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Abstract: In disaster-stricken areas, rapid restoration of communication infrastructure is
critical to ensuring effective emergency response and recovery. Swarm UAVs, operating as
mobile aerial base stations (MABS), offer a transformative solution for bridging connec-
tivity gaps in environments where the traditional infrastructure has been compromised.
This paper presents a novel hybrid path planning approach combining affinity propaga-
tion clustering (APC) with genetic algorithms (GA), aimed at maximizing coverage, and
ensuring quality of service (QoS) compliance across diverse environmental conditions.
Comprehensive simulations conducted in suburban, urban, dense urban, and high-rise
urban environments demonstrated the efficacy of the APC-GA approach. The proposed
method achieved up to 100% coverage in suburban settings with only eight unmanned
aerial vehicle (UAV) swarms, and maintained superior performance in dense and high-rise
urban environments, achieving 97% and 93% coverage, respectively, with 10 UAV swarms.
The QoS compliance reached 98%, outperforming benchmarks such as GA (94%), PSO
(90%), and ACO (88%). The solution exhibited significant stability, maintaining consistently
high performance, highlighting its robustness under dynamic disaster scenarios. Mobility
model analysis further underscores the adaptability of the proposed approach. The refer-
ence point group mobility (RPGM) model consistently achieved higher coverage rates (95%)
than the random waypoint model (RWPM) (90%), thereby demonstrating the importance
of group-based mobility patterns in enhancing UAV deployment efficiency. The findings
reveal that the APC-GA adaptive clustering and path planning mechanisms effectively
navigate propagation challenges, interference, and non-line-of-sight (NLOS) conditions,
ensuring reliable connectivity in the most demanding environments. This research estab-
lishes the APC-GA hybrid as a scalable and QoS-compliant solution for UAV deployment
in disaster response scenarios. By dynamically adapting to environmental complexities
and user mobility patterns, it advances state-of-the-art emergency communication systems,
offering a robust framework for real-world applications in disaster resilience and recovery.

Keywords: UAV swarms; path optimization; disaster response; hybrid algorithms; Affinity
Propagation Clustering; Genetic Algorithm
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1. Introduction
Using unmanned aerial vehicles (UAV) swarms as mobile aerial base stations (MABSs)

has become a transformative solution for providing emergency communications in disaster
scenarios. Unlike conventional ground-based systems, UAVs offer unparalleled flexibility
and adaptability, particularly when terrestrial infrastructure is damaged or unavailable.
UAV swarms can deliver enhanced coverage and reliable connectivity by utilizing line-
of-sight (LOS) communication and dynamic aerial positioning [1]. Historical examples,
such as the deployment of cell-on-wings (COW) drones during Hurricane Maria in Puerto
Rico, highlight the critical role of UAVs in restoring cellular services and supporting
disaster recovery operations. These systems ensure real-time data transmission and reduce
dependency on costly and vulnerable terrestrial networks. However, optimizing the
deployment and path planning of UAV swarms to maintain efficient and uninterrupted
coverage remains a significant challenge [2].

Achieving reliable broadband connectivity is essential for emergency management and
public safety in disaster response networks (DRNs). Infrastructure disruptions often lead to
network congestion, particularly in areas where displaced populations are concentrated in
protected zones. Traditional base stations are either rendered inoperative or overwhelmed
by increased traffic. UAV swarms can mitigate these issues by dynamically adapting their
positions to extend coverage across the affected regions. Although existing approaches
demonstrate the potential benefits of MABS deployment (see Section 2), more robust and
efficient algorithms are needed to address the unique challenges posed by dynamic user
mobility, varying population densities, and energy constraints in such environments.

1.1. Problem Identification and Novelty

This study addresses the problem of optimizing UAV swarm paths for disaster re-
sponse scenarios where existing infrastructure is partially or fully compromised. The
goal is to ensure comprehensive communication coverage and adapting to dynamic user
mobility. In disaster-affected regions, UAV swarms must balance factors such as QoS
requirements, user demand variability, and geographical constraints. For example, low-
altitude UAVs may be suitable for serving sparsely populated areas, whereas high-density
regions with greater communication demands require coordinated and energy-efficient
swarm operations.

Existing optimization techniques, such as genetic algorithms (GA) and particle swarm
optimization (PSO), have been explored for path planning. However, these methods often
fail to account for the critical real-time user dynamics in disaster scenarios. To overcome
these limitations, this paper introduces a novel affinity propagation clustering (APC)-GA
hybrid algorithm, which combines dynamic clustering with UAV-specific adaptations the of
genetic operations. The proposed approach ensures real-time path optimization, effectively
addressing the following key challenges:

• Seamless user allocation: In disaster zones, users frequently move between service
areas, creating challenges for maintaining uninterrupted connectivity. Optimized UAV
paths are required to dynamically adapt to user transitions.

• Coverage maximization: Traditional UAV routing strategies often focus on clus-
ter centroids, potentially neglecting users located in peripheral areas. This study
emphasizes a routing approach that ensures complete coverage while maintaining
energy efficiency.
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1.2. Novel Contributions and Approach

The research presented in this paper builds upon existing work by introducing a
comprehensive framework for UAV swarm path optimization. Key contributions include
the following (Figure 1):

• Contribution 1: A QoS-aware fitness function for UAV swarm optimization: A multi-
metric fitness function is proposed, integrating path length, and signal-to-interference-
plus-noise ratio (SINR-based) QoS compliance. This ensures that UAVs maintain
efficient and interference-free communication while minimizing resource consumption.

• Contribution 2: An APC-GA hybrid framework for UAV path planning: The paper
introduces a novel hybrid algorithm that utilizes APC for dynamic user grouping and
customized mutation operators for UAV-specific optimization. These enhancements
improve adaptability and efficiency in complex environments.

• Contribution 3: Real-time mobility integration: The proposed framework incorporates
user mobility into the clustering and optimization process, enabling UAV swarms
to dynamically adjust their paths and maintain consistent coverage as user distribu-
tions change.

Figure 1. Key Contributions of the Study.

1.3. Organization of This Paper

The remainder of this paper is structured as follows. Section 2 provides an overview
of UAV swarm applications in disaster response, emphasizing the challenges in dynamic
path planning. Section 3 describes the environment modeling, path loss modeling, problem
definition, and parameter settings. Section 4 details the APC-GA hybrid algorithm, includ-
ing the fitness function, clustering methodology, and genetic operations. Section 5 presents
a comparative evaluation of the proposed approach with the existing methods in urban
and suburban disaster scenarios. Finally, Section 6 discusses the findings and potential
future directions.

2. Related Works
Research on UAV swarm optimization in disaster scenarios can be broadly categorized

into two primary areas based on their alignment with the challenges addressed in this
study. The first category encompasses optimization techniques focused on deploying and
coordinating UAVs to enhance communication coverage. This includes methods such as
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PSO, ant colony optimization (ACO), and GA, which aim to optimize UAV positioning
and trajectories to maximize connectivity and minimize interference. The second category
includes clustering methods and mobility-aware algorithms that emphasize dynamic re-
source allocation and adaptive trajectory planning. Techniques such as APC and predictive
mobility models are particularly noteworthy because they enable UAV swarms to respond
proactively to changing user distributions and environmental conditions. These two do-
mains collectively address the critical challenges of scalability, real-time adaptability, and
energy efficiency in UAV-assisted disaster response.

2.1. UAV Swarm Optimization Techniques

The field of UAV swarm optimization has seen remarkable progress in recent
years [3–12], tackling the challenges of disaster management, remote sensing, and dy-
namic wireless communication using innovative approaches. Researchers have introduced
strategies that balance technical precision with practical impacts in high-stake scenarios by
focusing on scalability, energy efficiency, and real-time adaptability [3]. In [4], the authors
used PSO swarm intelligence algorithms that which have proven highly effective in disaster
response [4]. For instance, a distributed PSO-based exploration algorithm allows UAVs
to navigate disaster-hit areas autonomously and efficiently discover victim clusters. This
method stands out for its ability to balance energy consumption across UAVs while outper-
forming traditional trajectory-planning techniques in terms of flexibility and adaptability,
which is a crucial advantage in unpredictable environments.

Another breakthrough came with the use of the artificial bee colony (ABC) algorithm
by authors in [6,7] to deploy UAV base stations in disaster-stricken zones. This approach
optimizes UAV positioning to enhance network coverage and throughput while minimizing
deployment costs. In comparative studies, the ABC algorithm outperformed traditional
techniques such as GA and hybrid PSO-based methods, making it a top choice for large-
scale disaster networks where user connectivity and energy efficiency are vital. Exciting
advancements have emerged in deep reinforcement learning (DRL). The authors in [8],
proposed a wildfire reconnaissance system utilized a DRL framework integrated with
double deep Q-Networks (DDQN) to adjust UAV trajectories dynamically. By responding
to real-time risk maps, this approach significantly improves the speed and precision of
coverage in high-risk areas, showcasing the potential of DRL to redefine UAV swarm
operations in complex disaster scenarios [8,9].

