point, the three-axis velocity of the DVL carrier vehicle can be solved through
the beam velocities measured by the DVL. Most DVL devices use Equation (9) to measure
velocity. We aim to improve the velocity output of the DVL, hence it is necessary to select
an error model. During the measurement process, the DVL may have scale factor errors,
random noise, and misalignment angle errors. By incorporating these into Equation (7), the
common error model of the DVL can be obtained [36], as shown in Equation (10):

y = B[vb
b(1 + sDVL)] + bDVL + n (10)
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where sDVL is the scale factor, bDVL is the bias vector, and n is zero-mean Gaussian
white noise.

2.2. Deep-Learning Network Framework Based on IMU/DVL Integration

The internal IMU sensors of a SINS typically include three-axis gyroscopes and three-
axis accelerometers. The raw measurement data from these gyroscopes and accelerometers
can be used to calculate the position, orientation, and velocity of the AUV in space, therefore
capturing the dynamic information of the AUV’s motion.

Liu and others [37] proposed a deep-learning network architecture known as the
GPS/SINS neural network, which combines Convolutional Neural Networks (CNN) and
Gated Recurrent Unit (GRU) neural networks. This architecture extracts spatial features
from IMU signals and tracks their temporal characteristics, therefore enhancing navigation
performance during GPS outages. This demonstrates that IMU sensors contain sufficient
navigation information, which is why this paper utilizes the output data from gyroscopes
and accelerometers to assist in improving the DVL’s velocity vector.

GPS provides extremely high accuracy in position and velocity, and in many studies,
the position and velocity information from GPS are considered a high-precision reference
standard. Therefore, in this paper, the GPS velocity output is used as the target for improv-
ing the DVL output velocity. By continuously refining the calibration of DVL measurements,
the reliability of the DVL output velocity is enhanced. Radio waves suffer significant atten-
uation in water, which impedes the underwater transmission path of GPS, leading to signal
transmission delays or even loss. Therefore, we opt to enhance the forward and lateral
velocities of the DVL, using the forward and lateral velocities from GPS as the targets for
improvement. Data collection on the lake is simplified because it only requires a test vessel
to sail on the surface to collect the required data.

The output rate of the measurement data from the gyroscope and accelerometer is
100 Hz, while the output rate of the measurement data from the DVL sensor is only 5 Hz.
This means that we cannot directly input the data from the three sensors into the network.
Therefore, following the approach in Cohen [34], we package the data from the gyroscope
and accelerometer according to the ratio of the output rates of the three sensors, which is
20:20:1. That is to say, every 20 sets of measurements from the gyroscope and accelerometer
correspond to one set of measurements from the DVL.

We first pass the raw measurements from the gyroscope and accelerometer through a
one-dimensional convolutional layer (1D Conv) composed of six 2 × 1 filters to effectively
extract spatial features from the sequential data and generate feature vectors. The selection
of a kernel length of 2 is a comprehensive consideration of computational efficiency and
feature capture capabilities, while the design of 6 kernels is to achieve multi-scale feature
fusion. Then, a Flatten layer is applied to “flatten” the multi-dimensional feature vectors
into one-dimensional data. The output of the one-dimensional data is then passed through
a Long Short-Term Memory (LSTM) layer. The LSTM layer can capture temporal features
of the data, allowing for further feature extraction based on the temporal dynamics. The
two sets of feature data are then combined and passed through a Dropout layer, which
randomly discards a certain proportion of the data to reduce the risk of model overfitting.
Afterward, the data goes through a series of fully connected layers. The output is combined
with the current DVL velocity vector and, through the final fully connected layer, produces
a 2 × 1 vector. This vector represents the predicted DVL velocity vector by the model. The
specific architecture of the model is shown in Figure 3 below.
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Figure 3. Deep learning network architecture diagram of the proposed model in this paper.
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For the aforementioned network architecture, the following definitions are utilized:

• Flatten Layer: Transforms multi-dimensional input data into a one-dimensional format.
• Dropout Layer: Regularizes the input data to reduce the risk of model overfitting.
• Linear Layer: Performs a linear transformation on the input data, integrating features

and producing an output of a fixed size.
• Tanh Activation Function: The hyperbolic tangent function maps the input value x to

a nonlinear range between −1 and 1. It is specifically implemented as:

