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Abstract: With the proliferation of smart devices and the emergence of high-bandwidth
applications, Unmanned Aerial Vehicle (UAV)-assisted Device-to-Device (D2D) commu-
nications and Non-Orthogonal Multiple Access (NOMA) technologies are increasingly
becoming important means of coping with the scarcity of the spectrum and with high
data demand in future wireless networks. However, the efficient coordination of these
techniques in complex and changing 3D environments still faces many challenges. To this
end, this paper proposes a NOMA-based multi-UAV-assisted D2D communication model
in which multiple UAVs are deployed in 3D space to act as airborne base stations to serve
ground-based cellular users with D2D clusters. In order to maximize the system through-
put, this study constructs an optimization problem of joint channel assignment, trajectory
design, and power control, and on the basis of these points, this study proposes a joint
dynamic hypergraph Multi-Agent Deep Q Network (DH-MDQN) algorithm. The dynamic
hypergraph method is first used to construct dynamic simple edges and hyperedges and to
transform them into directed graphs for efficient dynamic coloring to optimize the channel
allocation process; subsequently, in terms of trajectory design and power control, the prob-
lem is modeled as a multi-agent Markov Decision Process (MDP), and the Multi-Agent
Deep Q Network (MDQN) algorithm is used to collaboratively determine the trajectory
design and power control of the UAVs. Simulation results show the following: (1) the
proposed algorithm can achieve higher system throughput than several other benchmark
algorithms with different numbers of D2D clusters, different D2D cluster communication
spacing, and different UAV sizes; (2) the proposed algorithm designs UAV trajectory opti-
mization with a 27% improvement in system throughput compared to the 2D trajectory;
and (3) in the NOMA scenario, compared to the case of no decoding order constraints, the
system throughput shows on average a 34% improvement.

Keywords: unmanned aerial vehicles; non-orthogonal multiple access; D2D; dynamic
hypergraph; multi-agent reinforcement learning

1. Introduction
With the emergence of new devices and innovative applications, the global demand

for mobile data is growing at an accelerated pace. As a result, the need for high-quality
services has become increasingly urgent worldwide. Furthermore, the rapid growth of
the Internet of Things (IoT) requires ubiquitous connectivity [1]. To satisfy users’ high
data throughput, mobile networks must significantly increase their capacity. However,
because radio spectrum resources are scarce, there is an urgent need for new spectrum
management and power optimization approaches to fulfill the rapidly expanding demand
for wireless connectivity.
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Driven by the above challenges, Non-Orthogonal Multiple Access (NOMA) has re-
ceived significant attention [2,3] and is recognized by both industry and academia. Unlike
traditional multiple-access techniques, which require independent or orthogonal band
protection, NOMA allows a single resource block to be multiplexed by multiple users who
have different allocated power factors through flexible user scheduling and bandwidth
allocation strategies. Moreover, the use of overlay coding techniques [4] and serial in-
terference cancellation techniques [5] not only effectively mitigates the rapidly growing
capacity problem but also significantly improves network performance in terms of fairness
and security.

In addition, as one of the key technologies of 5G, Device-to-Device (D2D) commu-
nication refers to the direct exchange of information between devices without requiring
transmission through a base station (BS) [6,7]. In traditional cellular networks, D2D users
are able to communicate by multiplexing the communication links of cellular users, which
improves the spectrum utilization of the system, which in turn improves the network
throughput. However, the introduction of D2D technology in cellular networks increases
the inter-user cochannel interference in the network, which affects the quality of user
communication; furthermore, the quality of communication is ensured by introducing
NOMA technology [8], which utilizes a decoding mechanism to eliminate the inter-user
interference caused by D2D communication [9,10].

Unmanned Aerial Vehicles (UAVs) have been gradually applied to assisted com-
munication scenarios due to their flexible maneuverability and high-altitude-coverage
capability [11,12]. A UAV can be used as an airborne base station or relay device to expand
network coverage and enhance communication quality. When UAV technology is combined
with D2D and NOMA technologies, wireless resource allocation can be further optimized,
especially in high-density device distribution and complex channel environments, to effec-
tively enhance system performance. Specifically, the dynamic deployment capability of
UAVs can achieve accurate coverage of D2D user clusters while combining the spectrum
multiplexing characteristics of NOMA to maximize spectrum efficiency.

Although the combination of NOMA, D2D technology, and UAVs demonstrates signif-
icant performance improvement potential, its converged application still faces a number of
challenges. First, in dynamic environments, it is a complex issue to realize UAV trajectory
design to cover multiple D2D user clusters while ensuring communication stability and effi-
ciency [13]. Second, the introduction of NOMA technology further increases the complexity
of channel assignment and power control. In multi-user coexistence scenarios, how to
achieve fairness among users under dynamic channel conditions and effectively suppress
interference has become a core problem that needs to be solved [14]. Moreover, in UAV-
assisted D2D-NOMA scenarios, there is strong coupling among trajectory design, channel
assignment, and power control. Designing joint optimization algorithms to maximize
system performance under limited resources while reducing the computational complexity
is the focus and challenge of current research.

In view of the above challenges, this paper is devoted to the study of a UAV-assisted
D2D-NOMA communication model focusing on the joint optimization of channel allocation,
UAV trajectory design, and power control in order to achieve the dual enhancement of spec-
tral efficiency and system capacity. Specifically, this paper addresses the resource allocation
and optimization problem of multi-UAV cooperative work in complex 3D environments,
including efficient channel allocation to avoid interference, optimization of UAV trajectories,
and dynamic adjustment of power control to improve the overall system throughput.

In disaster recovery scenarios, the NOMA-based multi-UAV-assisted D2D communica-
tion model proposed in this paper can rapidly deploy UAVs as temporary communication
base stations to ensure that the communication needs in the affected area are met in a
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timely manner after a natural disaster or an emergency, thus enhancing the efficiency and
coordination of rescue operations. In a smart city environment, the model supports the
communication needs of high-density IoT devices by optimizing the resource allocation and
trajectory planning of UAVs, enhancing the communication coverage and system through-
put of the city, and facilitating the construction and operation of smart cities. Through this
study, we aim to provide an efficient resource optimization scheme for next-generation
wireless networks as well as theoretical support and technical guidance for the deployment
of practical systems.

1.1. Related Work

Existing work related to this paper covers three different areas, UAV-assisted D2D com-
munication, NOMA in UAV communication, and UAV-assisted wireless communication in
reinforcement learning, as follows:

(1) UAV-assisted D2D communication: Currently, UAV-assisted D2D communication
research mainly focuses on key issues such as resource scheduling, trajectory design, and
power control. The literature [15] constructs a multi-objective optimization model for
resource scheduling by comprehensively considering factors such as the number of UAVs
and their positions, flight speeds, transmit power, and communication channel allocation,
and the study adopts the Non-dominated Sorting Genetic Algorithm-III (NSGA-III) com-
bined with a flexible solution dimensionality mechanism, a discrete portion generation
mechanism, and a UAV numbering adjustment mechanism to achieve an efficient solution
to the resource scheduling problem. In UAV networks supporting D2D communication,
the literature [14] explores how to maximize the total system rate with seamless coverage
with a minimum number of UAVs. The study formulates the problem as a non-linear
and non-convex optimization model and proposes the maximum rate minimum number
(MRMN) scheme. In addition, by applying coalitional game theory, a collaboration strategy
between UAV clusters and ground devices is designed and a coalition formation algorithm
is developed to optimize the scheduling of communication resources while satisfying the
seamless coverage constraints, which significantly improves the system throughput. To
address the challenges of resource optimization and latency reduction in heterogeneous
Mobile Edge Computing (MEC) environments, the literature [16] proposes a framework
for integrating UAV and D2D communications. The study constructs a joint non-convex
optimization model containing UAV trajectory design, resource allocation, and task of-
floading, and it solves the optimal solution by an algorithm combining block coordinate
descent (BCD) and potential game. Experimental results show that the method can reduce
the system delay by about 20% and exhibits excellent performance in dynamic network
scenarios. In addition, the literature [17] proposes a UAV positioning method based on a
Gauss–Markov stochastic motion model for the problem of coverage establishment and
user rate optimization when UAVs are used as flying base stations. Simulation results show
that the method is able to cover 95% of the users and achieves an average available rate of
0.15 Gbps for downlink users, demonstrating its effectiveness in optimizing user coverage
and rate.