Energy-efficient clustering techniques have played a pivotal role in this regard. The
authors in [10] have proposed a swarm intelligence-based localization and clustering (SILC)
algorithm, developed for emergency communication, optimized cluster head selection
and multi-hop connectivity. This approach effectively reduces routing overhead while
extending network lifetime, making it highly relevant for dynamic, resource-constrained en-
vironments. Researchers have explored frameworks combining integer linear programming
(ILP) with heuristic optimization for large-scale operations in [11]. The proposed approach
addresses UAV deployment in remote sensing tasks by optimizing UAVs’ number, location,
and trajectories of UAVs to balance operational costs and maximize user connectivity [11].
The framework excelled in disaster zones with challenging topographies, such as floods
and landslides, proving its versatility in diverse scenarios.

Path planning for complex environments has also seen innovations with the intro-
duction of an improved multi-objective swarm intelligence algorithm (IMSIA). Designed
for 3D navigation proposed by authors in [5], this method simultaneously tackled flight-
path length and terrain threats, thereby ensuring safer UAV operations in rugged disaster
zones [5]. Compared to traditional algorithms such as A* and Dijkstra [13], IMSIA achieved
superior efficiency and reliability, particularly in environments with high navigation com-
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plexity. Finally, the authors in [12] proposed the use of hybrid models, which are also
becoming increasingly prominent. For instance, combining adaptive genetic algorithms
(AGA) and ABC for mission assignment and path planning yielded significant improve-
ments [12]. By balancing energy consumption and maximizing mission success rates, this
approach demonstrated its effectiveness in disaster response scenarios involving diverse
UAV tasks, such as delivery, surveillance, and communication relays [12].

Despite these advancements, several challenges remain. Integrating real-time con-
straints such as predictive mobility, communication delays, and environmental variability
remains an ongoing area of research. Future work could explore hybrid models that blend
swarm intelligence and model-based optimization to address these gaps. Such efforts
would help balance scalability, latency, and energy efficiency, ensuring that UAV swarms
continue to serve as critical tools for disaster resilience and emergency response.

2.2. Clustering Methods in UAV Applications

Clustering techniques are fundamental for effectively managing UAV swarms, partic-
ularly in disaster response scenarios with a high demand for efficient communication and
resource allocation. These methods help group UAVs or users in a manner that optimizes
connectivity, reduces communication overhead, and conserves energy, thereby making
them critical for ensuring the scalability and adaptability of UAV networks [14–17].

Density-based approaches for dynamic scenarios–dynamic environments, such as
disaster-stricken areas, demand clustering techniques that adapt to rapidly changing con-
ditions. The authors in [14] proposed a swarm-intelligence-driven clustering algorithm
based on PSO to optimize cluster formation in UAV-assisted networks. The algorithm pri-
oritized energy efficiency by selecting cluster heads (CHs) that minimized communication
costs and balanced the workload among UAVs. This reduces delays and extends the net-
work’s operational life, thereby addressing a common challenge in such applications [14].
Traditional k-means and its evolution, a widely used clustering method, has often been
the starting point for UAV clustering research due to its simplicity and computational
efficiency. However, traditional k-means clustering struggles with dynamically varying
cluster sizes and mobility patterns. A trajectory-aware version of k-means was developed
by authors in [17] to address this by aligning cluster formation with UAV flight paths. By
dynamically reconfiguring clusters in response to disaster conditions, this method reduces
communication blackouts and improves coverage reliability, demonstrating its potential in
high-density scenarios [17].

Three-dimensional clustering for complex environments: In disaster scenarios charac-
terized by uneven terrain or urban landscapes, clustering techniques must operate in three
dimensions. A study integrating 3D clustering with trajectory optimization demonstrated
the potential of this approach by authors in [15]. The authors used the A-star algorithm,
UAVs were strategically deployed to maximize coverage while adhering to energy and
resource constraints. This method proved particularly useful in disaster zones, enabling
UAVs to navigate challenging terrains while effectively maintaining optimal connectivity.

Energy-aware clustering models: These remain a critical factor in UAV operations,
particularly during prolonged disaster relief missions. The distributed clustering for
user devices (DCUD) model addressed this by selecting CHs based on their residual
energy levels and proximity to users. This energy-aware approach ensures that UAVs
with limited power are not overburdened, thereby extending the overall network lifespan.
Such strategies are vital for maintaining consistent communication in resource-constrained
environments [16].

Multi-hop clustering and connectivity: In large-scale deployments, multi-hop cluster-
ing emerges as a viable solution for expanding coverage and reducing latency. A notable
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approach combined device-to-device (D2D) communication with clustering proposed
by [17] to create a resilient network architecture. This model allows UAVs to relay data
between clusters, ensuring seamless connectivity even in scenarios with limited direct
communication links. By reducing the dependency on centralized communication, the
method enhanced network scalability and reliability [17].

The roles of predictive analytics as UAV applications evolve and the integration of
predictive analytics into clustering frameworks has become increasingly important. By
leveraging historical and real-time data, predictive clustering techniques can anticipate
mobility patterns and dynamically adjust clusters. This capability is particularly valuable in
disaster scenarios in which user density and environmental conditions change rapidly. Such
methods have shown promise in maintaining service quality while reducing computational
demands proposed by authors in [14,15].

2.3. Metaheuristic Algorithms for Disaster Response

Metaheuristic algorithms have become indispensable for addressing the complexities
of disaster response scenarios, particularly when UAVs are employed. These algorithms,
known for their capacity to solve non-linear, multi-objective optimization problems, are
increasingly used to enhance UAV trajectory planning, resource distribution, and real-
time decision-making. Their versatility lies in balancing computational efficiency with
adaptability to dynamic environments, making them ideal for high-stake, time-sensitive
situations [18–20].

One widely studied algorithm is PSO, inspired by the social behavior of birds and
fish. In disaster response, PSO has been employed to optimize UAV path planning by
iteratively refining candidate solutions to achieve collision-free navigation. In [19], authors
have demonstrated its ability to reduce energy consumption while ensuring effective area
coverage. However, PSO often suffers from premature convergence due to its reliance
on random oscillations, especially in highly dynamic scenarios, prompting researchers to
explore hybrid models that enhance its resilience and precision [19].

The smart flower optimization algorithm (SFOA) offers a refreshing alternative, lever-
aging the natural growth behavior of flowers to solve optimization challenges. By efficiently
managing the exploration and exploitation trade-offs, the SFOA has shown remarkable
performance in routing UAVs during pre-disaster assessments and emergency responses.
Comparative studies indicate that SFOA outperforms traditional algorithms such as PSO in
minimizing transportation costs and achieving faster computational convergence, making
it particularly valuable for real-time operations [18]. Similarly, GAs continue to be the cor-
nerstone of UAV optimization research. Known for their iterative selection, crossover, and
mutation processes, GAs excel in multi-objective optimization tasks, such as balancing en-
ergy consumption, minimizing latency, and maximizing resource distribution. Despite their
robustness, their application in disaster scenarios often encounters scalability challenges
due to high computational demands, especially when rapid deployment is critical.

Recently, novel algorithms, such as grasshopper optimization (GHO) and the flower
pollination algorithm (FPA) proposed by [18,19], have gained attention for their applica-
tion in UAV path planning. These algorithms emphasize adaptability to obstacles and
dynamic conditions and show promising results in simulation studies. However, their
practical deployment in large-scale disaster scenarios remains limited, as they require
further refinement to reduce the computational overhead [18,19]. Finally, although signifi-
cant advancements have been made, the next frontier for metaheuristic algorithms lies in
improving their scalability and adaptability. Incorporating predictive analytics and real-
time data streams into these models enables UAVs to respond more effectively to rapidly
changing conditions proposed by [20]. Furthermore, hybrid frameworks that integrate
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machine learning and metaheuristics can revolutionize disaster response by making UAV
networks more intelligent, efficient, and resilient [20].

2.4. Recent Advances in UAV-Assisted Communication

In recent years, UAV-assisted communication has witnessed remarkable advance-
ments driven by the increasing need for reliable, adaptable, and energy-efficient networks,
particularly in disaster scenarios [21–24]. These developments have focused on leverag-
ing cutting-edge learning techniques, innovative energy solutions, and Internet of things
integration to overcome the inherent challenges of UAV operations.

The growing convergence of UAV systems with emerging technologies, such as 6G,
opens up exciting possibilities. UAVs are expected to be pivotal in enabling ultra-reliable
low-latency communication (URLLC) and massive machine-type communication (mMTC)
in such networks. A detailed survey of UAV channel modeling highlights key challenges,
including the impact of dynamic airframe shadowing, UAV mobility, and fluctuating net-
work conditions. Addressing these issues requires advanced channel-sounding techniques
to ensure robust connectivity, particularly in complex disaster environments [23].

At the same time, the authors in [24] have proposed a method for UAVs equipped with
energy-harvesting capabilities, which has shown great promise. By harnessing RF energy
from ambient signals, UAVs can operate for extended periods without frequent battery
replacement. This advancement enhances their utility in prolonged missions and reduces
operational costs and environmental impacts. Such systems are particularly well suited for
disaster recovery operations, where infrastructure may be damaged or non-existent [24].

