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Abstract: Unmanned Aerial Vehicles (UAVs) are increasingly gaining popularity, and their
consistent prevalence in various applications such as surveillance, search and rescue, and
environmental monitoring requires the development of specialized policies for UAV traffic
management. Integrating this novel aerial traffic into existing airspace frameworks presents
unique challenges, particularly regarding safety and security. Consequently, there is an
urgent need for robust contingency management systems, such as Anti-UAV technologies,
to ensure safe air traffic. This survey paper critically examines the recent advancements in
ground-to-air vision-based Anti-UAV detection and tracking methodologies, addressing
the many challenges inherent in UAV detection and tracking. Our study examines recent
UAV detection and tracking algorithms, outlining their operational principles, advantages,
and disadvantages. Publicly available datasets specifically designed for Anti-UAV research
are also thoroughly reviewed, providing insights into their characteristics and suitability.
Furthermore, this survey explores the various Anti-UAV systems being developed and
deployed globally, evaluating their effectiveness in facilitating the integration of small
UAVs into low-altitude airspace. The study aims to provide researchers with a well-
rounded understanding of the field by synthesizing current research trends, identifying
key technological gaps, and highlighting promising directions for future research and
development in Anti-UAV technologies.

Keywords: anti-UAV; UAV detection; UAV tracking; UAV monitoring

1. Introduction
In 2019, a drone attack on Saudi Arabia’s largest oil refinery led to an almost 5% decline

in global oil supply, highlighting the critical need for effective Anti-Unmanned Aerial
Vehicle (Anti-UAV) systems [1]. This incident exemplifies the increased security challenges
posed by the growing popularity of Unmanned Aerial Vehicles (UAVs) in both civilian
and commercial sectors. As of 2024, the global UAV market has burgeoned into a USD
35.28 billion industry, with projections indicating a compound annual growth rate (CAGR)
of 13.9% to reach USD 67.64 billion by 2029 [2]. The Federal Aviation Administration
(FAA) forecasts that by 2027, the United States alone will see a recreational UAV fleet of
1.82 million units and a commercial fleet approaching 955,000 [3].

The popularity of UAVs can be attributed to their diverse applications, such as in-
frastructure inspection, precision agriculture, emergency services, and goods delivery [4].
However, this integration of UAVs into the national airspace presents significant challenges
regarding regional and national security, safe airspace operations, and privacy consid-
erations. The current Air Traffic Management (ATM) system is not equipped with the
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necessary infrastructure to manage the anticipated scale of UAV operations. Thus, there
is a pressing need for the development of a specialized Unmanned Aerial Systems Traffic
Management (UTM) system.

Anti-UAV systems, an integral part of the UTM framework, detect and track rogue
UAVs. Rogue UAVs are unauthorized or non-cooperative drones that pose substantial
threats to public safety, privacy, and national security. These threats range from accidental
intrusions into restricted airspace (Figure 1), deliberate acts of espionage [5], to potential
disruptions to legitimate UAV traffic (Figure 2). The complexity of the Anti-UAV problem
is layered. It must balance security needs with privacy concerns, bystander safety, and the
continuity of regular UAV operations.

Figure 1. Anti-UAV scenario where a rogue UAV flies into a No Flying Zone.

Figure 2. Anti-UAV scenario where a rogue UAV flies beyond the segregated airspace allotted
for UAVs.

Existing Anti-UAV methods, which rely on modes such as radar [6,7], radio fre-
quency [8,9], and acoustic sensing [10,11], are limited in effectively detecting and tracking
small UAVs that have weak electromagnetic signatures [12]. These systems often struggle
with detecting UAVs from a long distance, are susceptible to noise, and require a costly
infrastructure [13–15]. In contrast, vision-based Anti-UAV systems offer a promising alter-
native, providing competitive speed, accuracy, and reliability at relatively lower equipment
and computational costs.

This survey paper focuses on recent advancements in ground-to-air [16] vision-based
Anti-UAV detection and tracking methodologies. The motivation behind focusing on
ground-to-air vision-based systems stems from the anticipated commercialization of UAV
traffic, which will prompt the widespread adoption of multi-layered 3D Air Corridors [17]
in Class G airspace. These dedicated Air Corridors for UAV operations, illustrated by the
green segregated air volumes in Figures 1 and 2, will require stationing ground-to-air Anti-
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UAV systems, similar to the existing road traffic monitoring systems, as part of the larger
UTM framework. This review paper differs from other existing review literature [18–21],
as it focuses on methods and datasets exclusively from the ground-to-air perspective of
building a robust Anti-UAV system that would be a sub-component of a larger UTM
framework. In addition, this paper discusses both detection and tracking in an Anti-UAV
scenario, unlike most of the existing literature [18,19,21] that only focuses on UAV detection.

As such, this paper analyzes state-of-the-art object detection frameworks, including
one-stage and two-stage detectors, anchor-based and anchor-free methods, and lightweight
architectures optimized for edge computing. Additionally, it reviews tracking methodolo-
gies that provide long-term tracking in complex and dynamic environments. Moreover,
this paper presents a comprehensive overview of the publicly available UAV detection and
tracking datasets. This survey aims to provide researchers and practitioners with a holistic
understanding of the current trends, challenges, and technological gaps in Anti-UAV systems.

The main contributions of this paper can be summarized as follows:

• A critical analysis of the most recent vision-based ground-to-air UAV detection and
tracking techniques, highlighting their strengths, limitations, and trade-offs.

• A detailed overview of publicly available UAV datasets, presenting their characteristics
and how they address (or fail to address) specific research challenges.

• Identification of existing gaps in the literature and areas where further research
is needed.

The remainder of this paper is structured as follows: Section 2 examines UAV detection
techniques, followed by UAV tracking methodologies in Section 3. Section 4 provides an
overview of relevant datasets. Section 5 discusses current challenges and future research
directions, and Section 6 concludes the paper.

2. UAV Detection
Detecting Unmanned Aerial Vehicles (UAVs) presents a unique set of challenges,

distinguishing it from traditional object detection tasks. These challenges arise due to
the inherent characteristics of UAVs and the diverse environments in which they operate.
Thus, specialized approaches for effective detection and tracking in Anti-UAV systems
are necessary.

One of the primary challenges in UAV detection is the small size of the target objects.
This means that UAVs amount to a very small number of pixels in images captured from
ground-based cameras, especially at long distances. This small size makes it difficult to
distinguish UAVs from other small airborne objects such as birds or even image noise,
particularly against complex backgrounds or in unfavorable lighting conditions [22]. The
diverse shapes and designs of UAVs make the detection task even more complex. UAVs
come in various configurations, including multi-rotor, fixed-wing, and hybrid designs,
each with distinct visual characteristics [23]. This variety makes it challenging to develop a
single detection model that can effectively detect all types of UAVs. Real-time performance
is also critical for effective Anti-UAV systems. The high-speed nature of UAV operations
demands detection algorithms to process the input with minimal latency. This need for
real-time processing often conflicts with the computational complexity required for accurate
detection, especially when dealing with high-resolution images to identify small, distant
UAVs. Addressing these challenges requires approaches that balance accuracy, speed,
and robustness.

The emergence of deep learning methodologies for computer vision tasks has cat-
alyzed the widespread adoption of either deep convolutional neural networks (DCNNs)
or Transformer-based architectures for object detection applications. As such, most UAV
detection frameworks utilize different versions of popular DCNN-based or Transformer-
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based object detectors. Object detectors can be classified in two main ways: one-stage vs.
two-stage detectors and anchor-based vs. anchor-free detectors.

2.1. Two-Stage vs. One-Stage

Two-stage and one-stage detectors each have their own distinctive method of handling
the object detection process as illustrated in Figure 3. Two-stage object detectors start by
having a region proposal network generate a set of region proposals that may contain
objects along with a feature extractor network extracting relevant features. These region
proposals are then refined and classified based on the features in the second stage by a
different model to produce bounding boxes and class scores. On the other hand, one-stage
detectors bypass the region proposal step and directly predict the bounding boxes and
class scores in a single pass through the model.

Figure 3. One-stage detector vs. two-stage detector.

Two-stage detectors are known for their higher accuracy, especially for complex tasks
and challenging datasets. However, they are slower and more computationally expen-
sive [13]. In contrast, one-stage detectors are faster and more suitable for real-time applica-
tions. They are less computationally expensive due to the absence of an intermediate step.
However, they come with the trade-off of lower accuracy compared to two-stage detectors.
Notably, Region-based Convolutional Neural Network (R-CNN)-based methods [24–26]
or methods with a region proposal network included in their architecture are two-stage
detectors, while You Only Look Once (YOLO)-based methods [27–29], Single Shot Detector
(SSD) [30], RetinaNet [31], and RefineDet [32] are one-stage detectors. Transformer-based
methods such as Ghostformer [33] and Detection Transformer (DETR) [34] are two-stage
and one-stage detectors, respectively.