(2) NOMA in UAV communication: The application of NOMA technology in UAV
communication has received much attention. The literature [18] explores the application of
a reconfigurable intelligent surface (RIS) in UAV-assisted NOMA networks. The study aims
to minimize the system power consumption by optimizing the UAV position, RIS reflection
coefficient, transmit power, and decoding order while satisfying the constraints of user rate
and UAV spacing. The study decomposes the optimization problem into four subproblems,
which are solved iteratively using successive convex approximation (SCA), Gaussian
randomization, and standard convex optimization, respectively, which significantly reduces
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the total power consumption and validates the advantages of combining RIS with multi-
UAV-assisted NOMA networks. To address the need for UAVs to help survivors in post-
disaster scenarios, the literature [19] proposes a system that combines UAVs with NOMA by
developing effective power allocation (PA) and trajectory planning algorithms (TPAs). The
study formulates the problem as a budgeted multi-armed slot machine (BMAB) problem
to optimize UAV trajectories and minimize battery consumption, where the UAVs act as
“bandit” players and clusters of disaster zones act as “weapons”. The problem is solved by
two upper confidence bound (UCB) schemes. Compared with the traditional UAV-OMA
system, this method increases the total number of assisted survivors by 60%, improves
the convergence speed by 80%, and saves energy effectively. The UAV-assisted NOMA
downlink scenario is studied in the literature [20]. By jointly optimizing the beamforming
and position of the ground base station and the UAV, this study shows that integrating
airborne relays in NOMA networks can significantly improve the sum rate of the system
under a power budget, successive interference cancellation (SIC) constraints, and quality of
service requirements of the ground equipment. Furthermore, the literature [21] proposes a
secure NOMA system based on UAV relaying. In this system, a UAV acts as an airborne
relay station to assist in the transmission from the source to the two users, taking into
account the presence of ground eavesdroppers and friendly jamming UAVs. The results
show that the proposed NOMA system significantly improves the secrecy rate of the system
and enhances the overall system security compared to orthogonal multiple access (OMA).

(3) UAV-assisted wireless communication in reinforcement learning: The application of
reinforcement learning techniques in UAV-assisted wireless communication is significantly
improving system performance and network efficiency. The literature [22] explores the com-
bination of UAV and NOMA techniques in IoT, aiming to address the challenges of remote
terminal access and low-energy communication. To optimize the system performance, the
study proposes a Multi-Agent Federated Reinforcement Learning (MAFAL) algorithm for
joint optimization of 3D trajectory design and time allocation of UAVs, with the goal of max-
imizing energy efficiency (EE) while guaranteeing quality of service (QoS), fairness, and low
energy consumption. Another study [23] constructs a NOMA-based UAV-assisted cellular
offloading (UACO) framework, focusing on analyzing the coupling between UAV path
selection and resource offloading. The study considers the autonomous obstacle avoidance
ability of UAVs in complex 3D environments and the influence of obstacles on the channel
model, and it significantly improves the spectrum utilization efficiency and communication
throughput of the system through the proposed deep reinforcement learning path selection
and resource offloading algorithm (UPRA). The study also explores the effect of the reward
function on the training convergence and demonstrates the excellent adaptability of the
proposed algorithm to random user deployment and maximum mobile speed variation
in dynamic networks and complex environments. The literature [24], on the other hand,
develops an intelligent UAV navigation solution via federated deep reinforcement learning
(DRL) by utilizing flying small base stations (UAV-BS) as relays to enable multiple UAV-BS
to fly autonomously and serve ground devices (GDs) in a cost-effective manner. Compared
with the conventional navigation methods based on greedy policy (GP) and the traveling
salesman problem (TSP), the proposed solution exhibits significant advantages in system
performance metrics such as coverage time, coverage score (CS), and channel noise ratio
(CNR). The paper [25] proposes a NOMA network framework based on collaborative UAV
caching, which aims to minimize the system content retrieval latency by jointly optimizing
the caching decision, 3D trajectory design, and spectrum resource allocation. The study
addresses the joint optimization problem of UAV trajectory design, power allocation, and
channel multiplexing, which is solved using a deep reinforcement learning (DRL) algo-
rithm. Simulation results show that the proposed method significantly outperforms other



Drones 2025, 9, 62 5 of 31

benchmark algorithms in key performance metrics such as content hit rate, retrieval delay,
and system throughput, and it demonstrates fast convergence capability.

Although there have been studies that have made significant progress in UAV-assisted
D2D communication, NOMA in UAV communication, and the application of reinforce-
ment learning in UAV-assisted wireless communication, most of these studies have only
considered UAV motion in a 2D plane, failing to take full advantage of UAVs’ 3D mobility
and failing to incorporate D2D communication, NOMA, and NOMA in 3D scenarios where
multiple UAVs collaborate. Therefore, the question of how to jointly optimize channel allo-
cation, UAV trajectory design, and power control based on NOMA’s multi-UAV-assisted
D2D communication model in a multi-UAV three-dimensional dynamic environment
remains a challenging and under-studied problem.

Based on the above research status and its shortcomings, this paper is devoted to
the study of a NOMA-based multi-UAV-assisted D2D communication model, focusing
on the joint optimization of channel allocation, trajectory design, and power control. By
combining advanced dynamic hypergraphs and reinforcement learning algorithms, this
paper proposes a multi-intelligent deep Q network algorithm for joint dynamic hyper-
graphs in multi-UAV 3D scenarios, aiming to cope with complex and dynamic network
environments and maximize system throughput. This study not only fills the research gap
of joint optimization of D2D-NOMA communication models in multi-UAV 3D scenarios
but also provides new ideas for UAV communication in future three-layer heterogeneous
air-to-ground networks.

1.2. Motivation and Contribution

The main contributions of this paper are as follows:
(1) This study proposes a NOMA-based multi-UAV-assisted D2D communication

model. In this model, multi-UAVs are deployed in 3D space as airborne base stations to
provide services to ground cellular users and D2D clusters in which NOMA techniques
are applied to D2D communications to improve spectrum utilization efficiency and system
throughput. Based on the system model, a problem to maximize the system throughput
is proposed: firstly, an in-depth study is carried out for the channel allocation problem,
and subsequently, this study jointly optimizes the trajectory design and power control of
the UAVs.

(2) For the above channel allocation, trajectory design, and power control problems,
this study proposes a joint optimization strategy aimed at maximizing the system through-
put. To effectively solve this complex multivariate optimization problem, the overall
problem is decoupled into two subproblems. First, for channel allocation, this study con-
structs dynamic simple edges and hyperedges using the dynamic hypergraph method
and achieves efficient dynamic coloring by transforming the dynamic hypergraph into
a directed graph, thus optimizing the allocation of channel resources. Secondly, for the
trajectory design and power control problem, we propose the MDQN algorithm to intel-
ligently optimize the flight trajectory and power control of the UAVs. Finally, this study
proposes a joint dynamic hypergraph Multi-Agent Deep Q Network algorithm, which can
dynamically optimize channel allocation, trajectory design, and power control in real-time
changing 3D environments, thus maximizing the system throughput.

(3) This study conducts extensive simulations to compare the proposed algorithm
with several benchmark algorithms. The results verify that our proposed joint dynamic
hypergraph Multi-Agent Deep Q Network algorithm significantly improves the system
throughput under different numbers of D2D clusters and different D2D cluster commu-
nication spacing schemes, UAV sizes, trajectory designs, and NOMA decoding orders. In
addition, the trajectories of 3D UAVs are more reasonable when considering real scenarios.
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The rest of this paper is organized as follows. Section 2 introduces the system model.
Section 5 establishes a formulation of the maximizing system throughput problem. Section 4
presents the solution to each subproblem. Section 5 discusses the simulation results to
demonstrate the advantages of our proposed algorithm, and Section 6 concludes this paper.

2. System Model
In this section, this study first proposes a 3D dynamic UAV communication network

model based on NOMA. Then the network model, propagation model, and communication
model of the system are proposed.

2.1. Network Model

Consider the NOMA-based UAV-assisted D2D communication model shown in
Figure 1, where U UAVs exist in the air to act as airborne base stations and provide commu-
nication services to nearby ground users using Orthogonal Frequency Division Multiple
Access (OFDMA) technology. Specifically, the set of airborne base stations is denoted as
U = {1, 2, · · · , u, · · · , U}, and {S1,S2, · · · ,Su, · · · ,SU} is the set of available channels for
the U airborne base stations. Meanwhile, we consider the powerful maneuverability of a
UAV, assume that the mission period of the UAV’s flight in the case of dynamic changes
in altitude is Tmax, partition Tmax into L sufficiently small and equal time slots of length
T = Tmax/L, and denote the set of time slot serial numbers as L = {1, 2, · · · , t, · · · , L};
therefore, the position of the UAV is nearly constant in each time slot, and the UAVs
have a position change in the neighboring time slots. In each UAV base station, cellular
users occupy a subchannel resource block alone, and these subchannels are independently
orthogonal to each other. In order to enhance the spectrum utilization and improve the net-
work transmission efficiency, the NOMA technique is applied to D2D to form D2D-NOMA
clusters. Therefore, a large number of cellular users as well as D2D-NOMA clusters are
randomly generated in the ground presence, and the number of cellular users as well as
the number of D2D-NOMA clusters are denoted as M and N, respectively, with the cellular
users denoted by the set C =

{
C1, C2, · · · , Ci, · · · , CM

}
, the set of M orthogonal channels

pre-allocated to the cellular users denoted by the set S = {S1, S2, · · · , Si, · · · , SM}, and the
D2D-NOMA clusters denoted by the set D =

{
D1, D2, · · · , Dj, · · · , DN

}
. For convenience,

let Si ∈ Su be the channels pre-allocated to users Ci ∈ Cu and Ci ∈ Cu be the subset of
cellular users associated with UAV base stations u. The D2D-NOMA cluster will reuse
the uplink subchannel resources of the cellular users, considering that the user terminal
equipment has less processing power and limited battery power consumption compared
to the UAV base stations. Meanwhile, in order to keep the signal processing delay as
well as the hardware decoding complexity low when transmitting using the D2D-NOMA
technique, each D2D cluster Dj contains one transmitter(DTj) and two receivers (DRj,1 and
DRj,2). More importantly, it is assumed that a D2D cluster Dj can multiplex the channel
resources of at most one cellular user, while the channel resources of one cellular user can
be multiplexed by multiple D2D clusters. Furthermore, since some D2D clusters are located
in the overlapping area of multiple UAV services, when the UAV base station is u ∈ U , let
ξu be the maximum number of D2D clusters associated with the UAV base station.
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Figure 1. Model diagram of the UAV-assisted D2D-NOMA system.