Tanh(x) =
ex − e−x

ex + e−x (11)

• ReLU (Rectified Linear Unit) Activation Function: Also known as the ramp function,
it is a nonlinear function with both biological and mathematical foundations, and it is
specifically implemented as:

ReLU(x) = max(0, x) (12)

• 1D Conv Layer: Creates a convolutional kernel that captures local features of the
input data along a single spatial dimension through convolution and outputs a feature
vector. In a 1D Conv layer, all input parameters interact directly with the output. The
relationship between the input and output is as follows:

yt =
i=1

∑
p

xt+i + wi (13)

where x is input, y is output, t represents the timestamp, p denotes the kernel length.
The p is the size of the filter or kernel used in the convolutional operation. The w
symbolizes the learned weights.

• LSTM Layer: The LSTM layer can learn the long-term dependencies in the input data
and extract the temporal features of the data through its internal gating structure. It
is an advanced version of the Recurrent Neural Network (RNN) because it solves
the problem of gradient explosion in time series [38]. The LSTM uses input gates,
output gates, and forget gates to extract temporal features. The role of the forget
gate is to discard irrelevant information from previous outputs and current inputs,
represented as:

ft = σ(xtU f + ht−1W f + b f ) (14)
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where xt is the current input, ht−1 is the output from the previous moment, W f and
U f are the forget gate weights, and b f is the bias. The role of the input gate is to update
the cell state, represented as:

it = σ(xtUi + ht−1Wi + bi) (15)

where Wi and Ui are the input gate weights, and bi is the bias. The role of the output
gate is to determine the output and decide which information from the cell state to
pass on, represented as:

ot = σ(xtUo + ht−1Wi + bo) (16)

where Wo and Uo are the input gate weights, and bo is the bias. The LSTM layer
outputs the current output and hidden state, represented as the result of the output
gate multiplied by the cell state through a tanh layer:

ht = ot · Tanh(Ct) (17)

where Ct is the current cell state, represented as Equation (18).

Ct = ftCt−1 + itC̃t (18)

where C̃t is the estimated cell state, represented as Equation (19)

C̃t = Tanh(xtUg + ht−1Wg + bg) (19)

where Wg and Ug are the gate weights, and bg is the bias.

The CNN-LSTM is a hybrid neural network architecture that combines the strengths
of both CNN and LSTM. This architecture leverages the CNN’s proficiency in handling
spatial data, such as images, and the LSTM’s expertise in processing sequential data, such
as time series. It is widely used in fields like image captioning, video analysis, and time
series forecasting. CNN excels at extracting spatial features, while LSTMs are adept at
handling sequential features. By inputting the spatial features extracted by the CNN into
the LSTM, it is possible to model and analyze sequences of spatial features. The CNN-
LSTM architecture, by combining the advantages of both CNN and LSTM, exhibits stronger
generalization capabilities and expressiveness when dealing with complex spatiotemporal
data. The IMU, DVL, and GPS data we collected are all time series data with inherent
spatial characteristics. In response to this scenario, we chose the CNN-LSTM architecture
to improve the DVL velocity vector.

2.3. Network Hyperparameter Definition

Mean Squared Error (MSE) measures the accuracy of model predictions by calculating
the average of the squares of the differences between the predicted values and the actual
values. It is sensitive to the values of the Lie group and has high computational efficiency,
which is suitable for the scenario of underwater navigation, so we use it as the model’s loss
function. The definition of MSE is shown in Equation (20) as follows:

MSE =
1
n

n

∑
i+1

(yactual − ypredicted)
2 (20)

where n is the number of samples, yactual is the target value, and ypredicted is the model’s
predicted value. The forward propagation process during training is the process by which
input data passes through all layers of the network architecture Figure 3. After completing
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the forward propagation, the loss function is calculated, and then the weights and biases
of all layers are updated during the backpropagation process using the gradient descent
method. The principle of gradient descent is defined as:

θ = θ − η∇θ J(θ) (21)

where θ is the vector of weights and biases, J(θ) is the value of the loss function computed
by the model when the weights and biases are set to θ, ∇θ is the gradient operator, and η is
the learning rate.