2.2. Anchor-Based vs. Anchor-Free

The difference between anchor-based and anchor-free object detectors lies in how
they predict bounding boxes for detected objects. Anchor-based detectors use predefined
bounding boxes called “anchors” or “priors”, which have different scales, aspect ratios, and
positions across the image grid [24]. During training, these anchors are matched to ground-
truth objects, and the model learns to adjust these anchors to predict the final bounding
box. The purpose of anchors is to help the model handle objects of different sizes, shapes,
and aspect ratios [24]. Despite the advantages, anchor boxes may lead to inefficiencies due
to their large number and because they sometimes require initial design from an expert [35].
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On the other hand, anchor-free detectors directly predict the object’s center point [36],
dimensions, and/or key points to predict the bounding boxes from them [37,38]. Such
models typically predict the center of the object, and from there, they calculate the size and
position of the bounding box. Some models prefer to predict corner points instead of center
points (CornerNet) [37] or key point triplets (CenterNet) [38]. Anchor-free models are more
efficient due to their simpler design but may struggle with objects of varying scales and
aspect ratios compared to anchor-based models.

Table 1 presents an overview of recent research in the Anti-UAV domain, categorized
based on detection approaches. A clear trend can be observed. Most studies use one-
stage and anchor-based methods over alternative approaches. This is because of the
resource-constrained nature of Anti-UAV systems, which requires detection models to be
lightweight. The use of YOLO-based methods across the reviewed works further affirms
the validity of this trend. To mitigate the trade-off in accuracy, researchers have introduced
modifications to the network architecture to enhance detection performance and reduce
network complexity (discussed in Section 2.3).

Table 1. Stage and anchor types used in recent works.

Ref. Year Base Model Stage Type Anchor Type

[39] 2019 YOLOv3 One-Stage Anchor-based
[40] 2020 EXTD One-Stage Anchor-free
[41] 2020 YOLOv4 One-Stage Anchor-based

[42] 2021 Faster
R-CNN Two-Stage Anchor-based

[42] 2021 YOLOv3 One-Stage Anchor-based
[42] 2021 SSD One-Stage Anchor-based

[13] 2021 Faster
R-CNN Two-Stage Anchor-based

[13] 2021 YOLOv3 One-Stage Anchor-based
[13] 2021 SSD512 One-Stage Anchor-based
[13] 2021 DETR One-Stage Anchor-free
[43] 2021 YOLOv4 One-Stage Anchor-based
[44] 2021 YOLOv4 One-Stage Anchor-based

[45] 2022 Faster
R-CNN Two-Stage Anchor-based

[45] 2022 Cascade
R-CNN Two-Stage Anchor-based

[45] 2022 ATSS N/A N/A
[45] 2022 YOLOX One-Stage Anchor-free
[45] 2022 SSD One-Stage Anchor-based
[46] 2022 YOLOv5s One-Stage Anchor-based
[47] 2022 YOLOv3 One-Stage Anchor-based
[48] 2022 YOLOv5 One-Stage Anchor-based
[49] 2023 YOLOv4 One-Stage Anchor-based
[50] 2023 YOLOv4 One-Stage Anchor-based
[51] 2023 YOLOX-nano One-Stage Anchor-free
[52] 2024 YOLOv8 One-Stage Anchor-free
[53] 2024 YOLOv7-tiny One-Stage Anchor-based

2.3. Detection Network Architecture

The architectural framework of object detection systems is typically composed of three
key components, the backbone, neck, and head, as depicted in Figure 4 [54]. The backbone
is the primary feature extractor that derives relevant information from the input image.
This component is usually a convolutional neural network (CNN) pre-trained on large-scale
image classification datasets. It captures hierarchical features across different scales, with
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the initial layers focusing on low-level details such as edges and textures and deeper layers
capturing high-level features like object parts and semantic content.

The neck joins the backbone and the head. It is responsible for aggregating and refining
the features extracted by the backbone, focusing on enhancing the spatial and semantic
information across multiple scales and providing it to the head. The final component,
the head, makes predictions based on the features passed through the neck. It consists
of one or more task-specific subnetworks dedicated to classification and localization. A
post-processing step, such as non-maximum suppression (NMS), is often employed to filter
overlapping predictions and retain only the most confident detections.

While many architectures incorporate a neck module, certain detectors, such as
YOLOv8, omit its use. Researchers frequently modify the backbone, neck, and head
components to improve detection performance and optimize the model for specific tasks.
Common backbone architectures identified in the recent literature include variants of Dark-
Net [55], Visual Geometry Group (VGG) [56], ResNet [57], EfficientNet [58], DenseNet [59],
MobileNet [60], and newer designs like Extremely Tiny Face Detector (EXTD) [61] and
Mobile Vision Transformer (MobileViT) [62]. Popular neck structures often include Path Ag-
gregation Network (PANet) [63], and Feature Pyramid Network (FPN) [64]. Modifications
to the head typically involve adjustments to loss functions, with the type of head determin-
ing whether the detector is a one-stage or two-stage model. Specifically, dense predictor
heads are used in one-stage models, whereas sparse predictor heads are characteristic of
two-stage models [28].

Additionally, data augmentation techniques are extensively employed to enhance the
generalization of the models. Techniques commonly referenced in the literature include im-
age cropping, rotation, flipping, blur, hue manipulation, saturation adjustments, exposure
manipulation, MixUp [65], Mosaic [28], and CutMix [66].

Figure 4. Standard one-stage detection architecture.

2.3.1. Anchor Modification

Optimizing anchor box configurations is one widely adopted strategy to enhance
the efficiency and accuracy of object detection networks. Anchor boxes, which represent
predefined bounding boxes used to traverse regions of interest (ROIs) in an image, play a
critical role in determining the optimal bounding box during object detection. By carefully
adjusting the anchor box settings, the model can better learn the spatial characteristics of
the target objects, leading to improvements in detection speed and accuracy [67].

Researchers use clustering algorithms, such as k-means and its variant k-means++, to
refine anchor box parameters by clustering data samples based on their size and aspect ra-
tios. This method effectively tailors the anchor boxes to the dataset’s specific distribution of
object sizes, resulting in more precise predictions. For instance, Y. Hu et al. [39], Q. Cheng et
al. [50], and C. Bo et al. [53] employ this approach in their respective studies, demonstrating
that optimizing anchor box dimensions through clustering leads to significant performance
gains. The models exhibit enhanced accuracy in predicting bounding boxes and faster
inference times due to better alignment between the anchor boxes and the ground truth in
the images.
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2.3.2. Backbone Modification

Researchers commonly modify the backbone architecture to improve the feature ex-
traction capability of detection models, particularly in the context of detecting small and
fast-moving objects like UAVs. These modifications typically aim to improve model perfor-
mance or make the models more suitable for specific environments, such as edge computing.

H. Sun et al. [40] propose TIB-Net, a model that uses the EXTD backbone further en-
hanced with a cyclic pathway and a Spatial Attention Module (SAM). EXTD is a lightweight
model, making it highly efficient and suitable for detecting small objects in an edge com-
puting environment. The cyclic pathway allows the model to revisit low-level feature
information, crucial for detecting extremely small objects like UAVs. In higher/deeper
layers, the model might lose information related to small objects in the image due to subse-
quent pooling operations. Therefore, by allowing the model to revisit the low-level features,
the model can now extract better features. Furthermore, SAM enhances the model’s ro-
bustness to noise by capturing better spatial information, making TIB-Net particularly
effective in handling images with blurring, a common challenge in real-world fast-moving
UAV detection.

In a different approach, H. Liu et al. [44], X. Zhou et al. [49], and Q. Cheng et al. [50]
modify the YOLOv4 architecture to improve Anti-UAV detection capabilities. H. Liu et al.
focus on pruning the convolutional channels and shortcut layers to make the model more
lightweight. By reducing the complexity of the model via pruning, they improved its
efficiency without sacrificing detection accuracy. X. Zhou et al. expand the backbone
modifications by incorporating SAM, allowing the model to capture multi-scale features
better. SAM enables the model to better focus on important features while minimizing noise
distractions. This enhancement allows the network to identify small UAVs in cluttered
environments, where irrelevant background information can lead to false positives. In
contrast, Q. Cheng et al. replace the YOLOv4 backbone with MobileViT, a more lightweight
transformer-based backbone architecture. This swap ensures the model can still extract
local and global information from the input and generate multi-scale feature maps while
remaining relatively lightweight.