2.2. Propagation Model

The path loss depends on the LoS and NLoS link states, where the probabilities
under the LoS and NLoS conditions are denoted as PLoS and PNLoS, respectively, and
PLoS + PNLoS = 1 is satisfied. The path losses under conditions LoS and NLoS are defined
as LLoS and LNLoS, respectively. Therefore, the average path loss Li

j(t) between any two
points i and j in the model between time slot t is denoted as

Li
j(t) = PLoS · LLoS + PNLoS · LNLoS (1)

The channels between the cellular user and the UAV and between the D2D transmitter
and the UAV are modeled as air-to-ground channels. The air-to-ground channel model
adopted in this paper is provided by the 3GPP-36.777 standard [26]. For the UAV movement
model, {xu(t), yu(t), hu(t)} denotes the position of the UAV in time slot t, v(t) denotes the
UAV flight speed, and the 3D distance between UAV u and cellular user Ci at the moment t
is denoted as du

i

(
t
)

.

du
i (t) =

√
h2

u(t) + [xu(t)− xi(t)]
2 + [yu(t)− yi(t)]

2 (2)

where {xi(t), yi(t)} denotes the location of the cellular user of the UAV service in time
slot t.

Let fc be the carrier frequency. The path loss Lu
i (t) and the corresponding conditional

probability PLoS(t) between cellular user Ci and UAV u can be expressed by Equations (3)
and (4).

Lu
i (t) =


30.9 + (22.25− 0.5log10hu(t)) log10 du

i (t)(t) + 20log10 fc, if LoS link

max
{

LLos, 32.4 + (43.2− 7.6log10hu(t)) log10 du
i (t) + 20log10 fc

}
, if NLoS link

(3)

PLoS(t) =


1, if

√(
du

i (t)
)2 − (hu(t))

2 ⩽ d0

d0√
(du

i (t))
2−(hu(t))

2
+ exp

{
−
√
(du

i (t))
2−(hu(t))

2

p1
+ d0

p1

}
, if

√(
du

i (t)
)2 − (hu(t))

2 > d0
(4)

where d0 = max[294.05 · log10 hu(t)− 432.94, 18], p1 = 233.98 · log10 hu(t)− 0.95.
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Considering the small-scale fading, the channel gain from UAV u to cellular user Ci at
t time slot can be calculated as in Equation (5):

gu
i (t) = Hu

i (t) · 10−Lu
i (t)/10 (5)

where Hu
i (t) denotes the attenuation coefficient for UAV u and cellular user Ci at time

slot t.
Similarly, the channel gain of D2D transmitter Dj and UAV u in a D2D cluster at time

slot t can be calculated as in Equation (6):

gu
DTj

(t) = Hu
DTj

(t) · 10
−Lu

DTj
(t)/10

(6)

where = Hu
DTj

(t) denotes the attenuation coefficient of UAV u and D2D transmitter DTj at
t time slot.

The channels between the cellular user and the D2D transmitter and between the D2D
receiver and the D2D transmitter are modeled as ground-to-ground channels. The distance
between cellular user Ci and D2D transmitter DTj at the moment t is denoted as du

i,DTj
(t).

du
i,DTj

(t) =

√[
xi(t)− xDTj(t)

]2
+

[
yi(t)− yDTj(t)

]2
(7)

where {xDTj(t), yDTj(t)} denotes the position of D2D transmitter DTj in time slot t.
Thus, the channel gain gu

i,DTj
(t) between the cellular user and the D2D transmitter

is [27]
gu

i,DTj
(t) = Gu

i,DTj
(du

i,DTj
)−ξζu

i,DTj
(8)

where ξ is the path loss exponent and ζu
i,DTj

represents the channel gain corresponding to
the channel shadow fading between cellular user Ci and D2D transmitter DTj, obeying a
lognormal distribution.

Similarly, the channel gain gu
i,DTj ,DRj,n

(t) between the D2D transmitter DTj and the

D2D receiver DRj,n(n = 1, 2) is

gu
i,DTj ,DRj,n

(t) = Gu
i,DTj ,DRj,n

(du
i,DTj ,DRj,n

)−ξζu
i,DTj ,DRj,n

(9)

where du
i,DTj ,DRj,n

is the distance between D2D transmitter DTj and D2D receiver DRj,n at
time t, and ζu

i,DTj ,DRj,n
represents the channel gain corresponding to the channel shadow

fading between D2D transmitter DTj and D2D receiver DRj,n, obeying a lognormal distribution.
The channel gain gu

i,DRj,n
(t) between the cellular user and the D2D receiver is

gu
i,DRj,n

(t) = Gu
i,DRj,n

(du
i,DRj,n

)−ξ ζu
i,DRj,n

(10)

where du
i,DRj,n

is the distance between the cellular user and the D2D receiver DRj,n at the mo-
ment t, and ζu

i,DRj,n
represents the channel gain corresponding to the channel shadow fading

between the cellular user and the D2D receiver DRj,n, obeying a lognormal distribution.

2.3. Communication Model

As analyzed in Figure 1, the following interferences exist under the UAV-assisted
D2D-NOMA system: (1) inter-group interference: interference from D2D transmitters in
D2D groups that reuse the same subchannels; (2) intra-group interference: interference
from superimposed signals to another receiver in the same D2D group; and (3) cellular
interference: interference from cellular users that reuse the same subchannels.
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Therefore, UAV u receives a signal on subchannel Si ∈ Su denoted as

yu
i =

√
Pu

i gu
i xu

i + ∑
Dj∈Du

Iu
i,DTj

√
Pu

i,Dj
xu

i,DTj
gu

i,DTj
+ η (11)

where Pu
i and Pu

i,Dj
are denoted as the transmit power of cellular user Ci and D2D cluster

Dj, respectively, Du ∈ D denotes the set of D2D clusters in the coverage area of UAV u, and
η is an additive Gaussian white noise with mean 0 and variance σ2. xu

i denotes the signal
of the cellular user, and xu

i,DTj
is the superimposed signal of DTj, which can be represented

by Equation (12):
xu

i,DTj
=

√
au

i,DRj,1
xu

i,DRj,1
+

√
au

i,DRj,2
xu

i,DRj,2
(12)

where au
i,DRj,1

and au
i,DRj,2

denote the power allocation coefficients of the D2D receivers
DRj,1 and DRj,2, respectively, and the relationship between them is au

i,DRj,1
+ au

i,DRj,2
≤ 1.

xu
i,DRj,1

and xu
i,DRj,2

denote the signals of DRj,1 and DRj,2, respectively. In addition, Iu
i,DTj

is
a binary decision variable:

Iu
i,DTj

=

1, Dj ∈ Du occupies Ci ∈ Cu channel resources,

0, otherwise.
(13)

A D2D cluster can only occupy at most one cellular user channel resource among all
UAV BTSs, i.e., there is ∑u∈U ∑Ci∈Cu Iu

i,DTj
≤ 1. In addition, the maximum number of D2D

clusters associated with UAV u must satisfy ∑Ci∈Cu ∑Dj∈Du Iu
i,DTj

≤ ξu. Finally, the total
transmit power of each channel Si ∈ Su of each UAV u must not exceed P and must satisfy
the total power constraint on each channel, andthere is Pu

i + ∑Di∈Du Iu
i,DTj

Pu
i,Dj
≤ P.