IoT integration has revolutionized UAV communication systems, enabling real-time
monitoring and rapid emergency response. The authors in [22] have demonstrated how
IoT-connected UAVs can collect and process vast amounts of environmental data, such as
temperature, humidity, and structural stability, which are critical in post-disaster recovery.
These UAV systems act as mobile data hubs, bridging the communication gap in areas
where traditional networks are unavailable. Combining UAV mobility with IoT scalability
provides a robust framework for handling dynamic and unpredictable disaster scenar-
ios [22]. Energy efficiency remains a central challenge in UAV operations, with limited
battery life often constraining functionality. Recent innovations in wireless power transfer
(WPT) and energy harvesting (EH) technologies offer potential solutions by authors in [24].
The authors have utilized ambient RF energy where the UAVs can sustain their operations
over longer durations, reducing the need for physical battery replacement and maintenance.
This capability is particularly critical in disaster-stricken areas, where recharging infrastruc-
ture may be sparse. Furthermore, these advancements align with broader sustainability
goals by minimizing electronic waste and enhancing operational efficiency [24].

Although UAV-assisted networks have made significant progress, several hurdles
remain [22]. The authors have shown that energy constraints still limit the scale of UAV
deployment, particularly in large-scale disaster scenarios. Scalability also presents a chal-
lenge as UAV networks become increasingly dense and complex. Looking ahead, research
must focus on optimizing UAV cooperation and trajectory planning to enable seamless coor-
dination in multi-UAV environments. Additionally, integrating solar power and enhanced
energy-harvesting technologies can further extend the operational durations of UAVs and
improve their reliability [22]. In summary, advances in UAV-assisted communication have
paved the way for more resilient and adaptive disaster response systems. Through the
combination of next-generation connectivity, IoT integration, energy-harvesting innovations,
and intelligent algorithms, UAV networks have been poised to address future challenges.
These systems promise enhanced efficiency and scalability and offer a lifeline in critical
disaster scenarios.
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2.5. Research Gap and Contribution

Despite the significant advancements in UAV-assisted networks, several gaps persist
in the existing literature:

1. Integration of mobility prediction with clustering: Most studies fail to incorporate
predictive mobility models into clustering algorithms, which are essential for proactive
UAV positioning and resource allocation.

2. QoS-aware decision-making: Few approaches consider real-time QoS metrics, such as
latency, throughput, and reliability, during UAV deployment and trajectory planning.

3. Dynamic adaptability in disaster environments: Traditional optimization methods
often rely on static assumptions or offline training, limiting their ability to adapt to
rapidly changing disaster conditions.

This study proposes a hybrid APC-GA framework that combines dynamic cluster-
ing with real-time trajectory optimization to address these challenges. The framework
ensures scalable and reliable operation across diverse environments by integrating mobility
prediction models and QoS-aware decision-making. This approach dynamically adapts
to environmental changes, user mobility patterns, and varying communication demands,
thereby offering a robust UAV-assisted disaster response solution. A detailed comparison
of the related studies is provided in Table 1.

Currently, the available works on UAV path planning performance fall into five
broad categories based on user equipment (UE) mobility. The first category focuses on
static UE, where trajectories are optimized assuming fixed user locations, often neglecting
the impact of user mobility and dynamic environmental conditions (see [7,25–30]). The
second category considers quasi-stationary UEs, where users are mostly stationary with
occasional minimal movement, making mobility a minor factor in optimization (see [31]).
The third category involves random mobility, where user movements are unpredictable,
often modeled using stochastic processes, but without considering group or coordinated
movement patterns (see [32–34]). The fourth category addresses controlled mobility, where
user movements follow predefined or predictable patterns, such as coordinated evacuations
or group mobility scenarios (see [35,36]). Finally, the fifth category where this study
falls into is the dynamic UE, where user mobility is highly dynamic, requiring real-time
adaptation to rapid changes in user distributions and network conditions. However, while
works such as [29,37] have some commonalities with this study, such as base station
losses, they lack several critical aspects that are addressed here. Specifically, these studies
do not consider: (1) swarm UAVs, (2) different QoS requirements, (3) mobility models,
and (4) dynamic environments. This work integrates all these dimensions, providing a
comprehensive approach for optimizing UAV swarm trajectories in challenging disaster
scenarios. This study uniquely addresses the impact of progressive base station losses,
ranging from 10% to 90%, to evaluate the resilience and adaptability of UAV swarm
path planning. By simulating increasingly severe failures, the necessity of dynamic path
optimization is emphasized to restore coverage and maintain QoS compliance, even under
extreme infrastructure disruptions. To ensure a fair and consistent comparison, well-
established metaheuristic algorithms—GA, PSO, and ACO—were selected as benchmarks.
These algorithms were implemented under identical simulation settings, including user
mobility models, communication constraints, and base station loss scenarios. This approach
ensures that the comparison highlights the unique contributions and effectiveness of the
proposed hybrid APC-GA framework. On this basis, the study introduces a comprehensive
approach to dynamically adapt UAV swarm trajectories while addressing the challenges of
real-time mobility, communication constraints, and severe base station losses.
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Table 1. Comparison of UAV-BS Deployment Techniques.

Study UE Mobility
Modeled Types of Mobility Environment

Covered Mobility Prediction Trajectory
Optimization

Clustering
Technique QoS Awareness Energy Efficiency

[25] Static UE None Urban No PSO-based
optimization K-means No Moderate

[7] Static UE None Post-disaster No ABC Algorithm None No Low

[31] Quasi-stationary Directional Suburban, Rural Yes Proactive UAV
adjustments DBSCAN Limited Low

[32] Random mobility Random Walk Disaster zones No Behavioral Imitation
Learning None Yes Moderate

[35] Controlled mobility Directional Rural Yes Optimal transport
theory None Yes High

[36] Controlled mobility Directional Urban Yes 3D trajectory
optimization None Yes High

[33] Random mobility Random Walk Urban Yes
Machine

learning-based
optimization

None Yes Moderate

[26] Static UE None Urban No Heuristic placement None No Low

[34] Random mobility Random Walk Urban No Heuristic placement None No Low

[27] Static or
Quasi-stationary UE None Urban and Suburban No

A Whale
Optimization

Algorithm
None Yes None

[28] Static UE None Urban No Self-organizing
architecture None No Moderate

[29] Static UE None Urban No Air-ground
integrated network K-means No Moderate

[30] Static UE None
Urban, Suburban,

Dense Urban,
High-rise Urban

Yes
Genetic

Algorithm-based 3D
deployment

K-means High Moderate

Proposed Work Dynamic UE RWPM, RPGM
Urban, Suburban,

Dense Urban,
High-Rise Urban

Yes GA + APC Hybrid for
real-time paths APC High QoS metrics

High energy
optimization for
hover and travel
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3. Environment Modeling
This section outlines the foundational assumptions and design of a system model

tailored for UAV swarm deployment in disaster scenarios across diverse environments,
including urban, suburban, dense, and high-rise urban settings. The primary goal is to
re-establish connectivity for user equipment (UE) affected by natural disasters. Unlike
traditional single-mobile aerial base station (MABS) deployments, this model leverages a
coordinated UAV swarm to provide scalable and adaptive solutions that meet the specific
challenges of different terrains.

The system responds to situations where terrestrial BSs have failed, leaving UEs dis-
connected. Each UAV in the swarm functions as a mobile aerial base station, collaborating
to dynamically adjust positions, trajectories, and altitudes to restore coverage. Figure 2
illustrates the overall system architecture, showing how UAVs interact with different envi-
ronments to create reliable communication networks. By deploying a swarm rather than
relying on a single MABS solution, the system can cover a wider area, adapt to dynamic
user mobility, and ensure redundancy in challenging scenarios.

Figure 2. Considered environmental setup. Assumed BS circular with radius fails; swarm UAVs are
deployed into the same region to provide cellular coverage or for assessment.

One of the distinct features of the system is its adaptability to various environments.

• In urban areas, UAVs navigate through dense building structures, avoiding obstruc-
tions and optimizing communication links for effective service delivery.

• In suburban settings, UAVs utilize clustering techniques to distribute coverage effi-
ciently, addressing the broader spacing between UEs.

• For dense urban regions, the swarm handles high UE densities, managing interference
and ensuring consistent data rates even in congested zones.
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• In high-rise urban environments, the system dynamically adjusts UAV altitudes,
enabling vertical coverage for multi-story buildings and skyscrapers.

The affected region was simulated as a 25 km × 25 km area, designed to represent the
diversity of real-world disaster zones. This area size was chosen based on the typical scale
of medium-sized urban and semi-urban regions affected by natural disasters or large-scale
infrastructure failures. Similar approaches to modeling disaster zones have been utilized
in UAV network optimization studies, such as [29,37], demonstrating the generality and
relevance of this test size.

The Poisson distribution (λ = 100× 25) used for UE distribution reflects the uneven
population densities common in such scenarios, while failed base stations (λ = 10× 25)
simulate sporadic infrastructure damage. As observed in prior works [29], UAVs are
well-suited for reconnections in regions with dispersed or clustered populations, and this
setup ensures the test area is representative of real-world disaster scenarios. Red UEs
in Figure 2 highlight disconnected users who receive immediate attention from the UAV
swarm, whereas blue UEs remain unaffected by the disaster. Isolated UEs benefit from
temporary reconnections established through UAV mobility.