Similarly, L. Yaowen et al. [46] also modify the backbone of YOLOv5s by integrating
the Simple parameter-fee Attention Module (SimAM) and the Ghost module. SimAM im-
proves feature extraction capabilities while the Ghost module uses Ghost convolutions [68]
to significantly reduce the number of parameters in the model without compromising per-
formance. This adjustment makes the model suitable for edge computing. B. Liu et al. [48]
take a different approach by replacing the YOLOv5s backbone with EfficientLite [69], a
backbone known for its lightweight architecture. This change allows the model to achieve
faster inference times while maintaining accuracy, making it more promising for real-time
UAV detection.

C. Wang et al. [70] propose a novel lightweight UAV swarm detection method based
on the YOLOX model. To enhance the YOLO backbone’s feature extraction capability,
they introduce the Squeeze-and-Excitation (SE) attention mechanism into the Cross-Stage-
Partial-connections DarkNet (CSPDarkNet) backbone. The SE module dynamically gener-
ates different weight coefficients for each feature channel by leveraging the inter-channel
correlations, enhancing the most relevant features for the task while suppressing less
important ones.

Lastly, C. Bo et al. [53] modify the YOLOv7-tiny backbone by incorporating an SPPF
(Spatial Pyramid Pooling—Fast) module along with SimAM. These modifications reduce
feature loss and minimize confusion in complex scenes by improving the model’s focus on
small target UAV areas.
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Researchers modify backbone architectures by integrating attention mechanisms,
pruning, or replacing components with lightweight alternatives to better adapt the models
to the unique challenges posed by UAV detection. These modifications improve detection
performance and enhance model efficiency, making them more suitable for deployment in
real-world, resource-constrained environments.

2.3.3. Neck Modification

The neck’s role in an object detection network is to perform relevant feature aggrega-
tion and fusion. It is often modified to improve the detection of UAVs, which may appear
in various scales in the input. Researchers have explored various strategies to modify the
neck architecture to enhance the model’s ability to capture multi-scale features and handle
complex scenes with small or distant targets.

Y. Hu et al. [39] and H. Zhai et al. [47] utilize a slightly modified YOLOv3 framework
in their work. They adjust the number of scales in the feature maps from three to four. This
modification allows their models to capture more texture and contour information, which
is particularly beneficial for small object detection, such as UAVs.

Q. Cheng et al. [50] improve the neck of YOLOv4 by introducing Coordinate Attention
(CA) [71] into the PANet structure. This modification allows for better information fusion
between low- and high-dimensional features, enhancing the model’s ability to extract and
fuse information. By using multi-scale attention, the network can better focus on UAVs
with small or complex visual patterns by creating direction-aware and position-sensitive
attention maps. Similarly, L. Yaowen et al. [46] introduce the SimAM module to the
neck of YOLOv5s, improving feature extraction through enhanced attention mechanisms.
Additionally, they incorporate the Ghost module to reduce the number of model parameters,
which helps maintain a lightweight model architecture without compromising performance.
Ghost convolutions are also used by M. Huang et al. [52]. The authors take a novel approach
by replacing the Convolution to Feature (C2f) module in the neck with the C3Ghost module,
enhancing the feature extraction capability. This modification enables the model to capture
richer semantic and contextual information while also reducing computational complexity.
Additionally, they include Efficient Multi-scale Attention (EMA) [72], a variant of CA,
to further enhance the network’s ability to process UAV features across multiple scales,
boosting its robustness in detecting UAVs under varying conditions.

Another example of enabling the network to better distinguish important features
from less relevant ones is C. Wang et al. [70], who include the Convolutional Block Attention
Module (CBAM) [73] in the neck. They add the CBAM to the PANet in the neck. This
attention mechanism allows the model to prioritize essential visual information, leading to
the more accurate detection of UAVs with cluttered backgrounds.

X. Zhou et al. [49] propose the integration of Spatial Pyramid Pooling (SPP)S [74] and
ResNeck modules into the neck of YOLOv4, optimizing the network by compressing it
while simultaneously improving detection speed and accuracy. Adding these modules
enhances the model’s capacity to handle multi-scale feature maps, making it more adept at
detecting UAVs, which often appear in varying sizes across frames.

Finally, C. Bo et al. [53] introduce significant changes to the neck of YOLOv7-tiny by
replacing the standard FPN architecture with a Get-and-Send module, complemented by
InceptionNeXT [75] modules. The InceptionNeXT modules expands the receptive field,
facilitating a deeper integration and understanding of the features learned in preceding
layers while improving computational efficiency. Meanwhile, the Get-and-Send module
tackles the issue of information loss of small UAVs that can occur during cross-layer
feature fusion in FPN, as it has many pathways and indirect interactions. This modification
combination enables more uniform aggregation and fusion of features from various levels,
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boosting the network’s information fusion capabilities without adding significant latency.
As a result, the model maintains high accuracy and robustness in detecting small UAVs
while minimizing computational overhead.

The current trend involves the utilization of various attention-based mechanisms like
CBAM, SE, SimAM, CA, and EMA to enhance feature aggregation and fusion for small
object detection. Additionally, alternative forms of the traditional convolution operation,
such as Ghost convolutions, InceptionNeXT, and depthwise separable convolutions, are
being utilized to maintain a lightweight architecture.

2.3.4. Head Modification

The head of an object detection network performs the final classification and local-
ization of the detected objects. To enhance the head’s performance, particularly for small
UAVs, researchers focus on refining bounding box regression accuracy, improving feature
fusion, and introducing new loss functions to more effectively measure prediction errors.

In traditional anchor-based detectors, the predicted bounding boxes are derived by
regressing offsets between the ground truth boxes and predefined anchor boxes. Intersec-
tion over Union (IoU) loss, a standard bounding box regression loss function, computes
the difference between the predicted bounding boxes and ground truth. However, to
address the limitations in standard IoU loss, several researchers have proposed alternative
approaches. For instance, C. Wang et al. [70] replace IoU loss with Distance-IoU (DIoU)
loss to improve regression accuracy. DIoU considers the overlap between bounding boxes
and the distance between their center points, resulting in better optimization and faster
convergence during training. On the other hand, L. Yaowen et al. [46] make a change to
the standard DIoU loss function by replacing it with the α-DIoU loss. This change aims
to improve how accurately the model finds bounding boxes, especially when trained on
smaller datasets. The α parameter allows the model to give more importance to objects with
higher IoU, which helps improve the precision of bounding box regression. By adjusting α,
the model becomes better at handling difficult localization tasks, especially when further
refinement is needed even when IoU values are already high.

B. Liu et al. [48] introduce Adaptive Spatial Feature Fusion (ASFF) [76] into the
head architecture, which facilitates the combination of feature maps at different spatial
resolutions. This modification compensates for the accuracy loss that could arise from
replacing the model’s backbone with the lighter Efficientlite architecture. By leveraging
ASFF, the model can selectively fuse features at various scales, ensuring that important
spatial details are preserved even with a smaller model size. Furthermore, B. Liu et al.
introduce an angular constraint into the original regression loss function, mitigating the
mismatch between predicted and actual bounding box orientations. This adjustment not
only improves localization accuracy but also accelerates network convergence during
training, making the model more efficient.

M. Huang et al. [52] propose replacing the standard detection heads in YOLOv8
with DDetect, a head architecture that utilizes Deformable Convolution v2 (DCNv2) [77].
DCNv2 allows the model to adaptively adjust the shape and size of convolutional kernels
based on the input features, providing greater flexibility in handling varying object shapes
and sizes. This modification is especially useful for detecting UAVs, which can vary in size
and orientation based on their distance from the camera and the scene conditions.

2.4. Critical Analysis

The reviewed works demonstrate a clear trend toward enhancing the detection of
UAVs through various architectural modifications. The modifications to the backbone,
neck, and head modules of the detectors significantly impact their performance in terms



Drones 2025, 9, 58 10 of 30

of accuracy, speed, and model size, allowing researchers to address the unique challenges
posed by UAV detection. The primary evaluation metrics for comparing detection networks
are Mean Average Precision (mAP) for accuracy and Frames Per Second (FPS) for speed:

Precision =
TP

TP + FN
(1)

mAP =
1
N

N

∑
i=1

APi (2)

Here, TP stands for true positives, FN stands for false negatives, N stands for the
number of classes, and APi denotes the Average Precision for the ith class. FPS indicates
the number of frames a model processes per second, serving as an estimate of the algo-
rithm’s speed.