Based on Equation (11), the signal-to-interference-plus-noise ratio (SINR) at UAV u
corresponding to the received signal at Ci is

ru
i =

Pu
i

∣∣gu
i

∣∣2
∑Dj∈Du Iu

i,DTj
Pu

i,Dj

∣∣∣gu
i,DTj

∣∣∣2 + σ2
(14)

D2D receiver DRj,n(n = 1, 2) receives the signal on subchannel Si ∈ Su, denoted as

yu
i,DRj,n

=
√

Pu
i,Dj

xu
i,DTj

gu
i,DTj ,DRj,n

+
√

Pu
i xu

i gu
i,DRj,n

+ η (15)

Based on the principle of NOMA, the intra-group interference will be eliminated at
the receiver side according to the SIC technique, where the strong users are assigned low
power and the weak users are assigned high power in the superposition coding so that
the weak users are less interfered with by the strong users and can demodulate their own
signals on their own, whereas the strong users need to remove the signals of the weak
users and then demodulate their own signals through the SIC technique. To simplify the
illustration, assume that receiver DRj,2 has worse channel conditions than receiver DRj,1,
i.e., receiver DRj,1 is a weak user and can demodulate its own signal, and in order for DRj,1

to remove DRj,2 signal to decode its own signal, the following constraints must be satisfied:

∣∣∣gu
i,DTj ,DRj,1

∣∣∣2Pu
i,Dj

Pu
i

∣∣∣gu
i,DRj,1

∣∣∣2 + σ2
≥

∣∣∣gu
i,DTj ,DRj,2

∣∣∣2Pu
i,Dj

Pu
i

∣∣∣gu
i,DRj,2

∣∣∣2 + σ2
(16)
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After simplification, the inequality can be transformed into

Su
i,Dj

=
∣∣∣gu

i,DTj ,DRj,1

∣∣∣2(Pu
i

∣∣∣gu
i,DRj,2

∣∣∣2 + σ2
)
−

∣∣∣gu
i,DTj ,DRj,2

∣∣∣2(Pu
i

∣∣∣gu
i,DRj,1

∣∣∣2 + σ2
)
≥ 0 (17)

Thus, based on Equation (15) and the NOMA principle, the SINR of receiver DRj,2 in
a D2D cluster can be expressed as

ru
i,DRj,2

=

∣∣∣gu
i,DTj ,DRj,2

∣∣∣2Pu
i,Dj

au
i,DRj,2∣∣∣gu

i,DTj ,DRj,2

∣∣∣2Pu
i,Dj

au
i,DRj,1

+ Pu
i

∣∣∣gu
i,DRj,2

∣∣∣2 + σ2
(18)

The receiver DRj,1 in the D2D cluster can demodulate its own signal, so the SINR of
DRj,1 can be expressed as

ru
i,DRj,1

=

∣∣∣gu
i,DTj ,DRj,1

∣∣∣2Pu
i,Dj

au
i,DRj,1

Pu
i

∣∣∣gu
i,DRj,1

∣∣∣2 + σ2
(19)

According to Shannon’s theorem, the achievable rate for cellular user Ci using sub-
channel Si ∈ Su is

Ru
i = B log2(1 + ru

i ) (20)

where B denotes the bandwidth. Similarly, the achievable rates of receivers DRj,1 and DRj,2

in D2D cluster Dj can be expressed as, respectively,

Ru
i,DRj,1

= B log2

(
1 + ru

i,DRj,1

)
(21)

Ru
i,DRj,2

= B log2

(
1 + ru

i,DRj,2

)
(22)

According to Equations (21) and (22), the sum rate expression in D2D cluster Dj is

Ru
i,Dj

= B

log2

1 +

∣∣∣gu
i,DTj ,DRj,1

∣∣∣u
i,Dj

au
i,DRj,1

Pu
i

∣∣∣gu
i,DRj,1

∣∣∣2 + σ2

+

log2

1 +

∣∣∣gu
i,DTj ,DRj,2

∣∣∣2Pu
i,Dj

au
i,DRj,2∣∣∣gu

i,DTj ,DRj,2

∣∣∣2Pu
i,Dj

au
i,DRj,1

+ Pu
i

∣∣∣gu
i,DRj,2

∣∣∣2 + σ2




(23)

Thus, the whole system throughput can be expressed as

R =
U

∑
u=1

M

∑
i=1

N

∑
j=1

(
Ru

i + Ru
i,Dj

)
(24)

3. Problem Formation
To maximize the system throughput, this study optimizes the channel allocation and

trajectory design with power control under spatial constraints, power constraints, channel
constraints, and minimum rate constraints. H = {xu(t), yu(t), hu(t), u ∈ U} denotes the
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position of the UAV during the service time of 0 ≤ t ≤ T. The channel allocation factor is
denoted by I = {Iu

i,DTj
, u ∈ U , Ci ∈ Cu, Dj ∈ Du}. The problem is expressed as: (25a)

max
H,I,A

R (25a)

s.t.hmin ≤ hu(t) ≤ hmax (25b)

xmin ≤ xu(t) ≤ xmax (25c)

ymin ≤ yu(t) ≤ ymax (25d)

Pu
i ≥ 0, Pu

i,Dj
≥ 0 (25e)

Pu
i + ∑

Dj∈Du

Iu
i,DTj

Pu
i,Dj
≤ P (25f)

Iu
i,DTj
∈
{

0, 1
}

(25g)

∑
Ci∈Cu

∑
Dj∈Du

Iu
i,DTj
≤ ξu (25h)

∑
u∈U

∑
Ci∈Cu

Iu
i,DTj
≤ 1 (25i)

Su
i,Dj
≥ 0 (25j)

ru
i ≥ ru,thr

i (25k)

ru
i,DRj,n

≥ ru,thr
i,DRj,n

(25l)

au
i,DRj,n

≥ 0 (25m)

au
i,DRj,1

+ au
i,DRj,2

≤ 1 (25n)

where constraints (25b)–(25d) denote constraints on the 3D position of the UAV, i.e., the
UAV must be located in the service area before the airspace within the altitude range can
be realized in order to avoid collisions between UAVs. Constraints (25e) and (25f) are the
transmit power limitations, where constraint (25f) denotes the total power constraints, i.e.,
the total power of each channel under UAV u must not exceed P. Constraints (25g)–(25i)
denote the channel multiplexing constraints. Specifically, constraint (25g) is a binary
constraint, which denotes a binary variable indicating whether Dj ∈ Du occupies the
Ci ∈ Cu channel resource or not; constraint (25h) denotes the maximum number of D2D
clusters associated with UAV u’s constraint; and constraint (25i) denotes that a D2D cluster
is allocated at most one channel resource. Constraint (25j) denotes the SIC successful
demodulation constraint. Constraints (25k) and (25l) denote the minimum rate constraints,
i.e., cellular users and D2D cluster users should satisfy the minimum transmission rates
ru,thr

i and ru,thr
i,DRj,n

, respectively, in order to ensure QoS guarantees for both cellular users’
links and D2D clusters’ links. Constraints (25m) and (25n) denote the power allocation
factor constraints.

From the above optimization objective function, it can be seen that the optimization of
this objective function mainly consists of three parts, the channel multiplexing indicator
I, the position variable of the UAV H, and the power allocation coefficient A. Here, the
optimization problem is a mixed-integer programming problem and the objective function
is non-convex, so it is difficult to solve I, H, and A at the same time. So in this paper, this
study adopts the joint dynamic hypergraph Multi-Agent Deep Q Network (DH-MDQN) to
solve it. The problem is decoupled into two subproblems, solving the channel assignment
problem by dynamic hypergraph coloring method and then using the MDQN algorithm to
solve the trajectory design and power control problem.
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4. Problem Solution
4.1. Subchannel Assignment Based on Dynamic Hypergraph Coloring

Given UAV trajectory design and power control, problem (25a) transforms into

max
I

U

∑
u=1

M

∑
i=1

N

∑
j=1

(
Ru

i + Ru
i,Dj

)
(26a)

Pu
i + ∑

Dj∈Du

Iu
i,DTj

Pu
i,Dj
≤ P (26b)

Iu
i,DTj
∈
{

0, 1
}

(26c)

∑
Ci∈Cu

∑
Dj∈Du

Iu
i,DTj
≤ ξu (26d)

∑
u∈U

∑
Ci∈Cu

Iu
i,DTj
≤ 1 (26e)

It can be seen that the above problem still has integer constraints and problem (26a)
is still a non-convex problem. In this section, the problem is solved using a dynamic-
hypergraph-based coloring method.

In general, edges in a traditional graph can only connect two vertices, and when a
cellular user and a D2D user are used as vertices to construct an interference graph A
using a traditional graph, only strong interference between communication links can be
modeled. Since multiple D2D links are allowed to multiplex the channel resources of a
cellular user simultaneously, there may be cumulative interference that affects the link
quality, and the conventional graph cannot model such interference. In order to consider
both independent and cumulative interference in the system, the literature [28] introduces
the hypergraph model, which avoids interference by constructing a hypergraph structure
containing nodes and hyperedges (representing interference relationships between multiple
nodes), and it colors the nodes to ensure that neighboring nodes use different resources
(e.g., subchannels).

A hypergraph Hg(t) is characterized by a bipartite group
(
Vg(t), Eg(t)

)
, where Vg(t) ={

ν1(t), ν2(t), · · · , νn(t)
}

is a finite set of vertices and Eg(t) =
{

e1(t), e2(t), · · · , em(t)
}

is
the set of edges of the hypergraph Hg(t). Each edge ei(t) is determined by a finite element in
Vg(t) and satisfies ei(t) ̸= ∅(i = 1, 2, · · · , m), 2 ≤ |ei(t)| ≤ n. Where the edges of |ei(t)| = 2
are called ordinary edges, the edges of |ei(t)| > 2 are collectively called hyperedges, the
edges of |ei(t)| = Q are called Q–element edges, and the hypergraph Hg(t) is also called a
max|ei(t)|(i = 1, · · · , m)–element hypergraph.