The learning rate holds an important position among all hyperparameters, as it directly
affects the speed of the model training process and the performance of the model. If the
learning rate is too low, it will cause the model to fall into local optima too quickly. If it is too
high, it will prevent the model from converging. We used the Adam optimizer to achieve
adaptive adjustment of the learning rate, aiming to improve the efficiency and stability of
model training. Specifically, we set an initial learning rate of 0.001 and allowed the Adam
optimizer to adjust it automatically. Additionally, we selected MSE as the loss function
and found in our experiments that the model typically converges after 500 iterations.
Regarding the batch size, we chose 4 as a compromise to balance memory usage and model
performance. The selection of these hyperparameters was based on the results of multiple
experiments. To mitigate overfitting, we employed regularization techniques during model
training. Specifically, we added an L2 regularization term to the loss function to constrain
the model weights and prevent the model from becoming too complex.

3. Data Acquisition System Composition
3.1. Hardware Equipment

We opt to use a SINS to collect the required data from gyroscopes, accelerometers, and
GPS. The SINS is equipped with high-precision fiber optic gyros, high-precision quartz
flex accelerometers, and a mobile mapping-grade multi-mode and multi-frequency GNSS
receiver supporting independent BeiDou functions, enabling high-precision measurement
of the carrier’s heading, attitude, velocity, and position. The DVL used for data collection is
referred to as “Pathfinder”. This model of DVL features a unique phased array sensor and
does not require sound velocity correction. It is compact but can provide highly reliable
velocity data. A field photo of the SINS and DVL devices is hlshown in Figure 4.
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Table 1. Some key parameters of SINS and DVL devices.

Device Parameter Performance Coordinate System

SINS
Heading accuracy 0.05◦

Forward, left, upGyro zero deviation stability ≤0.1◦/h
Accelerometer zero offset

stability ≤20 µg

DVL
Frequency 614.4 kHz

Forward, left, upVelocity accuracy ±0.2% ±0.2 cm/s
Altitude 0.2 m–89 m

3.2. Data Collection Methods

To verify the proposed method, a canyon located in the northwest of China to complete
the data collection, meeting the needs of our experiment. We use the experimental vessel to
complete 15 tasks in the canyon, with varying navigation trajectories and times for each task,
including C-shaped, Mountain-shaped, round, M-shaped, N-shaped, wavy trajectories, etc.
In the data collection process, we carefully selected a variety of shapes, including the M
shape, to comprehensively capture different dynamic characteristics. The design of the M
shape is particularly used to capture the dynamic parts of rapid changes and turns, which
is crucial for evaluating the system’s performance under complex motion patterns. In
addition, other shapes, such as straight lines, curves, etc., are also included to cover motion
situations at different speeds and accelerations. Through such diverse shape selection, we
aim to ensure the richness and representativeness of the dataset, therefore improving the
generalization ability of the model in different scenarios. We selected 4 tasks from a total of
15 tasks to form our test dataset, 1 task for model validation, and the remaining 10 tasks for
training our model. The satellite image of the experimental area and the trajectory maps of
the four tasks used as test data are shown in Figure 5.

The directions of the two devices are not consistent. We can align the directions of
the two devices by self-compensating 45° through internal DVL commands. To ensure the
mechanical stability of these two devices, we customized a mechanical structure for fixing
the DVL on the test vessel. In the design of the experimental setup and the data processing,
we have thoroughly considered and compensated for the leverage arm effect between
sensors, ensuring the consistency and accuracy of the data. The schematic diagrams of
our test vessel, equipment coordinate directions, and data collection process can be seen
in Figure 6.

The dataset has a total duration of over 2 h, including 21,615 DVL measurement data
points, 432,300 gyroscope and accelerometer measurement data points, and 432,300 GPS
velocity measurement data points. The data volume for each task varies, with the data
used for training to account for approximately 70% of the total dataset and the data used
for testing making up about 20% of the total dataset. The validation dataset comprises
approximately 10% of the total dataset.
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Figure 6. In the left panel is our test vessel with the fixed mechanical structure installed. In the upper
right corner is the coordinate direction diagram for the SINS and DVL devices, and in the lower right
corner is the schematic diagram of the data collection process.
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Figure 6. In the left panel is our test vessel with the fixed mechanical structure installed. In the upper
right corner is the coordinate direction diagram for the SINS and DVL devices, and in the lower right
corner is the schematic diagram of the data collection process.