Backbone modifications are central to improving the feature extraction capability
of models, particularly for small object detection. For instance, H. Sun et al.’s [40] TIB-
Net model employs a lightweight EXTD backbone, enhanced by a cyclic pathway and
Spatial Attention Module (SAM), to capture low-level feature information critical for small
UAV detection. Despite its small size (697 KB), TIB-Net achieves competitive accuracy
(89.2% mAP), closely rivaling larger models like the two-stage detector Cascade R-CNN
with ResNet50 (90.1% mAP).

Q. Cheng et al.’s [50] replacement of the YOLOv4 backbone with MobileViT under-
scores the advantage of using lightweight backbones that maintain high detection accuracy
and speed. Their modified YOLOv4-MCA architecture achieves 92.81% mAP at 40 FPS,
outperforming the standard YOLOv4 with CSPDarkNet-53 (92.45% mAP, 26 FPS). Similarly,
the Efficientlite backbone employed by B. Liu et al. [48] balances accuracy and model size,
maintaining strong detection capabilities despite the lightweight design.

In contrast, models using heavier backbones, such as Cascade R-CNN [78] with
ResNet50, achieve higher accuracy but at the cost of increased model size and slower
speeds. While these models may be suitable for high-precision tasks in well-resourced
environments, lightweight backbones like MobileViT and EXTD offer a more practical
solution for real-time UAV detection in constrained scenarios and often exhibit similar
levels of accuracy if suitable modifications are made. This observation has also been
reinforced in the works by B.K. Isaac-Medina et al. [13] and Y. Zeng et al. [42], where they
test the performance of two-stage models and one-stage models with different combinations
of lightweight and heavy backbones on different datasets. Their experiments prove that
while heavier two-stage architectures like Faster R-CNN or Transformer-based detectors
like DETR achieve high levels of accuracy, competitive performance can also be achieved
by one-stage methods with comparatively lighter backbones such as YOLOv3.

Neck modifications focus on improving feature aggregation and multi-scale adaptabil-
ity, both of which are crucial for detecting small objects like UAVs. M. Huang et al.’s [52]
EDGS-YOLOv8 model combines Ghost convolutions with multi-scale attention mecha-
nisms, achieving an impressive 97.1% mAP at 56.2 FPS. The reduction in computational
complexity enabled by Ghost convolutions highlights the trade-off between model ef-
ficiency and performance, which then needs to be mitigated by including additional
modifications such as an attention mechanism.

Across these works, the integration of attention mechanisms stands out as a key factor
in improving both the accuracy and robustness in UAV detection. These mechanisms enable
models to focus on critical features and adapt to varying object scales and positions. This is
crucial for detecting small UAVs in cluttered or dynamic environments. The popularity of
attention-based modifications in recent work reflects a broader trend in computer vision
research, emphasizing the importance of feature prioritization and fusion for small object
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detection. Furthermore, lightweight architectures consistently demonstrate that model
efficiency does not need to come at the expense of accuracy. Models like TIB-Net, YOLOv4-
MCA, and EDGS-YOLOv8 prove that with the right combination of backbone, neck, and
head modifications, small and efficient models can achieve performance levels comparable
to or better than heavier, more resource-intensive architectures.

The reviewed works reveal a strong focus on adapting standard object detection
frameworks to the specific challenges of UAV detection. By refining backbone, neck, and
head components, researchers have successfully developed models that balance accuracy,
speed, and efficiency, making them well suited for real-time applications in UAV detection
and tracking. Table A1 offers a comprehensive summary of the reviewed works, facilitating
a more effective comparison.

3. UAV Tracking
In conjunction with UAV detection, the tracking of Unmanned Aerial Vehicles (UAVs)

is a critical component of Anti-UAV systems. Tracking unauthorized UAVs is paramount for
maintaining airspace safety, security, and integrity. UAVs that violate air traffic regulations,
such as altitude restrictions or geofencing limitations, present significant risks, and efficient
tracking mechanisms enable authorities to identify and respond to such potential threats
swiftly. However, despite the need for such tracking systems, there has been little recent
work in this domain area.

UAV tracking methodologies can be broadly classified into two main types: Single-
Object Tracking (SOT) and Multi-Object Tracking (MOT).

• SOT focuses on tracking the trajectory of a single UAV over time, even as it moves
through varying backgrounds or experiences occlusion.

• MOT is concerned with tracking multiple UAVs simultaneously, which adds complex-
ity due to interactions between UAVs and occlusion.

Traditionally, UAV tracking relied on correlation filters and template-matching tech-
niques. For example, methods like Kernelized Correlation Filters (KCFs) [79] and Dual
Correlation Filters (DCFs) [79] have been widely used for general object tracking. These
techniques are efficient and lightweight, making them suitable for real-time applications.
However, they often suffer from low robustness when dealing with fast-moving objects,
occlusions, and complex backgrounds, which are common in UAV tracking scenarios.

With the rise of deep learning, more advanced tracking algorithms have been devel-
oped, offering improved performance in complex environments. Deep learning-based
methods and Siamese networks [80] have shown remarkable success in UAV tracking.
These methods can tackle the many challenges in Anti-UAV tracking, such as occlusion,
scale variations, and changes in the UAV appearance over time [81].

UAVs often occupy only a few pixels in an image, especially at a distance from the
surveillance camera. This makes it difficult for traditional tracking models to maintain
accuracy over time. Deep learning-based approaches have significantly improved tracking
small objects, but challenges remain, particularly in low-resolution video or when UAVs
are far from the camera. Occlusion is a major challenge in UAV tracking, especially in
urban or forested environments where buildings, trees, or other objects can temporarily
block UAVs. Fully robust occlusion handling remains an open challenge, particularly in
real-time scenarios. While real-time tracking is critical in Anti-UAV applications, achieving
this without compromising accuracy is difficult. Thus, a potential research scope exists
to balance these factors, especially in resource-constrained environments with limited
computational power.
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3.1. Single-Object Tracking

To tackle such challenging scenarios, F. Cheng et al. [81] and C. Wang et al. [82] propose
two different tracking networks. F. Cheng et al. introduce a long-term object tracking
method that utilizes a Siamese network, SiamRPN++ [83], and a re-detection module based
on YOLOv5. Their proposed method incorporates a hybrid attention mechanism and a
hierarchical discriminator to improve feature learning and generate more distinct object
representations. Long-term tracking introduces additional challenges, as the UAV may
leave and re-enter the camera’s field of view, requiring the tracker to relocate the UAV after
periods of occlusion. To address the challenges of re-locating the UAV target and updating
the template in long-term tracking, the authors employ a hierarchical discriminator to
produce response maps for target localization and a reliability criterion to assess the
credibility of the produced response maps. When the algorithm detects low-confidence
output results, the re-detection module is activated, and the template is adaptively updated.

In contrast, C. Wang et al. employ the ATOM (Accurate Tracking by Overlap Maxi-
mization) [84] framework, which focuses on maximizing the overlap between the predicted
bounding box and the ground truth by using a combination of an overlap prediction net-
work and a classification component along with the SE attention mechanism to enhance the
extraction of features. The strength of ATOM lies in its ability to fine-tune the location of
the UAV in each frame. Additionally, the authors integrate an occlusion-sensing module to
assess the state of the target, determining whether it is occluded or not. This determination
activates a trajectory prediction network that utilizes Long Short-Term Memory (LSTM) to
predict the position of the UAV.

3.2. Multi-Object Tracking

As UAV swarms become more common, tracking multiple UAVs simultaneously
poses new challenges. MOT methods like ByteTrack and Graph Networks for Multi-
Object Tracking (GNMOT) have shown promise in multi-UAV scenarios. ByteTrack focuses
on associating every detection box, including low-score ones, with a UAV to recover
true objects and filter out false positives. It primarily relies on motion information for
associations rather than feature extraction and similarity matching. GNMOT leverages
graph neural networks to model the relationships between objects and their interactions
over time. This approach focuses on using graph structures to enhance the tracking
performance. However, scaling these systems to handle large numbers of UAVs in dense
airspace or segregated flight corridors remains a significant research area. The complexity
of tracking increases with interactions between UAVs, occlusions, and background clutter,
making it difficult for current systems to maintain high accuracy.