The hypergraph theory is used to solve the subchannel assignment problem in two
steps. The first step is to construct a dynamic hypergraph, and the second step is to color
the dynamic hypergraph.

4.1.1. Construct the Dynamic Hypergraph

In dynamic hypergraphs, interference relations are categorized into simple and mul-
tilateral edges. Simple edges represent two vertices connected by a strong interference
source and are suitable for the case of independent interference, where users connected to
the simple edges are assigned different subchannels by the dynamic hypergraph coloring
process to ensure that the interfering pairs of communications can be clearly identified
and separated at any moment; in contrast, polygons represent the cumulative interference
among multiple users, where multiple vertices are connected to the same hyperedge to
characterize the interference superposition effect among them. The dynamic adjustment of
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the hyperedges allows the model to respond flexibly to changes in network topology and
interference conditions, thus optimizing resource allocation and communication quality.

(1) Dynamic simple edge construction.
When cellular user Ci and D2D cluster Dj use the same resources such that the received

signal-to-interference-noise ratio (SIR) obtained by the cellular link is below a certain
threshold, a certain interference relationship is considered to exist between them, and a
simplex edge will be established between Ci and Dj at this point. Specifically, under time
slot t, if the signal-to-interference ratios of Ci and Dj are below their respective thresholds
(λc and λd), i.e., when the cellular link satisfies Equation (27) or the D2D link satisfies
Equation (28), it is indicated that there is an interfering relationship between Ci and Dj

under the current time slot, which is not suitable for direct resource sharing.

Pu
i

∣∣gu
i

∣∣2
Pu

i,Dj

∣∣∣gu
i,DTj

∣∣∣2 < λc (27)

Pu
i,Dj

∣∣∣gu
i,DTj ,DRj,n

∣∣∣2
Pu

i

∣∣∣gu
i,DRj,n

∣∣∣2 < λd (28)

Similarly, if two D2D clusters Dj and D′j satisfy Equations (29) and (30), simple edges
will be formed between them. If there are simple edges between Dj and D′j, then these two
D2D clusters will not be able to share channel resources. In addition, since cellular users
can only use orthogonal channel resources, cellular links are constructed as simple edges
between them to ensure that different resources are allocated.

au
i,DRj,n

∣∣∣gu
i,DTj ,DRj,n

∣∣∣2∣∣∣∣gu
i,DT′j ,DRj,n

∣∣∣∣2
< λd (29)

au
i,DR′j,n

∣∣∣∣gu
i,DT′j ,DR′j,n

∣∣∣∣2∣∣∣∣gu
i,DTj ,DR′j,n

∣∣∣∣2
< λd (30)

(2) Dynamic multilateral construction.
A multilateral connects more than two vertices to represent the cumulative interference

to the user, considering weaker interference sources other than those that have strong
independent interference to the user. From these, a group of interference sources is selected,
and the ratio of the signal strength to the cumulative interference strength brought about
by their simultaneous multiplexing of the resource is compared with the interference
threshold. If it is lower than the threshold, the communication link is connected to this
group of interference links as a hyperedge. Under time slot t, for cellular user Ci, if
the ratio of received signal strength to cumulative interference is less than the threshold
λc, as in Equation (31), a multilateral between the cellular user and the D2D cluster is
established. Correspondingly, for D2D cluster Dj, if the ratio of received useful signal to
cumulative interference for any of the D2D links it contains is less than the threshold λd, as
in Equation (32), then all the polygons connecting this D2D cluster are created.

Pu
i

∣∣gu
i

∣∣2
∑S

j=1 Pu
i,Dj

∣∣∣gu
i,DTj

∣∣∣2 < λc (31)
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Pu
i,Dj

au
i,DRj,n

∣∣∣gu
i,DTj ,DRj,n

∣∣∣2
Pu

i

∣∣∣gu
i,DRj,n

∣∣∣2 + ∑S
j′ ̸=j,j′=1 Pu

i,Dj

∣∣∣∣gu
i,DT′j ,DRj,n

∣∣∣∣2
< λd (32)

where S denotes the total number of D2D clusters transmitted over the shared subchannel.

4.1.2. Dynamic Hypergraph Coloring

Hypergraph coloring is an NP-hard problem, and traditional heuristic algorithms
have high time complexity. In order to solve the hypergraph coloring problem, inspired
by refs. [29,30], this study firstly transforms hypergraphs into directed graphs to achieve
efficient dynamic coloring, as shown in Definition 1. Specifically, vertex-based “hyperde-
gree” (mdeg) and unique ID (id) properties are adopted, where mdeg(w) is defined as the
number of hyperedges connected to vertex w to measure the connection strength of vertices
in the hypergraph, and id(w) is the unique vertex ID in the hypergraph Hg(t).

Definition 1. For a dynamic hypergraph Hg(t) and two vertices νi(t) and νj(t), we define νi(t)◁
νj(t), i.e., satisfying (1) mdeg(νi) ≥ mdeg(νj); (2) mdeg(νi) = mdeg(νj), id(νi)<id(νj).

In previous studies, researchers used an algorithm based on greedy hypergraph col-
oring [28] for optimizing subchannel allocation to users in cellular networks. However,
this method requires recoloring all vertices each time the hypergraph structure changes,
resulting in high computational overhead and insufficient stability. To solve this prob-
lem, this study proposes a dynamic hypergraph coloring algorithm, which combines
Definitions 2 and 3 to improve the efficiency and robustness of subchannel allocation by
dynamically adjusting the coloring rules to effectively respond to dynamic changes in the
hypergraph structure.

Definition 2 (hypergraph-based oriented coloring graph (OGC) [30]). For a dynamic hyper-
graph Hg(t) =

(
Vg(t), Eg(t)

)
, its oriented coloring graph Ho(t) = (V∗(t), E∗(t)) is a directed

acyclic graph. In this graph, for any two vertices νi(t) and νj(t), a directed edge pointing from νi(t)
and νj(t), denoted

〈
νi(t), νj(t)

〉
, is drawn in if νi(t)◁ νj(t) is satisfied.

Definition 3 (OGC coloring [29]). For a directed acyclic graph Ho(t) = (V∗(t), E∗(t)), the
coloring function fo requires that for any directed edge

〈
νi(t), νj(t)

〉
, the associated two vertices

νi(t) and νj(t) must have different colors.

Examples of dynamic hypergraphs and correlation matrices as well as dynamic graph
coloring for different time slots are given in Figure 2. At time slot t, we have three cellular
users and three D2D clusters denoted as {C1, C2, C3} and {D1, D2, D3}. Simple edges
{e2, e3, e4} are used between the cellular users to ensure that they transmit on different
subchannels, and simple edge e5 connects cellular user C1 and D2D cluster D3. In addition,
cellular user C1 and D2D cluster D1 form a multilateral with D2. Due to the motion
of the UAV, four new D2D clusters and two new polygons are added at the time slot
t + 1, and their corresponding association matrices are shown in the right part of Figure 2.
Finally the results of the steps of dynamic hypergraph coloring are shown according to
Definitions 1–3, where first the hypergraph at the time slot is converted into a directed
graph according to Definition 1, e.g., the hyperedge e5 is a directed edge from C1 to D3

because of mdeg(C1) ≥ mdeg(D3), and so on. After the directed graph conversion is
completed, the graph is colored according to Definitions 2 and 3.
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Figure 2. Schematic of subchannel assignment using dynamic hypergraph coloring.

Based on the above analysis, the subchannel assignment algorithm based on dynamic
hypergraph coloring is shown in Algorithm 1.

Algorithm 1 Subchannel assignment based on dynamic hypergraph coloring.

1: Initialize the UAV, cellular users, and D2D clusters with position information, power
allocation factors, and set all vertex candidate color sets to color full sets

2: Step 1: Dynamic hypergraph construction
3: Construct simple edges em(t) between cellular users under time slot t
4: repeat
5: if SIR < λc or SIR < λd then
6: Under time slot t, if Equations (27) and (28) are satisfied, a simple edge em(t) is con-

structed between cellular user Ci and D2D cluster Dj
7: Under time slot t, if Equations (29) and (30) are satisfied, a simple edge em(t) is con-

structed between D2D clusters Dj and D′j
8: end if
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Algorithm 1 Cont.