4. Data Analysis
Underwater navigation systems utilize technologies such as acoustics, inertial mea-

surement, and other sensing techniques to achieve positioning and navigation. The primary
methods include acoustic navigation, inertial navigation, and integrated navigation. Acous-
tic navigation works on the principle of using the propagation characteristics of sound
waves in water for positioning. Sound wave signals are emitted from a transmitter, reflect
off obstacles, and by measuring the time and direction of the sound wave’s propaga-
tion, the position of the object is determined. Inertial navigation calculates position and
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heading by measuring the device’s acceleration and angular velocity. Inertial navigation
systems do not rely on external signals, making them particularly useful in underwater
environments. Integrated navigation combines various navigation technologies (such as
GPS, DVL, acoustic navigation, etc.) to enhance navigation accuracy and reliability. For
example, an INS/DVL/GPS-based integrated navigation system corrects the errors of
the inertial navigation system by fusing data from multiple sources, therefore improving
navigation precision.

The training set is used to train the model, with the batch size set to 4 and the learning
rate set to n = 0.001. The learning rate is decayed by a factor of 0.5 every 150 training
epochs, and the model converges after 500 training epochs. The test set is input into
our well-trained model to obtain the predicted DVL velocity vector and to calculate the
corresponding evaluation metrics. The performance of the test set on the model can be seen
in Figure 7.
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Figure 7. Comparison chart of the original DVL velocity, model-improved velocity, and GPS output
velocity, where (a) Task-1; (b) Task-2; (c) Task-3; (d) Task-4. The VL represents the lateral velocity of
DVL, and the VF represents the forward velocity of DVL.

It is evident from the velocity curves that the DVL velocity vectors predicted by the
model closely follow the GPS velocity vectors, especially during significant changes in
speed. In Figure 7, it is easy to see that the performance of the original DVL’s VL is relatively
poor, especially when changing direction. This is consistent with the speed measurement
rules of the DVL and is the expected result, as the likelihood of the DVL’s beam loss
increases when there is a significant change in the direction of the vehicle, which can lead
to poor quality of the speed vector output by the DVL. However, after optimization with
our algorithm, we can better correct the DVL. The original DVL’s VF performance is better,
which may be because the direction of the vehicle is always forward. The quality decreases
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when there is a sudden change in VF, but after optimization with our algorithm, it can show
a good state. In summary, our algorithm can significantly optimize the DVL speed vector.

The performance evaluation of underwater navigation systems is a crucial step in
ensuring their reliable operation in complex marine environments. The most critical aspects
of navigation are position and velocity, so evaluating the performance of an underwater
navigation system essentially requires assessing the accuracy of its position and velocity
measurements. The definition of the model evaluation metrics follows Armaghani and
Asteris [39], and there are four in total:

1. Root Mean Squared Error (RMSE), a metric used to measure the difference between
the model’s predictions and the actual values. The smaller the metric, the smaller the
difference between the model’s predictions and the actual values, indicating better
model prediction performance:

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)2 (22)

where xi refers to the true value at time i, and x̂i refers to the predicted value at time i.
2. Mean Absolute Error (MAE), a metric used to measure the prediction error of the

model. The smaller the metric, the smaller the prediction error, indicating better model
prediction performance:

MAE =
1
n

n

∑
i=1

∥xi − x̂i∥ (23)

3. Coefficient of Determination (R2), which indicates the strength of the relationship
between two quantities. The closer the metric is to 1, the stronger the relationship
between the two quantities, and the closer to 0, the weaker the relationship:

R2 = 1 − ∑n
i=1(xi − x̂i)

2

∑n
i=1(xi − x̄i)2 (24)

where x̄i represents the mean of the true values.
4. Variance Accounted For (VAF), a metric used to evaluate the predictive capability of

the model. The larger the metric, the better the model’s predictive ability:

VAF =

[
1 − var(xi − x̂i)

var(x)i

]
× 100 (25)

By inputting the test set into the model, we calculated the four evaluation metrics for
both the DVL original velocity vector and the model-predicted velocity vector relative to
the GPS velocity vector. The specific results are shown in the Table 2 below:

Table 2. The performance of the DVL velocity vector and the improved network velocity vector on the
four evaluation metrics, as well as the improvement ratio of the network. Task-1 is mountain-shaped,
Task-2 is round, Task-3 is M-shaped, and Task-4 is wavy.