3.3. Tracking Methodologies

Siamese network architectures have gained considerable attention in UAV track-
ing due to their ability to learn a similarity metric between the target object and
candidate regions in subsequent frames. SiamFC [80], SiamRPN++ [83], Skimming-
Perusal Tracking (SPLT) [85], Long-term Tracking with Meta-Updater (LTMU) [86],
Discriminative Model Prediction (DiMP) [87], Transformer Tracking (TransT) [88], and
GlobalTrack [89] are all Siamese-based tracking methods that can be used for UAV Tracking.
These networks extract feature embeddings from both the initial UAV (from the first frame)
and candidate patches in later frames, comparing them using a similarity metric. Curators
of the DUT Anti-UAV dataset [45] show that these tracking methods prove to be effective
for the UAV tracking objective.

Other methods, such as efficient convolution operators (ECOs), can also be used. ECO
is a correlation filter-based tracker that improves efficiency and accuracy using efficient
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convolution operators. It combines the strengths of the traditional correlation filters with
deep learning features to achieve robust performance.

A novel training strategy is also proposed by N. Jiang et al. [90]. They propose a
novel Dual-Flow Semantic Consistency (DSFC) training strategy that includes a Class-Level
Semantic Modulation (CSM) module and an Instance-level Semantic Modulation (ISM)
module. The CSM module is tasked with finding candidate UAV bounding boxes, while the
ISM module focuses on differentiating multiple instances from the complex background.
They fine-tune GlobalTrack using the Anti-UAV dataset and their DSFC training strategy
and show that DSFC achieves superior performance compared to traditional training. At
the same time, the authors’ experiments also show that using the DSFC training strategy
does not contribute to the inference speed.

Different tracking methodologies are often assessed using two main aspects: precision
plots and success plots as defined in [91]. Precision plots are designed to track the center
location error of tracked targets. This error is defined as the Euclidean distance between
the predicted center of the target and the actual ground truth center. Precision plots display
the percentage of frames in which the estimated location falls within a specified threshold
distance of the ground truth. Success plots show how much the predicted bounding
boxes overlap with the actual bounding boxes. To evaluate a tracker’s performance across
different frames, we count how many frames are successful—meaning their overlap is above
a specific threshold. The success plot displays the ratio of successful frames at thresholds
ranging from 0 to 1. Using just one success rate at a single threshold may not provide
a fair evaluation of the tracker. Therefore, we calculate the area under the curve (AUC)
for each success plot to rank the tracking algorithms. Multiple Object Tracking Accuracy
(MOTA) [92] serves as a metric for assessing the effectiveness of object tracking systems over
time. It emphasizes the importance of identity tracking, wherein the goal is to consistently
recognize individual objects. The concept of identity switches (IDSWs) is significant; these
occur when a single ground truth (GT) object is assigned different track predictions across
various time frames. The computation of MOTA incorporates temporal dependencies and
penalizes modifications in track assignments between consecutive frames. An IDSW is
recorded when a ground truth target i is matched with track j in the current frame but was
matched to a different track k (k ̸= j) in the preceding frame:

MOTA = 1 − ∑t(FNt + FPt + IDSWt)

∑t GTt
(3)

Here, t is the frame index, FN denotes false negatives, FP denotes false positives,
IDSW denotes identity switches, and GT refers to the ground truth. A quantitative perfor-
mance comparison of all the discussed algorithms and methodologies is summarized in
Table 2.

The authors of the referenced papers all emphasize the importance of integrating
detection with the tracking methodology, highlighting its ability to produce superior results
when compared to using standalone trackers for long-term tracking. This prompts an
important question regarding the impact of the detection module’s performance on the
overall effectiveness of the tracker. It is worth noting that the current research on UAV
tracking is primarily focused on scenarios with a single-camera view and tracking any
UAV within the field of view. However, there is a clear need for further research in the field
of UAV tracking with camera hand-off capabilities and the ability to detect a rogue UAV
from UAV traffic in a surveillance area equipped with a camera network. This becomes
particularly relevant in the context of large-scale UTM systems, where seamless camera
hand-off and coordination among multiple cameras are crucial for comprehensive and
effective surveillance.
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Table 2. Summary of UAV tracking methodologies used in recent works.

Ref. Techniques Used Dataset
Best Accuracy
Metrics
Reported

Comments

[81]

1. Uses SiamRPN++
2. Includes a re-detection
module based on YOLOv5
that uses a hybrid attention
mechanism and
hierarchical discriminator

Youtube-
BoundingBoxes,
ImageNet VID,
ImageNet, COCO,
Anti-UAV

67.7% AUC
88.4% Precision

This method is
good for
long-term tracking

[82]
1. Uses ATOM
2. Includes an SE
attention mechanism
3. Includes an occlusion
sensing module

OTB-100 67.7% AUC
87.9% Precision

This method is
good for
occluded environments.

[82] GOT-10k 73.1% AUC
59.9% Precision

[82]
Drones-vs-bird
+
LaSOT

50.5% AUC
79% Precision

[70] Uses ByteTrack UAVSwarm

UAVSwarm-06
88.3% MOTA
UAVSwarm-28
32.5% MOTA
UAVSwarm-30
87.2% MOTA
UAVSwarm-46
−12% MOTA

The performance of
ByteTrack is inconsistent
while GNMOT seems to
give promising results

[70] Uses GNMOT UAVSwarm

UAVSwarm-06
100% MOTA
UAVSwarm-28
98.4% MOTA
UAVSwarm-30
100% MOTA
UAVSwarm-46
99.75 MOTA

[45]

1. Uses SiamFC with
Cascade-RCNN
as the built-in detector
2. Cascade-RCNN is used
with a ResNet50
backbone

DUT Anti-UAV 61.7% AUC
93.3% Precision

LTMU+Faster-RCNN
+VGG16
tracking by detection
model gives the
best results for
DUT Anti-UAV

[45]

1. Uses SiamFC with
Faster-RCNN
as the built-in detector
2. Cascade-RCNN is
used with a VGG16
backbone

DUT Anti-UAV 61.5% AUC
94.3% Precision

[45]

1. Uses ECO with
Faster-RCNN
as the built-in detector
2. Cascade-RCNN is
used with a VGG16
backbone

DUT Anti-UAV 62% AUC
95.4% Precision

[45]

1. Uses SPLT with
Faster-RCNN
as the built-in detector
2. Cascade-RCNN is
used with a VGG16
backbone

DUT Anti-UAV 55.3% AUC
87.5% Precision
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Table 2. Cont.

Ref. Techniques Used Dataset
Best Accuracy
Metrics
Reported

Comments

[45]

1. Uses ATOM with
Faster-RCNN
as the built-in detector
2. Cascade-RCNN is
used with a ResNet18
backbone

DUT Anti-UAV 63.5% AUC
93.6% Precision

LTMU+Faster-RCNN
+VGG16
tracking by detection
model gives the
best results for
DUT Anti-UAV

[45]

1. Uses SiamRPN++ with
Faster-RCNN
as the built-in detector
2. Cascade-RCNN is used
with a VGG16
backbone

DUT Anti-UAV 61.2% AUC
88.1% Precision

[45]

1. Uses DiMP with
Faster-RCNN
as the built-in detector
2. Cascade-RCNN is used
with a ResNet50
backbone

DUT Anti-UAV 65.7% AUC
94.9% Precision

[45]

1. Uses TransT with
Cascade-RCNN
as the built-in detector
2. Cascade-RCNN is used
with a ResNet50
backbone

DUT Anti-UAV 62.4% AUC
88.8% Precision

[45]

1. Uses LTMU with
Faster-RCNN
as the built-in detector
2. Fascade-RCNN is used
with a VGG16
backbone

DUT Anti-UAV 66.4% AUC
96.1% Precision

[90]

Uses SiamRCNN
with DSFC training
strategy that CSM
and ISM modules

Anti-UAV RGB 67.04% AUC
90.71% Precision

SiamRCNN and
GlobalTrack
are the best methods.

[90]

Uses GlobalTrack
with DSFC training
strategy that CSM
and ISM modules

Anti-UAV RGB 62.36% AUC
87.65% Precision

[90]

Uses LTDSE with
DSFC training
strategy that CSM
and ISM modules

Anti-UAV RGB 58.58% AUC
82.56% Precision

[90]

Uses SiamRPN++LT
with DSFC training
strategy that CSM
and ISM modules

Anti-UAV RGB 57.28% AUC
77.93% Precision

[90]

Uses Super-DiMP with
DSFC training
strategy that CSM and
ISM modules

Anti-UAV RGB 53.77% AUC
75.29% Precision
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Table 2. Cont.

Ref. Techniques Used Dataset
Best Accuracy
Metrics
Reported

Comments

[13]
Uses Tracktor with
Faster R-CNN
detection module

MAV-VID 95.5% MOTA Tracktor performs
the best consistently
but depending on the
difficulty of the dataset,
different detection
modules give
different results.