9: until Output the simple edge em(t) between Ci, Dj and D′j
10: repeat
11: if SIR < λc or SIR < λd then
12: Under time slot t, if Equation (31) is satisfied, a multilateral em(t) is constructed between

cellular user Ci and D2D cluster Dj
13: Under time slot t, if Equation (32) is satisfied, the construction of a polygon em(t)

between D2D clusters Dj and D′j occurs
14: until Output the multilateral em(t) between Ci, Dj and D′j
15: Step 2: Dynamic Hypergraph Coloring
16: Convert the hypergraph to a directed graph under time slot t using Definition 1
17: repeat
18: for all cellular users and D2D clusters in a directed graph do
19: Coloring cellular users and D2D cluster users using Definition 2 and Definition 3
20: end for
21: until All cellular users and D2D cluster users are colored

4.2. MDQN-Based Trajectory Design and Power Control

After fixing the subchannel assignment, problem (25a) transforms into

max
H,I,A

R (33a)

s.t.hmin ≤ hu(t) ≤ hmax (33b)

xmin ≤ xu(t) ≤ xmax (33c)

ymin ≤ yu(t) ≤ ymax (33d)

Pu
i ≥ 0, Pu

i,Dj
≥ 0 (33e)

Pu
i + ∑

Dj∈Du

Iu
i,DTj

Pu
i,Dj
≤ P (33f)

Su
i,Dj
≥ 0 (33g)

ru
i ≥ ru,thr

i (33h)

ru
i,DRj,n

≥ ru,thr
i,DRj,n

(33i)

au
i,DRj,n

≥ 0 (33j)

au
i,DRj,1

+ au
i,DRj,2

≤ 1 (33k)

Similarly, it can be seen that problem (33a) is still a non-convex problem, and tradi-
tional optimization algorithms such as exhaustive search, the branch-and-pricing method,
and linear programming may be affected by dimensional catastrophe when dealing with
optimization problems, leading to problems such as high computational cost and huge
search space. Furthermore, intelligent algorithms such as genetic algorithms, particle
swarm algorithms, and annealing simulation algorithms, despite being suitable for solving
complex optimization problems, suffer from the problem of falling into local optima. There-
fore, in order to be able to obtain the optimal solution of the optimization problem, deep
reinforcement learning is used in this section to solve the problem. Compared with tradi-
tional reinforcement learning algorithms, the DQN is able to deal with high-dimensional
and continuous-state-space situations by using a deep neural network to approximate
the Q-value function. The DQN constructs an experience playback pool by continuously
interacting with the dynamic communication environment, which contains information
related to the states, actions, rewards, and the next state obtained by the intelligent body’s
interaction with the environment. Through the approximation ability of neural networks,
the DQN is able to learn more complex state–action mapping relationships and gradually
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improve the strategy to maximize long-term rewards during the training process. In order
to solve the non-linear non-convex optimization problem of trajectory design and power
control, a Multi-Agent Deep Q Network algorithm is designed in this section, which is
divided into two steps: (1) MDP model and (2) MDQN algorithm.

4.2.1. MDP Model

In the NOMA-based UAV-assisted D2D communication model, each UAV is consid-
ered as an intelligent body for maximum system performance. The three key elements of
the agent u are constructed in detail as follows: (1) State space: The state space should be
composed of the 3D spatial position of the UAV and the position information of the cellular
users and D2D cluster users. The 3D position hu(t) of the UAV is an important feature of
the current state because the position information of the cellular users and D2D cluster
users is difficult to obtain in real time, so according to Equations (5), (6), and (8)–(10), this
study adopts the known channel gain among the UAV, the cellular users, and the D2D
cluster users to characterize the state of the cellular users and the D2D cluster users. The
known channel gains between the three are used to characterize the states of cellular users
and D2D cluster users, and the input array su(t) of the final state space is expressed as

su(t) = {hu(t), gu
i (t), gu

DTj
(t), gu

i,DTj
(t), gu

i,DRj,n
(t), gu

i,DTj ,DRj,n
(t)} (34)

In order for multiple UAVs to share the same neural network, the data in the state
space need to be scalarized and normalized. Specifically, there are UAV 3D coordinates
hu(t) which are decomposed into three scalars that serve as independent inputs to the
neural network. When a drone is connected to the neural network, its position information
is input into the first neuron; when another UAV is accessed, the position information of
that drone must also be input into the same neuron, as shown in Figures 3 and 4. Compared
with the way that drones are trained separately and independently, the MDQN is able to
significantly improve the convergence speed compared with the DQN.

Figure 3. MDQN neural network connection.

(2) Action space: The action space in this section consists of two subsets, the direction
of motion of the UAV and the power allocation factor, which are discretized due to the
infinite action complexity of the continuous action space and in order to adapt the discrete
action output of the MDQN model.

In the direction of UAV movement, the UAV can perform horizontal back-and-forth,
vertical up-and-down, and stationary-in-flight operations; in terms of the power factor,
the transmission power is preset to a number of fixed slots; and at each movement execu-
tion, the UAV selects and maintains a power for its associated D2D cluster until the next
movement update.
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Figure 4. DQN neural network connection.

(3) Reward: As stated in Equation (25a), the objective function of this paper is to
maximize the system throughput, so the reward function is set as

ru(t) = R (35)

4.2.2. MDQN Algorithm

In this section, the MDQN-based trajectory design and power control allocation
algorithm is designed with the training and operation modes shown in Figure 5.The
MDQN algorithm uses two neural networks for Q-value estimation and updating: the
evaluation network and the target network. It accepts the current state as input and then
outputs the Q-value for each action. The parameters of the Q network are updated as
training progresses to approximate the true Q-value function. The target-value network
is also a deep neural network that is used to estimate the target Q-value, which is the
expected maximum cumulative reward. The parameters of the target-value network are
copied from the Q network by periodic replication and remain constant during training.
After the estimated value network obtains all the Q-values in that state, the target network
selects the maximum among the obtained Q-values, whose Q-value is the output of the
target network plus the rewards of the samples, and its updated expression is shown in
Equation (36).

Q(S, A)← Q(S, A) + α[R + β max Q(S′, A′)−Q(S, A)] (36)

In order to determine the optimal action for the current state, the UAV inputs the
current state information into the evaluation network through the neural network and
calculates the reward R by executing and completing the action A. The state information S′

is obtained at the next moment, and the system is updated to the next state. Meanwhile, this
paper adopts a hybrid selection strategy based on randomness and experience accumulation
to enhance the neural network’s ability to explore the action selection; specifically, the
neural network effectively reduces the sampling correlation of deep reinforcement learning
by storing and playing back randomly sampled data samples. In the early stage of training,
the UAV relies more on randomly selected actions and continuously enriches the experience
pool through interaction with the environment εtotal . In order to gradually improve the
quality of the strategy in the later stages of training, the actions are selected using a
parameter δ(t) that gradually converges to determinism, and the values of the probability
of exploration and the corresponding action selection expressions are shown in (37) and (38)
when the action is selected for the Nt−th time.

δ(t) = δfinal + (δstart − δfinal)e
−Nt/δdecay (37)
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A =

random action, δ(t)

argmaxA Q(S, A, we), 1− δ(t)
(38)

where δstart denotes the initial value of the exploration probability, δfinal denotes the mini-
mum value of the exploration probability, and δdecay denotes the decay rate of the explo-
ration probability.

The neural network parameters are optimized using the mean square error (MSE) as a
loss function. The update formula for the target network and the loss function definition
are shown in Equations (39) and (40):

qtarget = R + β max
A′

Q
(
S′, A′, ωt

)
(39)

MSE =
1
n

n

∑
i=1

(
qtarget −Q(S, A, ωe)

)2 (40)

Figure 5. Diagram of MDQN-based trajectory design and power control algorithm.

Based on the above analysis, the MDQN-based trajectory design and power control
algorithm is shown in Algorithm 2.

Algorithm 2 MDQN-based trajectory design and power control algorithm.

1: Step 1: Model Training
2: Initialize the evaluation network parameter ωe and the target network parameter ωt

and make ωt = ωe
3: Initialize the experience replay pool e
4: for each episode do
5: Initialize UAV, cellular users, and D2D cluster locations
6: for each step t do
7: Update the action strategy parameters δ(t) according to Equation (37)
8: for each UAV do
9: Generate the state space S according to Equation (34)

10: Determine the action A according to Equations (37) and (38)
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Algorithm 2 Cont.

11: Perform action A, observe reward R and next state S′

12: Store experience e = (S, A, R, S
′
) to experience pool Etotal according to Equations (34)

and (35)
13: Random sampling from the experience pool Etotal
14: Calculation of target qtarget according to Equation (39)
15: Perform the optimization step according to Equation (40)
16: if update ωe do
17: ωt ← ωe
18: end if
19: S← S′

20: end for
21: end for
22: end for
23: Step 2: Model Run
24: Load the trained network parameters ωe
25: for each episode do
26: for each UAV do
27: Generate the state space S according to Equation (34)
28: Determine action A from equation A = maxA Q(S, A, ωe)
29: Executing action A, the UAV and the user move and interact with the environment,

observing state S′ according to Equation (34)
30: S← S′

31: end for
32: end for

4.3. Joint Algorithm Design

Based on the above analysis and solution, the optimization algorithm for joint channel
assignment, trajectory design, and power control is designed in this section to solve the
problem (25a) in an iterative manner. The NOMA-based rate optimization algorithm for
multi-UAV-assisted D2D communication networks can be summarized as Algorithm 3.

Algorithm 3 Joint dynamic hypergraph Multi-Agent Deep Q Network algorithm.