Indicators Code Name DVL Proposed Improvement

RMSE

Task-1 0.1132 0.0348 69.26%
Task-2 0.1596 0.0524 67.17%
Task-3 0.1242 0.0390 68.60%
Task-4 0.1271 0.0974 23.37%
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Table 2. Cont.

Indicators Code Name DVL Proposed Improvement

MAE

Task-1 0.0919 0.0284 69.10%
Task-2 0.0959 0.0396 58.71%
Task-3 0.0763 0.0308 59.63%
Task-4 0.0663 0.0432 34.84%

R2

Task-1 0.5077 0.9341 83.99%
Task-2 0.5751 0.9704 68.74%
Task-3 0.7091 0.9792 38.10%
Task-4 0.4993 0.8857 77.39%

VAF

Task-1 62.6726 95.1262 51.78%
Task-2 59.6023 97.6146 63.78%
Task-3 71.2616 98.2074 37.81%
Task-4 50.1909 88.8289 76.98%

From an objective evaluation of the velocity metrics, the model we proposed can
significantly improve the DVL velocity vector. The RMSE achieved a maximum improve-
ment of 69.26%, the MAE achieved a maximum improvement of 69.10%, the R2 achieved
a maximum improvement of 83.99%, and the VAF achieved a maximum improvement
of 76.98%.

To further demonstrate the improvement in navigation accuracy, we performed dead
reckoning on the carrier using the GPS velocity vector, the original DVL velocity vector, and
the improved DVL velocity vector, and the resulting trajectory is shown in Figure 8 below.

In Figure 8, it is easy to see that the performance of the original SINS is poor. The
reason for the poor performance of the SINS is also within our expectations, as the error of
the SINS increases with the duration of navigation, so DVL is generally used to correct the
velocity of the SINS. Although the DVL has a small error compared to GPS, there is still
a certain error, especially after multiple changes in direction. The error increases, which
also corresponds to the phenomenon in Figure 7 where the DVL’s speed measurement is
poor after changing direction. The DVL improved by our model is closer to GPS and has
higher accuracy.

We use two metrics, Absolute Trajectory Error (ATE) and Relative Trajectory Error
(RTE), to assess the differences between trajectories. ATE measures the overall difference
of the trajectory estimation, focusing on the global discrepancy between the estimated
trajectory and the true trajectory; RTE measures the local difference in trajectory estima-
tion, focusing on the accuracy of adjacent position estimations within the trajectory. The
expression for ATE is shown in Equation (26).

ATE =
1
n

√
n

∑
i=1

(xi − x̂i)2 (26)

where xi refers to the true value at time i, and x̂i refers to the predicted value at time i. The
expression for RTE is shown in Equation (27):

RTE =
1
n

√√√√n−1

∑
i=1

[(xi − xi+1)− (x̂i − x̂i+1)]2 (27)

where xi+1 refers to the true value at time i+ 1, and x̂i+1 refers to the predicted value at time
i + 1. Based on the trajectory data, we can calculate the ATE and RTE of the DVL original
velocity dead-reckoned trajectory and the model-predicted dead-reckoned trajectory with
respect to the GPS velocity dead-reckoned trajectory. These results are shown in Table 3.
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Figure 8. The trajectory obtained by dead reckoning using the original DVL velocity, original SINS
velocity, model-improved velocity, and GPS output velocity, where (a) Task-1; (b) Task-2; (c) Task-3;
(d) Task-4. East represents the displacement of the vehicle in the eastward direction, and North
represents the displacement of the vehicle in the northward direction.

From the objective point of view of ATE and RTE indicators, the improved DVL speed
vector of the model has a good enhancement effect on the navigation accuracy, with a
maximum increase of 78.62% in ATE and 69.90% in RTE.

In summary, the original DVL velocity vector, after being improved by the model we
proposed, can become closer to the GPS velocity vector, therefore enhancing the accuracy
of underwater navigation.

Table 3. The performance of the DVL velocity vector, the improved network velocity vector, and the
SINS inherent velocity vector in dead reckoning on two evaluation metrics.