[13]
Uses Tracktor with
SSD512
detection module

Drone-vs.-Bird 52.5% MOTA

[13]
Uses Tracktor with
DETR
detection module

Anti-UAV RGB 94.0% MOTA

4. Datasets
The availability of high-quality datasets is critical for advancing research in UAV

detection and tracking in the Anti-UAV scenario. For vision-based Anti-UAV systems,
datasets must reflect the diversity of environments, UAV types, lighting conditions, and
operational contexts that these systems encounter. This section reviews several publicly
available datasets used for UAV detection and tracking, offering a detailed analysis of their
characteristics, strengths, and limitations. These datasets are also categorized in Table 3
based on their primary focus—detection, tracking, or both. Table 3 also contains the links to
where they can be accessed. Table 4 gives a summarized view of the dataset characteristics.

UAV detection and tracking datasets can be broadly classified into visual and non-
visual categories. Non-visual systems utilize radar, infrared, laser, or acoustic data, while
visual methods exploit image and video data. There have also been multi-modal systems
that use multi-sensor data fusion approaches. Non-visual systems are useful when visual
surveillance systems are not feasible. Multi-modal systems yield great accuracy but require
expensive and extensive hardware capabilities. Non-visual and multi-modal systems
usually suffer from limitations such as high prices, susceptibility to noise and frequency
interference, poor flexibility, poor concealment, high computational overhead, and inability
to detect small UAVs, which are not equipped with any signal transmitters [16,45,49,70]. In
contrast, vision-based systems can address such limitations while achieving competitive
accuracy, latency speed, and robustness with less expensive equipment.

Table 3. Public datasets available for Anti-UAV objectives.

Dataset Objective Link

TIB-Net [40] Detection https://github.com/kyn0v/TIB-Net/tree/master (accessed on 4 December 2024)
MAV-
VID [93]

Detection,
MOT https://bitbucket.org/alejodosr/mav-vid-dataset/src/master/ (accessed on 4 December 2024)

Anti-
UAV [90]

Detection,
MOT https://github.com/ucas-vg/Anti-UAV (accessed on 4 December 2024)

Drone-vs.-
Bird [94] Detection https://github.com/wosdetc/challenge (accessed on 4 December 2024)

UAVSwarm [70] Detection,
MOT https://github.com/UAVSwarm/UAVSwarm-dataset (accessed on 4 December 2024)

DUT Anti-
UAV [45]

Detection,
SOT https://github.com/wangdongdut/DUT-Anti-UAV (accessed on 4 December 2024)

https://github.com/kyn0v/TIB-Net/tree/master
https://bitbucket.org/alejodosr/mav-vid-dataset/src/master/
https://github.com/ucas-vg/Anti-UAV
https://github.com/wosdetc/challenge
https://github.com/UAVSwarm/UAVSwarm-dataset
https://github.com/wangdongdut/DUT-Anti-UAV
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Table 4. Summarized characteristics of popular datasets.

Dataset Size UAV Type Resolution Environment Light Conditions

TIB-Net [40] 2860 images,
694 MB

multi-rotor,
fixed-wing 1920 × 1080

Homogeneous,
simple
backgrounds

Day, nightfall
and night

MAV-VID [93]
40,232 images,
64 videos,
11.3 GB

multi-rotor 1920 × 1080

Heterogeneous,
Varying
background
conditions

Day

Anti-UAV(RGB) [90]
93,247 images,
100 videos,
5.25 GB

multi-rotor 1920 × 1080
Heterogeneous,
Varying weather
conditions

Day, nightfall
and night

Drone-vs.-Bird [94]
104,760 images,
77 videos,
7.1 GB

multi-rotor,
fixed-wing

varies from
720 × 576 to
3840 × 2160

Heterogeneous,
Varying weather
and background
conditions

Day

UAVSwarm [70]
12,598 images,
72 videos,
1.87 GB

multi-rotor,
fixed-wing

varies from
446 × 270 to
1919 × 1079

Heterogeneous,
Varying light
and background
conditions

Day, nightfall
and night

DUT Anti-UAV [45]
10,000 images,
20 videos,
8.76 GB

multi-rotor varies
extremely

Heterogeneous,
Varying light
and background
conditions

Day, nightfall
and night

4.1. Detailed Analysis of Popular Datasets
4.1.1. TIB-Net

TIB-Net [40] is a dataset primarily designed only for UAV detection. It consists of
2860 high-resolution images (1920 × 1080 pixels) captured from a ground-based camera.
This dataset covers a variety of UAV types, including multi-rotor and fixed-wing UAVs,
and features day and night conditions, which are crucial for developing robust models that
can generalize across different lighting scenarios. One of the strengths of TIB-Net is its
focus on the small size of UAVs in distant images (approximately 500 m away), a common
challenge in real-world detection systems. Most of the UAVs in the dataset occupy less than
0.1% of the total image area. However, the dataset’s relatively small size limits its utility for
training deep learning models, especially in comparison to larger, more diverse datasets.

TIB-Net, while useful for small UAV detection, lacks the diversity of environments
and UAV types seen in larger datasets. Its primary limitation is the absence of dynamic
scenes, such as moving backgrounds or other aerial entities, which would more accurately
reflect real-world conditions where UAVs must be detected amidst environmental clutter.

4.1.2. MAV-VID

The Multirotor Aerial Vehicle VID (MAV-VID) dataset [93] stands out for its dynamic
content, offering 53 training videos and 11 validation videos captured from a variety of
perspectives, including UAV-mounted, ground-based, and handheld devices. The dataset’s
emphasis on multi-UAV detection and tracking makes it ideal for evaluating algorithms that
must generalize across different viewpoints. MAV-VID also includes UAVs of varying sizes,
making it useful for developing models that can detect and track drones in diverse settings.

The dataset’s heterogeneous nature—comprising both ground-to-air and air-to-air
data—introduces challenges for model consistency. Models trained on MAV-VID may
struggle to generalize to situations with more consistent, structured camera angles. More-
over, the dataset lacks comprehensive annotation for UAV occlusion scenarios, which are
critical for evaluating the robustness of tracking systems in dense environments.
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4.1.3. Anti-UAV

The Anti-UAV dataset [90] is a large, multi-modal dataset featuring 100 fully annotated
video sequences in both RGB and infrared (IR) spectra, with 186,494 images in total. This
dataset focuses on multi-UAV tracking and detection across six different UAV models
captured under a range of lighting and background conditions. The inclusion of infrared
data makes Anti-UAV highly valuable for developing robust models that can operate in
low-visibility conditions, such as nighttime or foggy environments. This makes the dataset
particularly valuable for security-focused applications requiring continuous surveillance in
various lighting conditions.

4.1.4. Drone-vs.-Bird

The Drone-vs.-Bird dataset [94] is one of the most challenging datasets available
due to its focus on the long-range detection of UAVs amidst confounding objects like
birds. With 77 videos comprising 104,760 images, this dataset forces models to distinguish
between small UAVs and birds, a critical task in scenarios where false positives are a major
concern. The small size of UAVs in the dataset (34 × 23 pixels on average) and the minimal
percentage of the image they occupy make it particularly challenging for models, especially
those that rely on large bounding boxes or clear object features. The extreme difficulty of
detecting UAVs in the Drone-vs.-Bird dataset highlights the limitations of current detection
algorithms, particularly in terms of scale variance.

4.1.5. UAVSwarm

The UAVSwarm dataset [70] is specifically designed for multi-UAV tracking and
swarm behavior analysis, making it unique in its focus on collective UAV interactions. It
contains 12,598 images, each featuring between 3 and 23 UAVs, allowing researchers to
study both the detection and tracking of multiple UAVs. This dataset is especially useful for
evaluating algorithms in swarm surveillance, where detecting and tracking many objects
simultaneously is required.

The inclusion of swarm scenarios makes UAVSwarm an excellent choice for developing
MOT algorithms. The diversity of UAV types and the complexity of interactions make it highly
suitable for testing the robustness of tracking models in real-world airspace management.

While the dataset offers diverse UAV scenarios, it lacks the variety of environmental
conditions (e.g., weather and time of day) seen in other datasets like TIB-Net and Anti-UAV.
This may limit the generalizability of models trained on UAVSwarm when applied to more
dynamic environments.