1: Initialize the maximum tolerance error ξ, the maximum number of iterations J, the
subchannel assignment vector Iu

i,DTj
(0), the UAV position vector

(
x(0)u , y(0)u , h(0)u

)
, and

the power allocation factor au
i,DRj,n

(0)

2: Initialize the number of iterations j = 0
3: Calculate the objective value R(0) of problem (25a) through{

Iu
i,DTj

(0), xu
(0), yu

(0), hu
(0), au

i,DRj,n
(0)

}
4: while

∣∣∣R(j) − R(j−1)
∣∣∣ > ξ and j < J do

5: j = j + 1
6: Algorithm 1 is used to solve problem (26a) through

{
x(j−1)

u , y(j−1)
u , h(j−1)

u , au
i,DRj,n

(j−1)
}

,

obtaining the optimal solution
{

Iu
i,DTj

(j)
}

7: Algorithm 2 is used to solve problem (33a) through
{

Iu
i,DTj

(j−1)
}

to obtain the optimal

solution
{

x(j)
u , y(j)

u , h(j)
u , au

i,DRj,n
(j)
}

8: Calculate the objective value R(j) of problem (25a) through{
Iu
i,DTj

(j), xu
(j), yu

(j), hu
(j), au

i,DRj,n
(j)
}

9: end while
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5. Simulation Experiment and Result Analysis
In order to verify the effectiveness of the Multi-Agent Deep Q Network algorithm

for joint dynamic hypergraphs proposed in this paper, a series of simulation experiments
are conducted. First, the main simulation parameter settings used in the experiments
of this paper are listed in detail. Second, the advantages of the proposed DH-MDQN
algorithm in improving the system throughput are verified by comparing it with other
benchmark algorithms.

5.1. Simulation Experiment Parameter Setting

Cellular users and D2D cluster users are randomly distributed within the service
area, the UAV is initially deployed in the vicinity of the cellular users, and the initial flight
altitude is set to 100 m. The neural network architecture contains 3 hidden layers, and each
hidden layer contains 256 neurons; the activation function is selected as ReLU; and the loss
function is MSE. The training process is optimized by using the Adam optimizer, and the
value of δ in the greedy strategy decreases linearly from 0.9 to 0. The simulation parameters
are shown in Table 1.

Table 1. Simulation parameter setting.

Simulation Parameters Value

Plane area boundaries xmin = ymin = 0 m, xmax = ymax = 500 m
UAV altitude range hmin = 20m, hmax = 150 m
Number of UAVs U = 3
Maximum UAV flight speed V = 5 m/s
UAV maximum transmit power P = 29 dBm
Maximum cellular user transmit power Pu

i max = 23 dBm
Number of cellular users M = 15
D2D cluster maximum transmit power Pu

i,Dj max = 20 dBm

Maximum spacing of D2D clusters du
i,DTj ,DRj,n max = 50 m

Number of D2D clusters N = 30
Maximum number of D2D clusters
associated with a UAV ξu = 10

Carrier frequency fc = 2 GHz
Bandwidth B = 15 kHz
AWGN power σ = −100 dBm/Hz
Path loss coefficient ξ = 2
Threshold λc = λd = 18 dBm
Learning rate 0.001
Discount factor 1
Experience replay pool 10,000 samples
Batch size 128 samples
Optimizer Adam
Greed coefficient 0–0.9

5.2. Analysis of Simulation Results

In order to comprehensively evaluate the performance of the DH-MDQN algorithm
proposed in this paper, the following four different benchmark algorithms are selected for
comparison experiments:

(1) Joint dynamic hypergraph Deep Q Network algorithm (DH-DQN): this algorithm
uses a dynamic hypergraph to solve the subchannel assignment problem and a DQN
algorithm to solve the trajectory planning and power control problem.
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(2) Joint graph–theoretic Multi-Agent Deep Q Network algorithm (G-MDQN): this
algorithm employs graph theory to solve the subchannel assignment problem and the
MDQN algorithm to solve the trajectory planning and power control problem.

(3) Multi-Agent Deep Q Network algorithm (MDQN): this algorithm optimizes trajec-
tory planning and power control using only the MDQN, while the subchannel allocation is
based on a random assignment strategy.

(4) Dynamic hypergraph algorithm (DH): the algorithm is based on the dynamic
hypergraph to realize the optimization of subchannel allocation, and under the constraint
of guaranteeing the basic performance of users, the power control is completed by using a
fixed trajectory with random generation.

Next in this study, the proposed DH-MDQN algorithm is simulated and validated in
several dimensions.

(1) Validation of the effectiveness of the DH-MDQN algorithm.
In order to verify the effectiveness of the proposed algorithm, Figure 6 shows the

effect of different learning rates on the DH-MDQN and DH-DQN algorithms. It is ensured
that the algorithms achieve fast convergence and maintain high stability in the proposed
NOMA-based multi-UAV-assisted D2D communication network environment.

Figure 6. Convergence of DH-MDQN and DH-DQN algorithms with different learning rates.

From the figure, it can be seen that different learning rates affect the learning perfor-
mance and convergence efficiency of the two algorithms. The cumulative reward values
of the algorithms at different learning rates grow slowly at the beginning of training due
to the random initialization of the neural network parameters, a phenomenon that can be
attributed to the high percentage of random actions and the fact that the replay memory
buffer is not completely filled, which results in a model that has not yet entered into the
effective training phase. Both DH-MDQN and DH-DQN show the best learning perfor-
mance when the learning rate is 0.001. The DH-MDQN algorithm converges faster and
stabilizes at about 360 episodes, while the DH-DQN algorithm converges with a relative
lag and does not stabilize until close to 430 episodes. The main reason for this difference is
that the improved mechanism of the DH-MDQN algorithm enables multiple UAVs to share
the same neural network, which can adjust the network parameters faster and reach the
optimal strategy in a shorter time. In contrast, when the learning rate is 0.1, the algorithm
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exhibits significant oscillations and instability, resulting in the reward value always remain-
ing at a low level. This is because too high a learning rate will lead to too large a parameter
adjustment step, and the neural network will be prone to deviate from the optimal solution
or even fail to converge during the optimization process. In contrast, when the learning
rate is 0.01, although the convergence stability of the model is improved, the too-large step
size still leads to slower convergence, and the model performance fails to reach the optimal
performance. Taken together, a learning rate of 0.001 can ensure the convergence speed of
the model as well as stabilize the parameter adjustment process to maximize the reward
value. Among them, the DH-MDQN algorithm outperforms DH-DQN, mainly due to its
efficient utilization of empirical samples and stronger exploration ability, which enables it
to achieve a higher cumulative reward value in a shorter training cycle.

(2) Comparative performance analysis of DH-MDQN algorithm.
Figure 7 shows the variation of system throughput of different algorithms (DH-MDQN,

DH-DQN, G-MDQN, MDQN, and DH) as the number of training sets increases.

Figure 7. Comparison of system throughput with different algorithms.

From the results, it can be seen that the DH-MDQN algorithm performs the best, the
throughput increases rapidly with the increase in the number of training sets and stabilizes
after about 360 training sessions, and the final system throughput is about 42,000 Kb.
Compared with the DH-DQN algorithm, the DH-MDQN algorithm significantly improves
the system throughput. Under training stabilization, the DH-MDQN algorithm improves
the system throughput by about 14% compared to the DH-DQN algorithm. In contrast,
the system throughput of G-MDQN is lower than that of DH-MDQN, mainly due to
the fact that the dynamic hypergraph is able to comprehensively model the cumulative
disturbances of the users, which allows for a more fine-grained and flexible resource
allocation. In addition, its dynamism permits real-time updating of the network structure
to adapt to environmental changes and improve the efficiency and fairness of subchannel
allocation. In contrast, traditional graph theory can only establish point-to-point binary
relationships, which makes it difficult to capture the complex resource competition and
collaboration among multiple users, and thus slightly lacks in allocation flexibility and
efficiency. MDQN performs even lower, and its throughput, although improved at the
beginning of the training period, has a low final convergence value. This is due to the fact
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that MDQN only considers power allocation and trajectory planning and does not cover
the critical factor of subchannel allocation. Neglecting subchannel allocation leads to less
efficient utilization of spectrum resources, which significantly limits the improvement of
system throughput. The DH algorithm performs the worst, with its throughput barely
improving throughout the training process. This is because DH only focuses on subchannel
allocation without involving power control and trajectory planning optimization. Although
the subchannel allocation can improve the spectrum utilization efficiency, in the absence
of power control and trajectory planning, the overall resource scheduling capability of
the system is severely limited and cannot adapt to the demands of the complex dynamic
environment, which leads to the throughput always remaining at a low level.

Figure 8 shows the trend of system throughput with the number of D2D clusters under
different algorithms.

Figure 8. Comparison of system throughput with different numbers of D2D clusters.

It can be seen that the system throughput of all algorithms shows a growing trend
as the number of D2D clusters gradually increases from 10 to 30, but the growth rate and
the final performance vary depending on the algorithms. Among them, the DH-MDQN
algorithm shows the highest system throughput at all D2D cluster sizes; in particular, when
the number of D2D clusters is 20, the throughput increase is the most significant. When
the number of D2D clusters is small, the allocation and optimization of system resources
is relatively simple, and the throughput grows faster at the initial stage; however, as the
number of D2D clusters increases further, the interference in the system also increases,
resulting in a flattening out of the throughput increase. For different numbers of D2D
clusters, the system throughput of the DH-MDQN algorithm is about 13% higher than that
of the DH-DQN algorithm on average; in particular, when the number of D2D clusters
is 30, the DH-MDQN algorithm produces a system throughput of about 48,400 Kb. This
further verifies the significant advantage of the DH-MDQN algorithm in enhancing the
system throughput at different numbers of D2D clusters.