Indicators Code Name DVL Proposed Improvement SINS

ATE

Task-1 4.0303 0.8616 78.62% 141.5338
Task-2 5.3697 1.7438 67.53% 88.3024
Task-3 4.3559 3.0779 29.34% 168.9872
Task-4 9.2006 6.3981 30.46% 371.1152

RTE

Task-1 0.0289 0.0087 69.90% 0.0588
Task-2 0.0309 0.0126 59.22% 0.0345
Task-3 0.0243 0.0098 59.67% 0.0730
Task-4 0.0215 0.0142 33.95% 0.1126
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5. Conclusions and Prospects
5.1. Conclusions

We proposed a deep-learning method assisted by an IMU to enhance DVL velocity
vectors. We utilize raw data from IMU sensors (gyroscopes and accelerometers) to assist in
refining the original DVL velocity vectors, aiming to improve the accuracy of underwater
navigation. To evaluate the effectiveness of this method, we conducted lake experiments
using related equipment such as SINS and DVL, completing multiple tasks with varying
navigation trajectories and times, and all task data collected served as a dataset for model
training and testing. The results of the model on the test set show significant improvements
in the four evaluation metrics of RMSE, MAE, R2, and VAF for the DVL velocity vector
improved by the model. On the velocity map, it can be seen that the original DVL velocity
vector does not perform well when the carrier turns, and the model’s improved DVL
velocity vector handles this situation well. On the dead-reckoning trajectory map, it is
evident that the trajectory of the carrier derived from the DVL velocity vector predicted by
the model has a higher degree of overlap with the trajectory derived from the GPS velocity
vector, and the ATE and RTE between the two trajectories are smaller.

5.2. Prospects

This paper only considered the state during constant-depth navigation, so we have
only improved the DVL’s lateral and forward velocity vectors. In the future, we plan to
incorporate depth data into the model, therefore improving the DVL’s three-axis velocity
and further enhancing the accuracy of underwater navigation.

The conclusions of this paper are based on lake environments. It is well known that
there are significant differences between lake environments and marine environments.
Both acidity and temperature can affect the speed measurement of DVL, and marine
environments tend to have larger waves. The applicability of the method proposed in this
paper to marine environments remains to be considered. In the future, we will actively make
improvements when conditions allow and complete the validation in marine environments.

The experimental analysis results presented in this paper demonstrate the effectiveness
of the proposed method but do not elucidate whether it has an advantage over other similar
methods. Additionally, this paper does not provide evidence to indicate that machine
learning methods may incur relatively higher computational costs compared to more
traditional numerical processing methods, such as filtering. Subsequent researchers can
continue to investigate in this area.

This paper only considered the fixed SINS and DVL, lacking consideration for the
mobility of the equipment. In the future, we will also focus on the transferability of the
equipment, mainly considering the following three points:

1. Transferability between different DVL: Different DVL products are bound to affect
the transferability of the model. In the future, the robustness of the model can be
enhanced to achieve compatibility with different models of DVL products.

2. Transferability between different installation settings: When installing DVL and SINS,
it is necessary to pay attention to the compensation of the lever arm and perform
navigation after the SINS alignment, which can improve the stability of the equipment.

3. Transferability between SINS changes: Different SINS will also affect performance, but
the better the performance of the SINS, the greater the improvement effect on the DVL.
In the future, the performance of the model can be indirectly improved by improving
the performance of the SINS.

We can also improve the transferability of the algorithm through certain measures,
which may include developing more general-purpose algorithms, conducting more cross-
platform tests, and establishing more comprehensive error compensation models.
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Abbreviations
The following abbreviations are used in this manuscript:

AUV Autonomous Underwater Vehicle
SINS Strapdown Inertial Navigation System
DVL Doppler Velocity Log
GPS Global Positioning System
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
GNSS Global Navigation Satellite System
MBES Multibeam echo sounder
KF Kalman Filter
AI artificial intelligence
LS Least Squares
GRU Gated Recurrent Unit
1D Conv one-dimensional convolutional
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
MSE Mean Squared Error
RMSE Root Mean Squared Error
MAE Mean Absolute Error
R2 Coefficient of Determination
VAF Variance Accounted For
ATE Absolute Trajectory Error
RTE Relative Trajectory Error
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