4.1.6. DUT Anti-UAV

The DUT Anti-UAV dataset [45] is designed to support both detection and tracking
tasks, offering a balanced mix of static images and tracking sequences. The dataset includes
10,000 images for detection and 20 tracking sequences for evaluating single and multi-UAV
tracking in complex environments. The dataset consists of mainly small UAVs against
cluttered backgrounds, which makes it a particularly challenging evaluation benchmark
for detection and tracking tasks. The primary limitation of DUT Anti-UAV is its limited set
of tracking scenarios. It lacks diversity in terms of weather conditions, UAV behaviors, and
long-term tracking.

The reviewed datasets highlight the diversity of scenarios that ground-to-air vision-
based Anti-UAV systems must handle, from small UAV detection to multi-UAV tracking in
dynamic environments. However, most existing datasets still face limitations, particularly
in terms of environmental diversity and real-world complexity. Many datasets lack compre-
hensive coverage of adverse conditions like rain, fog, or low-light environments, and few
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offer scenarios with high UAV density or diverse UAV behaviors. These gaps highlight the
need for future datasets to better reflect real-world challenges, particularly for large-scale
UAV detection and long-term Anti-UAV tracking in diverse and complex environments.

5. Challenges and Future Works
Despite significant advancements in ground-to-air vision-based Anti-UAV detection and

tracking systems, several challenges remain unresolved. Recent research has made strides in
detecting and tracking UAVs under controlled conditions, but real-world applications often
present far more complex scenarios. This section highlights the key limitations in existing
works and outlines potential directions for future research to overcome these challenges.

The challenges that remain in current Anti-UAV Systems are as follows:

• Detection and Tracking of Small and Fast-moving UAVs: Detecting and tracking
small, fast-moving UAVs against cluttered and dynamic backgrounds is a major
challenge for vision-based systems. These UAVs appear as only a few pixels in high-
resolution images, making it difficult for existing object detection models to identify
them accurately. As a result, UAVs are frequently mistaken for birds, clouds, or
background noise, leading to false positives and missed detections.

• Real-time Processing Constraints: Real-time detection and tracking are crucial for
Anti-UAV systems in scenarios where UAVs pose immediate threats, such as near
airports or critical infrastructure. However, achieving high accuracy in real-time
conditions is challenging due to the computational complexity of current detection
algorithms. Models have made progress in optimizing inference speed but often
sacrifice accuracy, especially when detecting small, fast-moving UAVs. Additionally,
tracking methods prioritizing high precision may introduce unacceptable latency in
time-sensitive applications.

• Multi-UAV Detection and Tracking: The current research primarily focuses on single
UAV detection and tracking, which simplifies the problem in controlled or isolated
environments. However, real-world commercial scenarios would involve multiple
UAVs operating simultaneously in a 3D air volume, introducing complexity due to
occlusion, interactions, and merging with background elements. The limitations of
existing methods become apparent when faced with the dynamics of UAV swarms
or the congested airspace characteristic of urban areas. Existing methods may not
be suitable to handle overlapping trajectories and the rapid movements of UAVs of
varying sizes and also intent. Little to no work has been performed to identify and
track multiple rogues from normal UAV traffic. Consequently, Multi-UAV tracking
remains under-explored, offering opportunities for future research. Addressing these
challenges will be essential for creating robust Anti-UAV systems with the capability
of detecting and tracking multiple rogues or swarms of rogues concurrently.

• Environmental Variability and Robustness: Vision-based systems are impacted by
environmental factors such as lighting, weather, and background complexity. Existing
models often struggle in low-light conditions, fog, or rain. While efforts have been
made to address some limitations, ensuring reliability in diverse conditions remains a
challenge for Anti-UAV systems. There is a lack of representative benchmark datasets
that truly reflect a commercialized UAV traffic scenario in variable environmental
conditions. A potential research direction could be to either collect such a dataset or to
artificially generate a dataset using data augmentation techniques, generative AI, etc.

• Integration into the UTM: While Anti-UAV systems are being developed to detect
rogue or unauthorized UAVs, there is a significant gap in integrating these systems
into broader UTM frameworks. UTM systems are designed to manage authorized
UAV traffic in uncontrolled airspace; Anti-UAV systems must operate alongside
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these frameworks to ensure that only non-compliant UAVs are targeted. The Federal
Aviation Administration’s (FAA) proposed UTM system and the European Union’s
U-space system are both designed with a service-oriented architecture in mind [95,96].
This approach allows for flexibility and innovation, as various components of these
frameworks can be developed, managed, and maintained by independent service
providers. This service-oriented model not only promotes specialization but also en-
sures that advancements can be integrated seamlessly, enhancing the overall efficiency
and safety of airspace management for Unmanned Aerial Vehicles across both regions.
The current literature lacks a holistic approach to seamlessly integrating detection and
tracking methodologies within the UTM framework, including real-time coordina-
tion between ground stations and flight management systems. This requires more
comprehensive solutions as well as better datasets to distinguish between regular and
non-conforming UAVs in complex airspace environments.

The advancement of ground-to-air vision-based Anti-UAV systems hinges on several
key research priorities. At the forefront is the need to develop more accurate detection
models capable of identifying UAVs across diverse sizes and scales. This could be achieved
through refined multi-scale detection architectures, coupled with the integration of higher-
resolution cameras and super-resolution techniques to enhance image quality and improve
detection precision.

Real-time processing remains a critical challenge that demands innovative solutions.
To address this, researchers should explore optimization strategies that reduce compu-
tational demands while preserving detection accuracy. Promising approaches include
model pruning [44] and quantization [97], which have shown success in improving model
efficiency. The integration of specialized hardware, particularly edge computing platforms,
could further enable real-time processing in resource-constrained environments.

As the field evolves, the focus is shifting toward robust multi-UAV detection and track-
ing systems. This advancement requires sophisticated data fusion techniques that combine
visual and non-visual information. Environmental adaptability is equally crucial—future
systems must perform reliably across various conditions such as rain, fog, and low light.
This can be achieved through advanced data augmentation techniques that simulate diverse
environmental scenarios during model training.

The successful implementation of Anti-UAV systems requires seamless integration
with the broader UTM framework. This integration demands the careful consideration of
protocols for distinguishing between authorized and unauthorized UAVs while ensuring
that countermeasures do not disrupt legitimate UAV operations. Such coordination is
essential for maintaining the delicate balance between security and operational efficiency.

As UAV traffic continues to expand, these research directions become increasingly
critical. The development of robust, scalable, and real-time solutions will be fundamental in
securing both manned and unmanned airspaces, making these priorities not just technical
challenges but essential components of future aviation safety.

6. Conclusions
The rapid expansion of UAV technology has created both opportunities and challenges

in managing low-altitude airspace. Vision-based Anti-UAV systems provide a promising
solution for detecting and tracking rogue UAVs, ensuring the safe integration of UAVs
into the airspace. However, significant challenges persist, such as reliably detecting small,
fast-moving UAVs, achieving real-time performance, managing multi-UAV scenarios, and
ensuring robustness in diverse environmental conditions. The integration of Anti-UAV
technologies into UTM frameworks is still in its infancy, limiting their broader applicability.
Addressing these challenges is crucial for developing comprehensive, real-time Anti-UAV
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systems essential for airspace security. Continued innovation is necessary to meet the
increasing demand for UAV detection and tracking in complex real-world environments.
The intersection of vision-based technologies with UAV management promises to be a rich
area for future exploration, with significant implications for both civil and defense sectors.
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AUC Area Under the Curve
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FAA Federal Aviation Administration
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LSTM Long Short-Term Memory
LTMU Long-term Tracking with Meta-Updater
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MEGA Memory Enhanced Global-Local Aggregation
MobileViT Mobile Vision Transformer
MOT Multi-Object Tracking
MOTA Multiple Object Tracking Accuracy
PANet Path Aggregation Network
QDTrack Quasi-dense Tracking
R-CNN Region-based Convolutional Neural Network
RF Radio Frequency
SAM Spatial Attention Module
SE Squeeze and Excitation
SimAM Simple parameter-free Attention Module
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SPLT Skimming-Perusal Tracking
SSD Single Shot Detector
TransT Transformer Tracking
UAS Unmanned Aircraft System
UAV Unmanned Aerial Vehicle
UTM Unmanned Aircraft System Traffic Management
VGG Visual Geometry Group
YOLO You Only Look Once

Appendix A
Table A1. Summary of UAV detection methodologies used in recent works.