This system integrates advanced optimization techniques, including APC, graph
theory, and GA, to ensure efficient UAV deployment. These techniques help the swarm
dynamically adapt to the real-time distribution of users and environmental challenges,
prioritizing energy efficiency, reduced latency, and robust coverage. Overall, this UAV
swarm-based model addresses the critical connectivity gaps created by disasters, offering a
versatile solution that performs effectively in diverse environments. Its ability to dynami-
cally adapt to changing conditions and prioritize unconnected users highlights its potential
as a key enabler of resilient communication networks during emergencies. This is shown in
Table 2. The parameters and settings utilized in this simulation framework for UAV swarms
were derived and organised based on categories to ensure clarity and comprehensive cov-
erage of various factors influencing performance shown in Table 2. The environment
category incorporates parameters such as simulation area, UE distributions, base station
(BS) placements, mobility speeds, and environmental scenarios from studies addressing
diverse deployment landscapes [29,30]. Environment parameters are specifically calibrated
to represent path loss characteristics for different urban and suburban environments [30].
For mobility models, user mobility is characterized through established models such as
the random waypoint model (RWPM) and reference point group mobility (RPGM), incor-
porating speed, variation, and group dynamics [38]. The UAV swarm parameters reflect
scalability and optimization, focusing on swarm sizes, capacity, trajectory optimization
algorithms, communication ranges, and coordination protocols [29,30,37]. Finally, QoS
parameters define data rate requirements for diverse UE demands, and base station failures
simulate network resilience under failure scenarios [29,30]. These parameters collectively
provide a structured approach to modeling UAV swarm behaviors and evaluating system
performance under varied operational conditions.

There are three different data rate requirements that was adopted in this study based on
parameters detailed in prior work, particularly the study by [30], where these parameters
were tested and validated under diverse UAV deployment environments for all UEs:
c1 = 5 (Mbps), c2 = 2 Mbps, and c3 = 1 Mbps, where each UE has one of these three data
rate requirements determined to ensure reliable communication, particularly in challenging
disaster scenarios. This requirement is set by using the capacity equation (Equation (1)).
where Ci represents the data capacity allocated to UE i, BW denotes the total bandwidth
available for communication and SINRI denotes the SINR of UE i. This formulation
integrates user-specific quality of service (QoS) requirements (RQoS,i) to ensure that all
connected users meet or exceed their individual minimum data rate needs.
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Table 2. Global simulation parameters and settings for UAV swarms [29,30,37,38].

Category Parameter Notation/Value Description

Environment

Simulation Area A = 25 km× 25 km Total area for UE and BS placements.

UE Distribution (UED) λUE = {50, 100, 150, . . . , 450}

Number of UEs tested at different
densities, incremented by 50,
represented as a finite set of
Poisson-distributed users.

BS Distribution λBS = 10× 25 Poisson-distributed BSs.
UE Mobility Speed vUE ∈ [0, 20]m/s Range of UE mobility speeds.

Environments {E1, E2, E3, E4}
Urban (E1), Suburban (E2), Dense
Urban (E3), High-Rise Urban (E4).

Mobility Models

Mobility Model 1 RWPM Random Waypoint Mobility for
individual users.

Mobility Model 2 RPGM Reference Point Group Mobility for
groups of users.

UE Speed vUE ∈ [0, 20]m/s UE movement speed in both models.
Path Variation Pvar = 0.1 Pause probability for RWPM.

Group Deviation Gdev = 0.5 Maximum deviation in the RPGM.

Time Step ∆t = 1 s Discrete time step for
mobility updates.

UAV Swarm Parameters

UAV Swarm N ∈ {1, 2, 3, . . . , 10} Number of UAVs swarms.
UAV Capacity CUE/UAV = 200 Max UEs per UAV.

Trajectory Optimization {GA + APC, GA, PSO, ACO} Algorithms for swarm path planning.
Communication Range R = 3 km Max UAV communication range.
Coordination Protocol Distributed Swarm communication strategy.

Simulation Iterations 17,000 Total number of iterations for
simulation optimization algorithms.

QoS Parameters Data Rate {C1 = 5 Mbps, C2 = 2 Mbps,
C3 = 1 Mbps}

Different data rate requirements for
all UEs.

Base Station Failures

BS Failures B ∈ {10, 20, . . . , 90} Number of failed base stations
considered.

Failure Distribution Uniform Distribution pattern of failed base
stations.

Recovery Priority Highest UE density Priority given to areas with the
densest unconnected UEs.

The SINR was evaluated using Equation (2), which accounts for the interference and
noise in a realistic swarm-based communication environment. The received power (PRx,i)
at UE i is derived from the transmission power of its associated UAV (PTx), combined with
the antenna gains at both the transmitting and receiving ends (GTx, GRx), and is adjusted
for path loss (PLi). Interference from neighboring UAVs (PInt,j) and environmental noise (η,
typically set to −112 dBm) [39] further influence the SINR values.

For practical scenarios:

• Transmission power levels: The UAV transmission power (PTx) is configured at 30 dBm
to balance coverage and energy efficiency. In comparison, the BSs are assumed to
transmit at 46 dBm for a more extensive reach. The UE power is capped at 10 dBm to
conserve device energy without sacrificing communication quality.

• Interference management: By incorporating interference from other UAVs, the SINR
model reflects realistic swarm dynamics, where overlapping coverage areas may
degrade communication quality.

• MIMO configurations: Leveraging multiple-input, multiple-output (MIMO) technol-
ogy, the system can support simultaneous connections to multiple UEs, enhancing
data throughput and spectral efficiency. This is particularly critical in high-density,
highly mobile environments.

This refined framework emphasizes adaptability and robustness. The integration of
QoS constraints ensures that communication remains reliable and efficient, even under
variable conditions such as user mobility, dynamic swarm deployment, or environmental
interference. The capacity and SINR models align with the operational challenges of UAV-
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assisted networks, addressing both interference mitigation and the necessity for consistent
data delivery in disaster recovery scenarios.

The capacity equation incorporates user-specific QoS requirements (RQoS,i).

Ci = BW · log2(1 + SINRi), ∀i ∈ UEs, Ci ≥ RQoS,i (1)

The SINR equation includes interference from other UAVs and noise with a swarm-
specific interference model:

SINRi =
PRx,i

∑j ̸=i PInt,j + η
, PRx,i =

PTx · GTx · GRx

PLi
, ∀i ∈ UEs (2)

The Okamura–Hata propagation path loss (PL) model, widely recognized for its
reliability in modeling signal attenuation, was employed in this study to provide an
approximate representation of general disaster scenarios. This model was chosen for its
capability to effectively simulate urban and suburban environments while accounting for
critical factors such as frequency, height, and distance.

For this implementation, the carrier frequency was set to 700 MHz, aligned with LTE
Band 14 [40], which is frequently designated for public safety and disaster response appli-
cations. This frequency choice ensures robust signal penetration and minimal interference
in challenging environments.

The primary path-loss calculation is expressed in Equation (3), which integrates
distance-based logarithmic attenuation and environment-specific adjustments. The con-
stants A and B detailed in Equations (4) and (5), respectively, encapsulate the effects of fre-
quency, base station height, and UE height. These equations incorporate empirically derived
coefficients to accurately accurately reflect the signal behavior under varying conditions.

This approach offers a balanced trade-off between model simplicity and predictive
accuracy, making it well suited for UAV swarm deployment in disaster scenarios. By lever-
aging the Okamura–Hata model, this study ensures that the propagation characteristics are
realistic and applicable to diverse terrain types and urban densities.

3.1. Path Loss Modeling

Accurate path-loss modeling is essential for UAV swarm-assisted communication
systems because it directly affects the quality of signal reception and overall system per-
formance. The updated equations integrate the dynamic environmental parameters and
user mobility.

3.1.1. General Path Loss Model

The path loss (PL) between a UAV and a user is represented as

PL = A + B · log10(d) + ηEnv (3)

where:

- d: Distance between the UAV and UE, measured in meters.
- ηEnv: Environment-specific attenuation, which accounts for urban, suburban, dense

urban, and high-rise urban conditions.

3.1.2. Calculation of Parameter A

Parameter A encapsulates the effects of frequency, UAV altitude, and user device height:

A = 69.55 + 26.16 · log10( f )− 13.82 · log10(hb)− a(hm) (4)
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Here:

- f : Carrier frequency (MHz) (e.g., 700 MHz for LTE Band 14).
- hb: UAV altitude in meters.
- a(hm): A correction factor based on the height of the UE (hm).

The correction factor a(hm) is further refined for the disaster scenarios as follows:

a(hm) = (1.1 · log10( f )− 0.7) · hm − (1.56 · log10( f )− 0.8) (5)

3.1.3. Calculation of Parameter B

The parameter B accounts for variations in UAV altitude and is given by

B = 44.9− 6.55 · log10(hb) (6)

In the context of (4) for this disaster recovery scenario, the function a(hm) represents
the impact of UE height, hm, on the overall signal propagation and loss dynamics. The
parameter f denotes the carrier frequency in hertz, and log( f ) reflects the logarithmic
impact of frequency on the signal behavior. Constants 1.1, 0.7, 1.56, and 0.8 are coefficients
that are carefully calibrated to capture the nuanced effects of frequency scaling and height
in disaster-affected communication environments. These coefficients ensure that the model
aligns with the realistic propagation characteristics observed in the post-disaster scenarios.

Equation (5) serves as a key component for adapting the signal model to different
scenarios by integrating parameters, such as user height and operating frequency, to fine-
tune the path loss calculations. This approach provides a more accurate representation of
the challenges faced in delivering reliable communication services in environments with
diverse terrains, building heights, and user distributions.