Figure 9 demonstrates the comparison of system throughput at different D2D cluster
communication distances.

As the communication distance increases, all system throughput shows a certain
trend. It can be observed that when the communication distance of the D2D cluster is
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small, the system throughput is higher, which is because the shorter communication
distance can reduce the signal attenuation and interference, which makes the resource
allocation more efficient and the transmission rate better guaranteed. As the communication
distance increases, the signal attenuation and interference gradually increase, resulting
in a decrease in system throughput. In addition, the performance of different algorithms
at different communication distances varies. For different D2D cluster communication
ranges, the system throughput of the DH-MDQN algorithm is about 15% higher than
that of the DH-DQN algorithm on average; in particular, when the D2D cluster spacing is
10 m, the DH-MDQN algorithm produces a system throughput of about 42,900 Kb, which
suggests that the DH-MDQN is able to better balance the resource optimization and the
interference management, especially in medium-distance scenarios, and the advantages
are fully reflected. While other algorithms, such as G-MDQN and MDQN, can achieve
better performance at small distances, the decreases in throughput and rate are more
obvious at larger distances, which indicates that they are less capable of handling large-
scale interference.

Figure 9. Comparison of system throughput at different D2D cluster communication distances.

(3) Comparative analysis of multiple access under DH-MDQN algorithm.
In order to illustrate the impact of NOMA as well as power allocation on system

throughput, Figure 10 shows the comparison of the system throughput under both al-
gorithms, NOMA, OMA, and NOMA without decoding order constraints, for both DH-
MDQN and DH-DQN.

It can be seen that the throughput of each algorithm gradually improves as the number
of training times increases, indicating that the model gradually converges in continuous
training. The simulation results illustrate that removing decoding order has a significant
effect on the system throughput in the case of NOMA. Compared to the case without
decoding order constraints, the system throughput improves by 34% on average. This
shows that decoding order plays a key role in NOMA. The absence of decoding order
constraints may lead to less efficient inter-user interference handling, which further affects
the performance of the decoding process and thus reduces the system throughput. In
addition, the throughput of NOMA is consistently higher than that of OMA. This is due to
the fact that NOMA supports more users to transmit simultaneously through spectrum
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multiplexing, which significantly improves the spectrum utilization, and thus the system
throughput is much higher than that of OMA. In contrast, OMA is limited by the adoption of
an orthogonal resource allocation strategy, where the resources are allocated independently
among different users, which restricts the resource utilization efficiency of the system and
results in a limited growth of its throughput.

Figure 10. System throughput comparison between NOMA and OMA with different number of sets.

(4) Comparative analysis of D2D under DH-MDQN algorithm.
Figure 11 shows the impact of considering different D2D clusters on the system

throughput under both the DH-MDQN and DH-DQN algorithms. Three specific cases are
compared: (1) where D2D clusters are present and power allocation is performed, (2) where
D2D clusters are present but no power allocation is performed, and (3) where there are no
D2D clusters.

The simulation results show that under both algorithms, the system throughput is
significantly higher when D2D clusters are present and power allocation is performed than
the other two cases. Comparing the two cases without power allocation and without D2D
clusters, the system throughput is improved by an average of 54% and 67%, respectively.
This is due to the fact that D2D communication can significantly reduce the transmission
delay and signal interference and improve the spectral efficiency through direct transmis-
sion between users in close proximity. In the case where D2D clusters exist but there is
no power allocation, although D2D communication can still improve the throughput to a
certain extent, the lack of power optimization may lead to an increase in interference, thus
affecting the overall throughput improvement. The system throughput is generally higher
in the presence of D2D clusters compared to the case without D2D clusters, which further
validates the positive effect of D2D communication on system performance. In the absence
of D2D clusters, the system relies on the traditional transmission mode between the base
station and the user, which results in less efficient utilization of spectrum resources and
limited throughput.
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Figure 11. Comparison of system throughput with and without D2D clusters for different numbers
of sets.

(5) Comparative analysis of trajectory settings under DH-MDQN algorithm.
Figure 12 shows the flight trajectory of a single UAV in a scenario with six cellular

users and six pairs of D2D cluster users. The overall trend of the trajectory shows that
the UAV gradually approaches each part of the cellular users and D2D cluster users in
the initial stage and effectively avoids interference with all types of users by adjusting its
flight path in real time. Initially, as the UAV moves, it continuously adjusts its relative
position to the cellular users and D2D clusters to ensure that good communication quality
is maintained while avoiding interference. Eventually, the flight trajectory of the UAV
converges to the optimal configuration point of the system throughput, which is capable of
efficiently scheduling communication resources among multiple users, reducing resource
conflicts, and ensuring the efficiency and stability of the communication link. Simulation
results show that the DH-MDQN algorithm proposed in this paper is able to realize efficient
trajectory planning in complex multi-UAV and multi-D2D environments, which verifies the
effectiveness and practicality of the proposed algorithm in improving system throughput.

Figure 13 shows the flight trajectories of multiple UAVs in 3D space and the locations
of ground D2D clusters, from which it can be seen that each UAV always maintains a safe
and collision-free distance from each other during flight. Thanks to the joint dynamic
hypergraph modeling and multi-intelligent body reinforcement learning decision-making
mechanism of the proposed DH-MDQN algorithm, each UAV can not only intelligently
provide efficient communication services for the ground users and D2D clusters but also
flexibly adjust the flight paths in the three-dimensional environment, which not only
improves the throughput of the system but also avoids path conflicts, realizing the collab-
orative optimization and efficient coverage in the dynamic and complex communication
scenarios, which verifies that the proposed algorithm in this paper can be used in future
wireless networks. The feasibility and superiority of the algorithm proposed in this paper
for the cooperative optimization of multi-UAV and D2D communication in future wireless
networks is demonstrated.
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Figure 12. Single-drone 3D flight trajectory map.

Figure 13. Multi-drone 3D flight trajectory map.

To further illustrate the effect of trajectories on system throughput, Figure 14 shows
the throughput versus the number of training sets under different trajectory designs.

It can be seen that the system throughput under 3D trajectory optimization is bet-
ter than that of 2D trajectory optimization, randomly deployed trajectories, and circular
trajectories. This result indicates that 3D trajectory optimization is able to adapt more
flexibly to the complexities in the environment, thus improving the spectrum utilization
and throughput of the system. Compared with other trajectory design approaches, 2D tra-
jectory optimization improves throughput to some extent, but it fails to take full advantage
of the flexibility of the spatial dimension due to its restriction to the plane, resulting in a
relatively small increase in throughput, and the average increase in system throughput for
3D trajectories over 2D trajectories is 27%. Random deployment trajectories and circular
trajectories do not need to consider trajectory optimization, so convergence can be reached
very quickly, and the throughput performance of both of them is smoother and lower,
mainly due to the fact that these two trajectory designs fail to be effectively optimized
for the distribution of users, which further proves the validity of the three-dimensional
trajectories of the researched UAVs.
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Figure 14. Comparison of system throughput with different trajectory designs.

Figure 15 shows the system throughput for different numbers of drones. In general,
more drones can provide more services to users and a higher system and rate can be
obtained. In the single-UAV case, convergence is easily reached. Furthermore, in terms of
the increase in system throughput, there is an average increase of 43% in system throughput
when increasing from two drones to three drones, while there is an average increase of 18%
when increasing from three drones to four drones. This result indicates that from three
drones onward, the increase in system throughput gradually decreases as the number of
drones increases. This is because when the number of UAVs exceeds a certain threshold,
resource and interference constraints in the system gradually become apparent, leading to
a gradual decrease in the gains from more UAVs. The simulation results show that three
UAVs can improve the system throughput while avoiding the marginal effect caused by
too many UAVs.

Figure 15. Comparison of system throughput with different numbers of UAVs.
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6. Conclusions
In this paper, we discuss a multi-UAV-assisted D2D communication model incorpo-

rating NOMA to address the channel allocation, trajectory planning, and power control
problems, respectively, and design a DH-MDQN algorithm, in which the channel allocation
problem is solved by a dynamic hypergraph and the MDQN algorithm is utilized to solve
the trajectory planning and power control problems. Our simulation evaluates the perfor-
mance of the proposed algorithm through numerical results in terms of the number of D2D
clusters, D2D cluster communication spacing, UAV size, trajectory planning, and NOMA
decoding order in multiple dimensions. These results also demonstrate the superiority
of the UAV-assisted D2D-NOMA framework, and the proposed DH-MDQN algorithm is
able to achieve higher system throughput compared to other benchmark algorithms. In
future work, the research will be further extended to the sky–ground integrated network
system to explore more heterogeneous and dynamic environments in depth in order to
meet the practical needs of next-generation wireless networks in terms of high efficiency,
high reliability, and strong adaptability.
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