Reference Year Techniques Used Dataset(s)
Used

Accuracy Metrics
Reported Lightweight

[39] 2019

1. The last four scales of feature maps are
adopted instead of the last three in
YOLOv3 to predict bounding boxes of
objects, which can obtain more texture and
contour information
2. K-means clustering is used on the
training set to decide the number of
the scales
3. The number and size of the anchor
boxes are also adjusted using
k-means clustering

Not public.
Self-collected.

mAP@0.25 37.41%
56.3 FPS No

[40] 2020

1. Cyclic pathway is added to EXTD,
which enhances the capability to extract
the effective features of small objects but
does not increase the model size much
2. Spatial Attention Module is added to
the network backbone to emphasize
information of small objects

TIBNet mAP 89.25% Yes

[41] 2020
1. Standard YOLOv4 is implemented
2. Dataset is augmented by rotating and
flipping collected images

Not public.
Self-collected.

mAP@0.75 89.32%
39.64 FPS No
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Table A1. Cont.

Reference Year Techniques Used Dataset(s)
Used

Accuracy Metrics
Reported Lightweight

[42] 2021

Standard Faster R-CNN is implemented
with multiple backbones (VGG-16,
ResNet50, DarkNet-53,
DenseNet-201)

UAVData

VGG-16
mAP 90.6%, 11 FPS
ResNet50
mAP 90.4%, 10 FPS
DarkNet-53
mAP 86.3%, 10 FPS
DenseNet-201
mAP Failed

No

[42] 2021
Standard YOLOv3 is implemented with
multiple backbones (VGG-16, ResNet50,
DarkNet-53, DenseNet-201)

UAVData

VGG-16
mAP 90.8%, 70 FPS
ResNet50
mAP 90.6%, 86 FPS
DarkNet-53
mAP 90.8%, 72 FPS
DenseNet-201
mAP 90.7%, 49 FPS

No

[42] 2021
Standard SSD is implemented with
multiple backbones (VGG-16, ResNet50,
DarkNet-53, DenseNet-201)

UAVData

VGG-16
mAP 74.2%, 42 FPS
ResNet50
mAP 75.3%, 22 FPS
DarkNet-53
mAP 74.8%, 24 FPS
DenseNet-201
mAP 73.5, 14 FPS

Yes (VGG-16)
No for rest

[13] 2021
Standard Faster R-CNN is implemented
with ResNet-50 backbone and an FPN at
the end of each convolutional block

MAV-VID
Drone-vs.-Bird
Anti-UAV RGB

MAV-VID
mAP 97.8%, 18 FPS
Drone-vs.-Bird
mAP 63.2%, 18 FPS
Anti-UAV RGB
mAP 98.2%, 18 FPS

No

[13] 2021 Standard YOLOv3 is implemented with
DarkNet-53 backbone

MAV-VID
Drone-vs.-Bird
Anti-UAV RGB

MAV-VID
mAP 96.3%, 36 FPS
Drone-vs.-Bird
mAP 54.6%, 36 FPS
Anti-UAV RGB
mAP 98.6%, 36 FPS

No

[13] 2021 Standard SSD512 is implemented
MAV-VID

Drone-vs.-Bird
Anti-UAV RGB

MAV-VID
mAP 96.7%, 32.4 FPS
Drone-vs.-Bird
mAP 62.9%, 32.4 FPS
Anti-UAV RGB
mAP 97.9%, 32.4 FPS

Yes

[13] 2021 Standard DETR with ResNet-50 backbone
MAV-VID

Drone-vs.-Bird
Anti-UAV RGB

MAV-VID
mAP 97.1%, 21.4 FPS
Drone-vs.-Bird mAP
66.7%, 21.4 FPS
Anti-UAV RGB
mAP 97.8%, 21.4 FPS

No

[43] 2021 1. Standard YOLOv4 is implemented
2. Mosaic data augmentation is applied

Not public.
Self-collected.

mAP 74.36%
19.75 FPS No
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Table A1. Cont.

Reference Year Techniques Used Dataset(s)
Used

Accuracy Metrics
Reported Lightweight

[44] 2021

1. Convolutional channel and shortcut
layer of YOLOv4 are pruned to make the
model thinner and shallower
2. Dataset is augmented by copy and
pasting small drones

Not public.
Self-collected.

mAP 92.7%
69 FPS Yes

[45] 2022
Standard Faster R-CNN is
implemented with
different backbones

DUT
Anti-UAV

ResNet-50
mAP 65.3%, 12.8 FPS
ResNet-18
mAP 60.5%, 19.4 FPS
VGG-16
mAP 63.3%, 9.3 FPS

No

[45] 2022 Standard Cascade R-CNN is implemented
with different backbones

DUT
Anti-UAV

ResNet-50
mAP 68.3%, 10.7 FPS
ResNet-18
mAP 65.2%, 14.7 FPS
VGG-16
mAP 66.7%, 8 FPS

No

[45] 2022 Standard ATSS method is implemented
with different backbones

DUT
Anti-UAV

ResNet-50
mAP 64.2%, 13.3 FPS
ResNet-18
mAP 61%, 20.5 FPS
VGG-16
mAP 64.1%, 9.5 FPS

N/A

[45] 2022 Standard YOLOX is implemented with
different backbones

DUT
Anti-UAV

ResNet-50
mAP 42.7%, 21.7 FPS
ResNet-18
mAP 40%, 53.7 FPS
VGG-16
mAP 55.1%, 23 FPS

No

[45] 2022 Standard SSD is implemented with
different backbones

DUT
Anti-UAV

VGG-16
mAP 63.2%, 33.2 FPS Yes

[46] 2022

1. Background difference is used to extract
potential drone targets in high-resolution
images to reduce computational overhead
2. Ghost module and SimAM attention
mechanism are introduced to reduce the
total number of model parameters and
improve feature extraction
3. α-DIoU loss is used instead of DIoU loss
to improve the accuracy of bounding
box regression

Drone-vs.-Bird mAP 97.6%
13.2 FPS Yes

[47] 2022

1. The last four scales of feature maps are
adopted instead of the last three in
YOLOv3 to predict bounding boxes of
objects, which can obtain more texture and
contour information
2. Data augmentation is performed
through changing brightness, and contrast
of the images and rotating and flipping
the images

Not public.
Self-collected.

mAP 25.12%
21 FPS No
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Table A1. Cont.

Reference Year Techniques Used Dataset(s)
Used

Accuracy Metrics
Reported Lightweight

[48] 2022

1. YOLOv5 backbone is replaced with
Efficientlite, to reduce the number
of parameters
2. Adaptive spatial feature fusion is
injected into the head to improve the
accuracy loss caused by the lightweight of
the model backbone
3. A constraint of angle is introduced into
the original regression loss function to
improve the speed of convergence
4. Data augmentation by adding random
noise points and binarization

Kaggle Dataset mAP 94.82% Yes

[49] 2023

1. Spatial Attention module added to
the backbone
2. SPPS and ResNeck modules added to
the neck
3. Data are augmented using
Mosaic Augmentation

TIBNet mAP 89.7% Yes

[50] 2023

1. MobileViT is used as the backbone to
reduce network complexity
2. Added Coordinate Attention to PANet of
YOLOv4 to obtain better positional
information and improve information
fusion of high and low-dimensional features
3. K-means++ is used to adjust
anchor boxes
4. Data are augmented using
Mosaic Augmentation

Not public.
Self-collected.

mAP 92.8%
40 FPS Yes

[51] 2023

1. Depthwise separable convolution is
used to simplify and optimize the network
2. Squeeze-and-Excitation (SE) module is
introduced into the backbone to improve
the model’s ability to extract features
3. Convolutional Block Attention Module
(CBAM) is added in the feature fusion
network to make the network pay more
attention to important features and
suppress unnecessary features
4. Distance-IoU (DIoU) is used to replace
Intersection over Union (IoU) to calculate
the regression loss for model optimization
5. Data are augmented using MixUp and
Mosaic Augmentation

UAVSwarm mAP 82.32%
14 FPS Yes

[52] 2024

1. Ghost convolution is included in the
neck to reduce model size
2. Efficient multi-scale attention (EMA) is
added to preserve pixel-level attributes
and spatial information on the feature map
3. Deformable Convolutional Net v2
(DCNv2) is used in the detection head to
improve model robustness

DUT
Anti-UAV

mAP 97.1
56.2 FPS Yes
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Table A1. Cont.

Reference Year Techniques Used Dataset(s)
Used

Accuracy Metrics
Reported Lightweight

[53] 2024

1. Anchor boxes are adjusted using
k-means clustering
2. InceptionNeXT module is added to neck
to capture more global
semantic information
3. SPPFCSPC-SR module is added to the
backbone to reduce feature loss, suppress
confusion, and make the model pay more
attention to small target areas
4. FPN is replaced with Get-and-Send
module to improve model’s capability to
fuse information across different levels

DUT
Anti-UAV and
Amateur UAV

combined

mAP 93.2%
104 FPS Yes
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