Equation (8) further characterizes the environmental impact, which dynamically ad-
justs the model based on environmental conditions such as urban density, LOS availability,
and potential obstructions. In cases where the environmental variable is negligible or
controlled (e.g., uniform terrain), the equation is simplified by setting the environmen-
tal contribution to zero, ensuring computational efficiency without sacrificing the model
accuracy [41].

This dual-layer modeling of a(hm) and Env provides a comprehensive framework for
assessing signal behavior, enabling tailored responses to UAV swarms in disaster-stricken
regions. The flexibility of these equations makes them applicable to various deployment
environments, thereby ensuring robust communication under diverse conditions.

a(hm) =
(
(αenv · log10( f )− βenv) · hm

)
−

(
(γenv · log10( f )− δenv)

)
(7)

where:

- αenv, βenv, γenv, δenv: Environment-specific coefficients for urban, suburban, dense
urban, and high-rise urban environments.

- f : Carrier frequency ( MHz).
- hm: UE height (in meters).

Env =

ηLOS if LOS,

ηNLOS if NLOS.
(8)

where:

- ηLOS: Environment-specific attenuation for LOS conditions.
- ηNLOS: Environment-specific attenuation for non-line-of-sight (NLOS) conditions.
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Equation (7): Correction factor a(hm) is an environment-specific propagation characteristic.
This ensures a better accuracy across diverse terrains and varying frequencies. The coefficients
αenv, βenv, γenv, δenv allow for precise modeling of the path loss based on the terrain type.

Equation (8): The environmental factor (Env) accounts for LOS and NLOS conditions.
This dynamic adjustment ensures that the UAV swarm deployments remain robust across
all four environments, thereby compensating for the differences in signal propagation.

The UAV swarm units operating collectively are maintained at a uniform cruising
speed of 50 km/h to ensure consistent deployment and response efficiency [29]. This speed
was chosen as it represents a practical balance between rapid deployment that enables
UAVs to respond promptly to dynamic scenarios, such as disaster zones or network cover-
age gaps [29,37]. Speeds lower than 50 km/h (e.g., 10 km/h, 20 km/h) were deemed less
suitable for urgent deployments, while higher speeds could introduce potential communi-
cation instability. Although influential in real-world scenarios, environmental variables,
such as wind velocity, precipitation, and other natural factors, were not explicitly modeled
in this study to focus on communication performance metrics. Similarly, potential disrup-
tions from wildlife interactions were not factored into the simulation framework, thereby
simplifying the analysis.

The affected UE in disaster-impacted regions are organised into clusters using the
APC algorithm [42]. This clustering approach dynamically identifies representative clus-
ter centres based on pairwise similarity and effectively minimizes intracluster distances.
A damping factor of 0.6 is applied to stabilize the convergence process, enhancing the
robustness of the algorithm against fluctuations in the UE distribution.

The spatial distribution of UEs follows an incremental Poisson process to reflect realistic
density variations. BS outages were simulated with varying degrees of severity, ranging
from 10% to 90% coverage loss. This approach enables a comprehensive analysis of the UAV
swarm adaptability under diverse failure scenarios. For example, Figure 3 illustrates an
environment in which 30% of BSs are inoperable, leaving UEs in critical need for coverage.
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Disaster Scenario: 30% failed BS and UAV Swarm Support
Connected UE
Disconnected UE
Active BS
Failed BS
Swarm Leader
Swarm Follower

Figure 3. Distribution of UEs in the environment. In this example, there is a 30 per cent rate of base
station outage.
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This modeling approach ensures that UAV swarm deployment strategies are evaluated
under realistic, yet controlled conditions, emphasizing their ability to restore connectivity in
disaster-stricken regions. The flexibility of the framework accommodates variations in UE
density and mobility, thereby providing a robust foundation for optimizing UAV-assisted
communication networks.

In this framework, in Figure 3, a UE with active service is represented by blue asterisks,
whereas UEs without service, typically affected by base station outages, are indicated by
red asterisks. The spatial arrangement of UEs is visualised through Voronoi cells, which
define the boundaries of clusters based on their proximity to UAVs or base stations. Active
base stations are depicted as blue downward triangles, whereas base stations rendered
inoperative because of disaster conditions are marked with black downward triangles.

The simulation encompassed a total area of 25 km2, representing a realistic, disaster-
stricken environment. Within this setup, each swarm of UAVs, coordinated by a leader
drone and supported by follower drones, provides temporary communication coverage to
unconnected UEs within their designated clusters. Once the immediate communication
needs of a cluster are addressed, the UAV swarm progresses to the next identified centroid,
thereby ensuring continuous service restoration across the affected area. This dynamic and
adaptive strategy ensures that critical communication links are maintained, even under
severe network disruptions in Equation (9).

Pout = 1−
NUE

∏
i=1

(
1− PBS · ψenv,i · χmob,i

)
(9)

Here, Pout is the probability of a UE experiencing an outage, PBS: is the probability of
a base station (BS) failing, and ψenv,i is an environment-specific reliability factor for user i,
defined as

ψenv,i =

ηLOS, if LOS,

ηNLOS, if NLOS.
(10)

Here, ηLOS and ηNLOS are the environment-dependent attenuation factors, as described in
Equation (10). χmob,i: is the mobility reliability factor for user i, which reflects the likelihood
of maintaining connectivity during motion. This depends on the mobility model used.

• Random Waypoint Mobility:

χmob,i = 1− ∆d
R

(11)

where ∆d is the distance travelled by the UE once and step R is the UAV’s communi-
cation range.

• Reference Point Group Mobility:

χmob,i = exp(−δg ·
∆d
R

) (12)

where δg denotes the group-specific deviation factor.

This equation comprehensively represents the outage probability, considering the
environmental and mobility effects specific to UAV swarm deployment in disaster re-
sponse scenarios.

3.2. Problem Definition

To model UAV swarm deployment effectively, the problem is framed as a data alloca-
tion and coverage optimization task, ensuring that the maximum number of users (UEs) is
served while adhering to various constraints. UAVs act as temporary aerial base stations



Drones 2025, 9, 64 17 of 45

(UAV-BSs) and are responsible for delivering a sufficient data rate to each UE, based on
their unique requirements. For simplicity, it was assumed that the data rate provided to
each UE matched the requested rate. This transforms the data allocation problem into a
combinatorial optimization problem, which is often recognised as NP-hard owing to its
complexity [43]. The objective is expressed as

max
Rj ,mj

|Q|

∑
j=1

|P|

∑
i=1

γij (13)

where γij is a binary variable representing whether the UAV-BS j serves user i, |P|
is the set of UEs, and |Q| is the set of UAV-BSs. This optimization is subject to the
following constraints:

C1: This ensures that the UE is served only by the UAV-BS if it falls within its
coverage radius.

||mj − γijui|| ≤ Rj + M(1− γij), i ∈ {1, 2, . . . , |P|}, j ∈ {1, 2, . . . , |Q|}, γij ∈ {0, 1}.

Here, mj and ui are the positions of the UAV-BS and UE, respectively, and Rj denotes
the coverage radius of the UAV-BS j. Parameter M acts as a large constant to handle binary
conditions, ensuring that this constraint is only enforced when γij = 1.

C2: This ensures that each swarm UAV does not exceed its maximum data capacity
when serving multiple UEs.

|P|

∑
i=1

ciγij ≤ Cj, j ∈ {1, 2, . . . , |Q|}.

Here, ci represents the data rate demand of UE i, and Cj is the maximum capacity of
UAV-BS j.

C3: Each UE should be served by a maximum of one UAV-BS.

|Q|

∑
j=1

γij ≤ 1, i ∈ {1, 2, . . . , |P|}.

This constraint prevents the UEs from being redundantly served by multiple UAV-BSs.
C4: The coverage radius of each UAV-BS should not exceed the predefined maximum.

Rj ≤ Rmax, j ∈ {1, 2, . . . , |Q|}.

The objective function aims to maximize the number of UEs served by UAV-BSs while
adhering to the coverage, capacity, and connectivity constraints. Constraint C1 ensures that
a UAV-BS can only serve a UEs within its communication range. Constraint C2 enforces
capacity limitations, ensuring that UAVs do not exceed their maximum data-handling
capabilities. Constraint C3 guarantees that each UE is connected to at most one UAV-BS,
avoiding overlaps and inefficiencies in resource allocation. Finally, C4 ensures that UAV-BSs
operate within their designated coverage limits.

This problem formulation provides a structured approach for addressing the challenge
of UAV swarm deployment in disaster scenarios. The constraints balance maximizing
service coverage, maintaining QoS, and adhering to operational limitations such as capacity
and coverage radius. Considering these constraints, this model facilitates the efficient allo-
cation of UAV-BS resources, ensuring that disconnected UEs are reconnected with minimal
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service disruption. Unlike traditional fixed base stations, UAV-BSs offer flexibility and
adaptability, making them ideal for rapid deployment in dynamic disaster environments.

min
n

∑
i=1

m

∑
j=1

Nswarm

∑
u=1

(
Cij · Xiju + λ · Eu

)
(14)

This cost function minimizes the total communication cost Cij between the UAV i and
UE j along with the energy consumption Eu of the UAV u in the swarm weighted by λ in
Equation (14).

∑
j∈V(k,j)

Sk · Xiju ≤ Cu, ∀u ∈ UAV swarm (15)

This constraint in Equation (15) ensures that the service demand Sk of all UEs assigned
to a UAV u does not exceed its capacity Cu.

Nswarm

∑
u=1

∑
j∈V

Distance(u, j) · Xiju ≤ MaxDistance, ∀u ∈ UAV swarm (16)

This trajectory optimization minimizes the travel distance for all UAVs in the
swarm, while ensuring that it does not exceed the defined maximum distance threshold
in Equation (14).

m

∑
j=1

Xiju ≥ 1, ∀i ∈ UEs (17)

The MTSP is adapted to reflect the UAV swarm deployment strategy outlined in
Equation (16), where each UE i must be served by at least one UAV in the swarm to ensure
the full coverage of the affected area. Each swarm path must include at least one leader UAV
from the assigned swarm in order to ensure seamless coordination and connectivity. This
adaptation emphasizes swarm-based UAV networks, where each swarm comprises one
leader drone and two follower drones that work in tandem to provide enhanced coverage
and connectivity. UAVs in the swarm operate autonomously without human intervention,
facilitating rapid deployment in disaster scenarios. The optimization framework expressed
in Equation (12) is designed to minimize the total cost by optimizing the allocation of UAVs
to mobile user clusters and calculating their trajectories. This formulation accounts for
both the leader-follower hierarchy within the swarm and the dynamic mobility patterns
of the UE. By integrating these elements, the revised MTSP model addresses the complex
requirements of swarm-based UAV operation in diverse and dynamic environments. It
ensures robust service delivery by balancing energy efficiency, communication quality, and
resource utilization, while meeting the QoS demands of mobile UEs across multiple clusters.
This approach builds a scalable and adaptive foundation for UAV swarm deployment in
various disaster scenarios.

min
n

∑
i=1

m

∑
j=1

Nswarm

∑
u=1

(
Cij · Xiju + λ · Eu + β · Latencyij

)
(18)

The number of UAV swarm mission members, represented by NUAV, encompasses
both the leader and follower drones within each swarm. Each swarm operates cohesively
with its trajectory denoted by Xiju, where i represents the user cluster, j indicates the specific
path segment, and u denotes the UAV swarm assigned to cluster (16). This parameter
is pivotal in determining the spatial and temporal deployment of UAV swarms across
disaster-stricken areas.

The capacity requirement for each cluster, denoted by Cij, defines the communication
load that a UAV swarm must handle. Trajectory Xiju is tailored to ensure seamless commu-
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nication, considering both the dynamic mobility of UEs and the hierarchical roles of the
leader and follower UAVs within each swarm. Unlike traditional MABS-based approaches,
this model incorporates swarm-specific dynamics, allowing flexible and efficient coverage
in highly dynamic and unpredictable environments.

Short-duration communication bursts are critical in this setup, enabling the UEs to
connect to the UAV swarm for intermittent essential data exchanges. These bursts were
optimized to maximize coverage and minimize energy expenditure. Unlike the static
constraints in Equations (9)–(11), the swarm-based approach dynamically adapts paths and
communication patterns based on real-time UE mobility and environmental conditions.

The trajectory planning process for each swarm is rooted in multipath optimization,
ensuring that each route traversable by a UAV swarm maintains connectivity while min-
imizing travel distance. The planning process accommodates multiple potential entry
points in the disaster zone, because there is no predefined starting point for the operation
of a UAV swarm. The total number of possible edges within this framework is calculated
using Equation (17), which offers a combinatorial representation of the swarm UAV routing
possibilities. This formulation ensures scalability and adaptability, which are critical for
addressing the diverse challenges of disaster response scenarios.

total(E) =
NUAV!

(NUAV − 2)! · 2!
=

(
NUAV

2

)
=

NUAV · (NUAV − 1)
2

(19)

3.3. Parameter Settings

Table 2 outlines the global simulation parameters and configurations used to evaluate
the performance of the UAV swarm in the studied disaster response environment. The
table provides detailed specifications of the simulation setup, including the UAV swarm
parameters, QoS constraints, and base station failure scenarios. These parameters serve
as the foundation for assessing the scalability, adaptability, and reliability of networks
under various operational conditions. The spatial domain (A) spans a square area of
25 km × 25 km, selected to represent the size of medium-scale disaster zones commonly
encountered in real-world scenarios, such as floods or earthquakes. This size ensures
sufficient coverage for analyzing UAV swarm performance under realistic operational
conditions, as supported by similar studies [29,30].

The UE density, denoted by λUE, varied incrementally from 50 to 450, following a
Poisson distribution. The Poisson distribution was chosen as it accurately models the
stochastic nature of user distributions in disaster scenarios, where users are unevenly
clustered due to shelter locations or evacuation routes [30]. This approach captures the
variability and randomness of real-world user densities.

The mobility of the UEs is introduced as a critical factor, with speeds ranging between 0
and 20 m/s to represent a wide spectrum of movement patterns. Stationary users represent
individuals in shelters or static zones, while speeds up to 20 m/s capture vehicular mobility
observed during evacuations or dynamic environments [37]. These mobility speeds are
reflective of real-world disaster scenarios and ensure robust evaluation across varying
user behaviors. Two mobility models, the RWPM and RPGM, were employed to simulate
individual and group-based user movements, respectively. RWPM models the independent
and random movement of users, while RPGM reflects coordinated group mobility, such as
that seen in evacuation convoys or community-based recovery operations. These models
collectively provide a comprehensive framework to evaluate UAV swarm adaptability
under different mobility patterns [38]. The UAV swarm configurations included swarm
sizes (N) of (1, 2, 3 . . . , 10) swarms. These sizes were selected to evaluate scalability and
performance in varying disaster scenarios: small swarms represent localized disruptions or
low-density user environments; medium swarms reflect typical disaster response scenarios



Drones 2025, 9, 64 20 of 45

where moderate coverage and coordination are required; and large swarms simulate
large-scale disasters requiring extensive coverage and coordination [29].

Each UAV is capable of serving up to 200 UEs (CUE/UAV), based on the typical load-
handling capacity of UAVs in real-world applications [30]. UAVs operate within a com-
munication range (R) of 3 km, which represents a practical range for maintaining stable
connections, while ensuring effective coverage restoration [39]. Trajectory optimization
algorithms, including GA + APC, GA, PSO, and ACO, were employed to maximize cov-
erage restoration. These algorithms have been extensively validated in UAV network
optimization studies and are well-suited for addressing the challenges of dynamic disaster
environments [38]. A distributed coordination protocol was implemented to enable seam-
less inter-UAV communication, ensuring effective collaboration among swarm members.
This protocol enhances the swarm’s ability to dynamically adapt to varying user densities
and coverage requirements. The simulation iterations were set to 17,000 in this study, a pa-
rameter adopted from [30] to ensure convergence and robust optimization for the proposed
swarm UAV deployment strategy. The higher iteration count allows the metaheuristic
algorithms, such as the proposed GA + APC to explore the solution space adequately and
achieve reliable convergence.

To maintain stringent QoS requirements, the network adheres to three different data
rate requirements for all UEs: c1 = 5 Mbps, c2 = 2 Mbps, and c3 = 1 Mbps. These thresh-
olds were chosen to represent a range of application requirements, from high-bandwidth
tasks such as video streaming (c1) to essential communication services such as voice calls
(c3) [29,30]. These constraints are critical for ensuring reliable communication in disaster-
stricken areas with a high user density and mobility. Base station failures (B) were simulated
at varying levels ranging from 10% to 90% using uniform distribution patterns. This range
reflects real-world disaster scenarios, from localized outages to widespread infrastructure
failures [37]. Recovery prioritization is based on UE density, ensuring that areas with the
highest concentration of unconnected users are addressed first, which mirrors disaster
response strategies in practice. This robust and multifaceted parameterization provides a
realistic and comprehensive evaluation framework, enabling the UAV swarm network to
be optimized for disaster recovery scenarios that involve dynamic user mobility, varying
environmental conditions, and stringent communication requirements. The implementa-
tion of the proposed GA + APC algorithm was conducted using Python. The simulations
were performed on a system equipped with a 2.4 GHz Intel Core i7-7600U CPU, 64 GB
of RAM, and an NVIDIA T1000 (4 GB) graphics card. This hardware configuration was
selected to ensure computational efficiency for managing the complex optimization tasks
and large-scale disaster scenarios simulated in this study. The operating environment
was configured to execute multiple iterations of the algorithm under varying conditions,
facilitating a comprehensive evaluation of its performance.

4. Proposed Optimal Path Planning for UAV Swarms
4.1. Integration of Proposed Fitness Function and Swarm Mutation Strategies

This subsection elaborates on the design of the swarm-GA, which utilizes evolutionary
principles to derive optimal solutions for complex scenarios. The algorithm builds on the
natural concepts of evolution using mutation and crossover to iteratively explore and refine
solutions. These operations enable the swarm to adapt dynamically to changing conditions,
thereby ensuring robust and efficient path planning.

The swarm-GA operates by treating each potential solution as a chromosome with
adjustable parameters corresponding to the requirements of the problem. Fitness evaluation
is central to measuring the suitability of each chromosome for meeting performance criteria,
such as service coverage, path efficiency, and QoS compliance. During this evaluation,
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UE clusters were formed using APC, a non-supervised method tailored for scenarios with
spatially dispersed UEs. Unlike traditional k-means clustering, APC dynamically selects
cluster representatives based on similarity metrics, ensuring that the clusters align with the
spatial density of the UEs.

Algorithm 1 outlines the foundational steps for initializing a swarm of UAVs and
clustering UE in the studied dynamic environment. It employs a structured approach to
assign roles to UAVs, cluster UEs using APC, and compute the initial task allocations for
the UAV swarm.

Algorithm 1: Swarm initialization and UE clustering
Data: NUAV: Number of UAVs, λUE: UE distribution, vUE: UE mobility speed, M:

Mobility model, E: Environment parameters.
Result: Cluster assignments V, initial paths Xinit.
Step 1: Swarm Role Assignment
Define swarm UAV roles:

UAVleader → 1, UAVfollower → NUAV − 1, UAVcoordinator → 1.

Step 2: UE Initialization
Initialize the UE positions:

PUE = {(x1, y1), (x2, y2), . . . , (xn, yn)}, n = |λUE|

Mobility model M is applied to compute the UE movement:

PUE(t) = PUE(t− 1) + vUE · ∆t.

Step 3: UE Clustering using APC
Compute the cluster centres V = {v1, v2, . . . , vk}.

vi = arg min
j

∑
j∈PUE

sim(j, vi)

where sim(j, vi) denotes the similarity measure for the APC.
Step 4: Path Initialization
Assign tasks to UAVs from cluster centre V.

Xinit = {x1, x2, . . . , xNUAV}, xu = {vi}i∈V , ∀u ∈ NUAV.

Step 5: Cluster Re-Evaluation and Mobility Integration
Update the cluster centres V dynamically if the UE positions change.

vi(t) = arg min
j∈PUE(t)

sim(j, vi(t)).

Recompute paths Xinit for all UAVs.

xu(t) = {vi(t)}i∈V

Step 6: Output Results
return V, Xinit.

The first step in the algorithm defines the distinct roles of the UAVs in the swarm. Each
swarm consists of one leader UAV (UAVleader) responsible for overall coordination, multiple



Drones 2025, 9, 64 22 of 45

follower UAVs (UAVfollower) executing tasks, and one coordinator UAV (UAVcoordinator) to
manage communication between UAVs. For a swarm with NUAV UAVs,

UAVleader = 1, UAVfollower = NUAV − 1, UAVcoordinator = 1 (20)

This role-based structure ensures an efficient task distribution and coordination. In the next
step, UE initialization, the UE positions are initialized as coordinates.

PUE = {(x1, y1), (x2, y2), . . . , (xn, yn)}, n = |λUE| (21)

where |λUE| represents the total number of UEs in the environment. These initial positions
are updated over time based on the mobility model M, simulating UE movement:

PUE(t) = PUE(t− 1) + vUE · ∆ (22)

where vUE is the UE mobility speed and ∆t is the time interval. This dynamic adjustment
captures real-time changes in the UE locations. In Step 3, UE Clustering using APC is
employed to group the UEs into clusters. Each cluster is defined by its centroid vi, which
minimizes the similarity metric,

vi = arg min
j∈PUE

∑
j∈PUE

sim(j, vi) (23)

where sim(j, vi) measures the similarity between a UE j and cluster centre vi. APC dynami-
cally determines the number of clusters and their centroids based on UE density and spatial
distribution. These centroids serve as target points for UAV task allocation.

After determining the cluster centres V = {v1, v2, . . . , vk}, the next step is path initial-
ization, in which the initial paths for the UAVs are assigned. Each UAV u is allocated a set
of cluster centres as tasks.

Xinit = {x1, x2, . . . , xNUAV}, xu = {vi}i∈V , ∀u ∈ NUAV (24)

This step ensures that each UAV has a predefined route based on the initial UE clustering.
Then, in the cluster re-evaluation and mobility integration step, which adapts to changes in
UE positions, the algorithm dynamically updates the cluster centroids:

vi(t) = arg min
j∈PUE(t)

sim(j, vi(t)) (25)

This recalibration ensured that the clusters remained relevant as the UEs moved. Corre-
spondingly, the UAV paths are computed as follows:

xu(t) = {vi(t)}i∈V (26)

This real-time adjustment integrates UE mobility into UAV task planning, enabling the
swarm to maintain an efficient coverage and service. Finally, the algorithm outputs the up-
dated cluster assignments V and initial paths Xinit, which serve as the basis for subsequent
optimization steps.

Output: V, Xinit (27)

This algorithm provides a robust framework for initializing UAV swarm operations in
dynamic environments. By integrating mobility models and clustering techniques, UAVs
can efficiently adapt to changes in the UE distribution while maintaining effective task
allocation and coordination.
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Algorithm 2 outlines a genetic optimization approach for UAV path planning and
task allocation, focusing on achieving efficient resource utilization while satisfying the QoS
requirements. The process begins with the initialization of paths X from the provided Xinit,
which represents the initial allocation of tasks and paths for all the UAVs in the swarm. The
fitness of each path was computed using a comprehensive function designed to balance the
path length, and QoS metrics.

The fitness function is defined as

F (X) =
NUAV

∑
u=1

(
1

L(Xu)
+

QoSsatisfied
QoStotal

− Ecost(Xu)

Emax

)
(28)

where L(Xu) is the length of the path assigned to the UAV u, QoSsatisfied measures the pro-
portion of the QoS constraints satisfied, and Ecost(Xu) quantifies the energy consumption of
the UAV along the path relative to its maximum energy capacity Emax. The fitness function
ensures that shorter paths, higher QoS satisfaction, and lower energy costs are achieved.

The initial fitness of each chromosome (path configuration) was evaluated by calculat-
ing the QoS satisfaction and ensuring compliance with SINR requirements. The SINR for
UE i is computed as

SINRi =
PTx

∑j ̸=i PInt,j + η
(29)

where PTx is the transmitted power, PInt,j represents the interference from the other UAVs,
and η is the noise power. QoS satisfaction, denoted QoSsatisfied, is calculated as the sum of
the users meeting the SINR threshold SINRmin:

QoSsatisfied =
NUE

∑
i=1

⊮(SINRi ≥ SINRmin) (30)

where ⊮ denotes an indicator function. The genetic algorithm iteratively refines the popu-
lation of paths using mutation operators to explore the solution space and enhance fitness.
These operations were divided into two categories.

In chromosome mutators, section swapping reorders segments within a UAV’s path
xu, enabling more efficient task sequencing. Point insertion adjusts the position of tasks
within a path to minimize travel and hovering costs, computed as

Cost(xu) =
k

∑
i=1

(di,u + Phover · thover) (31)

where di,u is the distance travelled, Phover is the hovering power, and thover is the time spent
on hovering.

Cross-chromosome mutators comprise task swapping, which transfers tasks between
UAVs xu and xv, balancing their workloads. The joint mutator then combines paths to
optimize coordination among the leader UAVs. The separation mutator Splits the paths
to distribute tasks among multiple UAVs more effectively. These mutation operators
ensure that the solution space is thoroughly explored, thereby preventing the premature
convergence to suboptimal paths. After applying mutations, the paths are updated and
their fitness is computed. This step involves recalculating F (X) for all chromosomes and
incorporating the effects of the updated paths, SINR compliance, and energy constraints,
as shown in Equation (28).
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Algorithm 2: Path optimization and task allocation
Data: V: Cluster assignments, Xinit: Initial paths, QoS constraints, CUAV: UAV

capacity, SINRmin: Minimum SINR, Mutation Operators.
Result: Optimized paths X∗.
Step 1: Initialize Optimization Framework
Set the initial paths X ← Xinit;
The fitness function F (X) is defined as

F (X) =
NUAV

∑
u=1

(
1

L(Xu)
+

QoSsatisfied
QoStotal

− Ecost(Xu)

Emax

)
where L(Xu) is the path length and Ecost(Xu) is the energy consumed by the
UAV u.

Step 2: Evaluate Initial Fitness
Compute F (X) based on

QoSsatisfied =
NUE

∑
i=1

⊮(SINRi ≥ SINRmin)

SINRi =
PTx

∑j ̸=i PInt,j + η
.

Step 3: Apply Mutation Operators
while Convergence criteria not met do

Step 3.1: In-Chromosome Mutators
Apply:

Section Swapping: Swap segments within xu ∈ X.

Point Insertion: Adjust task sequence to minimize cost:

Cost(xu) =
k

∑
i=1

(di,u + Phover · thover).

Step 3.2: Cross-Chromosome Mutators
Apply:

Task Swapping: Exchange tasks between xu and xv, u ̸= v.

Join Mutator: Merge paths for leader UAV coordination.

Separation Mutator: Split paths to balance task loads.

Step 3.3: Update Paths
Update paths X based on the mutation results.

X ← {x′1, x′2, . . . , x′NUAV
}.

Step 3.4: Re-Evaluate Fitness
Recompute F (X) by considering the updated paths, SINR constraints, and
UAV capacity as follows:

F (X) =
NUAV

∑
u=1

(
1

L(Xu)
+

QoSsatisfied
QoStotal

− Ecost(Xu)

Emax

)
.

end
Step 4: Output Results
return X∗ = arg maxF (X).
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This ensures that the algorithm continually favors configurations that enhance the
performance metrics. The process terminates when convergence criteria are satisfied, such
as achieving a stable fitness value or reaching the maximum number of iterations. The final
solution X∗ is selected as the chromosome with the highest fitness value

X∗ = arg maxF (X) (32)

This algorithm integrates advanced genetic operations to optimize the UAV task
allocation and path planning. Balancing path efficiency and QoS compliance ensures robust
and scalable solutions for dynamic UAV swarm operations. Its iterative nature and use of
fitness-driven mutations make it adaptable to complex real-world scenarios. The use of
SINR as a QoS metric and mutation operators tailored to UAV-specific constraints sets this
algorithm apart from its application to UAV-based communication networks.

4.2. Integration of the Proposed Advanced Fitness Function with QoS, Capacity Constraints, and
Mutation for Optimization

Algorithm 3 defines a genetic optimization framework for UAV swarm path planning,
ensuring that QoS metrics and UAV capacity constraints are considered. The algorithm
begins with initializing the population (ν1) from the initial paths (Xinit). In this step, UEs
are assigned to UAVs based on their proximity and the task of each UAV u is represented
as xu = UEs assigned to UAV u, ∀u ∈ NUAV. Additional variables, such as fitness,
penalties, suma, and the service and angle ratios, were initialised to track the performance
of each chromosome during the optimization process.

In the evaluation phase, the fitness of each chromosome X ∈ ν1 is calculated using the
fitness function

F (X) = wSR · SR+ wQoS · QoSsatisfied − wPenalty · ∑
j∈Q

max(0, Loadj − Cj) (33)

where SR represents the service ratio, QoSsatisfied quantifies how well the QoS constraints
are satisfied, and the penalty term ensures that UAVs that exceed their capacity Cj are

penalized. The intersection ratio (IR) is computed as IR = min(Φ)
Φk

, ∀k ∈ set[Φ], which
minimizes the number of trajectory conflicts by penalizing chromosomes with high-path
intersections. The angle ratio (AR) is computed as AR = ∑ angle_ratios

len(C) , ensuring smoother
UAV paths by penalizing the sharp angles. Together, these metrics update the fitness of
each chromosome based on its path efficiency, service quality, and compliance with UAV
capacity constraints.

The algorithm proceeds through the GA process and iterates until the convergence
criteria are satisfied. In the selection phase, the roulette wheel method selects the parent
chromosomes based on their fitness scores. The selection probability of each chromosome
x is calculated as

Selection Probability =
F (x)

∑x′∈ν F (x′)
(34)

to ensure that the fitter chromosomes are more likely to be selected. This mechanism
promotes the survival of high-performance solutions for the next generation.

Following selection, the crossover is applied to the selected parents with probability
pc. The crossover operation combines the genes of the two parent chromosomes to gen-
erate offspring that inherit traits from both parents. The resulting child chromosome is
represented by xchild = Crossover(xparent1, xparent2). This step enhances diversity within
the population and facilitates the exploration of the solution space.
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Algorithm 3: Advanced fitness function with QoS and capacity constraints
Data: V: Cluster centroids, C: Chromosome set, U : Unserviced set, Threshold τ,

UAV capacity CUAV, QoS constraints, pc: Crossover rate, pm: Mutation rate.
Result: Optimized paths X∗.
Initialize Variables:
Initialise the population ν1 from Xinit by assigning UEs to UAVs based on
proximity.

xu = UEs assigned to UAV u, ∀u ∈ NUAV.

Initialise fitness, penalties, ratios, suma, service_ratios, and
angle_ratios;

Evaluate Initial Fitness:
foreach chromosome X ∈ ν1 do

Compute the fitness:

F (X) = wSR · SR+ wQoS · QoSsatisfied − wPenalty · ∑
j∈Q

max(0, Loadj − Cj).

Calculate Intersection Ratio (IR)

IR =
min(Φ)

Φk
, ∀k ∈ set[Φ].

Calculate Angle Ratio (AR) using

AR =
∑ angle_ratios

len(C) .

Update the fitness based on path length, UAV capacity, and unserviced UEs.
end
Genetic Algorithm Process:
while Convergence criteria not met do

Selection:
Perform a roulette-wheel selection to choose parent chromosomes based on
fitness.

Selection Probability =
F (x)

∑x′∈ν F (x′)
.

Crossover:
Perform crossover with probability pc:

xchild = Crossover(xparent1, xparent2).

Mutation:
Apply mutation to the child chromosomes with probability pm

x′ = Mutate(xchild, pm),

Evaluate Fitness:
Compute the updated fitness values F (X) for the new chromosomes:

SINRi =
PTx

∑j ̸=i PInt,j + η
, SINRi ≥ SINRmin.

Update Population:
Replacing the least-fit chromosomes in a population with new offspring.

end
Output Optimized Paths:
Return:

X∗ = arg maxF (X).
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Next, mutation is applied to the child chromosomes with probability pm. Mutation
introduces random changes to the genes of a chromosome, thereby ensuring that new
areas in the solution space are explored. The mutated chromosome is represented by
x′ = Mutate(xchild, pm). This step helps prevent premature convergence by maintaining
the genetic diversity in the population [29].

After performing crossover and mutation, the fitness values of the updated population
were re-evaluated. This step includes computing the SINR for each chromosome to ensure
that QoS constraints are satisfied. The SINR for a given UAV i is calculated as

SINRi =
PTx

∑j ̸=i PInt,j + η
(35)

where PTx is the transmitted power, PInt,j represents the interference from neighboring
UAVs, and η is the noise power. The algorithm ensures that SINRi ≥ SINRmin penalizes
chromosomes that fail to satisfy this requirement.

Finally, the population is updated by replacing the least-fit chromosomes with newly
generated offspring. The algorithm terminates when the convergence criteria are satisfied,
such as reaching the maximum number of iterations or achieving a stable fitness value
across generations. The optimal solution X∗ is then selected as the chromosome with the
highest fitness value, expressed as

X∗ = arg maxF (X) (36)

This algorithm efficiently balances the service quality, path optimization, and capacity
constraints, making it suitable for dynamic UAV swarm operations in complex environ-
ments. Incorporating multiple fitness metrics and leveraging genetic operations provides a
robust framework for UAV path planning and task allocation.

Score = wSR · SR2 + wAR · AR + wDR · log(DR)

+ wIR · IR + wPSR · PSR− wPenalty · ∑
j∈Q

max(0, Loadj − Cj)

+ wQoS ·QoSsatisfied

(37)

Equation (37) presents a multi-factor fitness scoring mechanism designed to optimize
UAV swarm configurations for disaster response networks. It integrates various perfor-
mance metrics into a single score to ensure comprehensive evaluation and optimization. The
term wSR · SR2 emphasizes the service coverage and prioritizes configurations with exten-
sive coverage by amplifying the service ratio (SR) through squaring. This ensures that candi-
dates with better connectivity have a higher chance of selection. The angular ratio (AR), rep-
resented by wAR · AR, promotes smoother UAV paths, minimizing abrupt changes that can
disrupt communication. The logarithmic term wDR · log(DR) ensures that the data rate con-
tributions are impactful but balanced, reflecting the diminishing returns of the increasing
throughput. Similarly, the wIR · IR term penalizes the interference, favoring configurations
with reduced co-channel interference for better signal quality. Path smoothness, captured
by wPSR · PSR, ensures efficient UAV trajectories and reduces operational complexity. A
dynamic penalty mechanism, wPenalty ·∑j∈Q max(0, Loadj − Cj), discourages base station
overloading, maintains scalability, and avoids congestion. The QoS term wQoS ·QoSsatisfid re-
wards a configuration that meets user satisfaction thresholds, reflecting the system’s adapt-
ability to varying network conditions. Weights (wSR, wAR, wDR, wIR, wPSR, wPenalty, wQoS)
balance the importance of each metric, allowing the equation to adapt to specific scenarios
such as high-demand or interference-prone areas. This equation is based on prior method-
ologies [29,37] that incorporate advancements in trajectory optimization, QoS prioritization,
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and resource allocation. It ensures scalable and resilient UAV deployment by dynamically
adapting to environmental conditions and user needs. Furthermore, the computational
efficiency is enhanced by iterative updates to the unserviced UE dataset and fixed-interval
calculations, balancing the accuracy and processing overhead. Overall, Equation (37) encap-
sulates a robust, adaptable scoring framework that addresses the multifaceted requirements
of disaster response networks, significantly outperforming traditional approaches.

As shown in Figure 4, the distribution of UEs across different environments (suburban,
urban, dense urban, and high-rise urban) highlights the initial setup and service allocation
before and after the implementation of the swarm UAV solution. The subplots represent
the total number of UEs, serviced, and unserviced under varying user densities ranging
from 50 to 450.

(a) Suburban Environment

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

Number of UEs

0

100

200

300

400

N
u

m
b

e
r 

o
f 

U
s
e

rs

UEs without Service

UEs with Service

Total Number of UEs

(b) Urban Environment

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

Number of UEs

0

100

200

300

400

N
u

m
b

e
r 

o
f 

U
s
e

rs

UEs without Service

UEs with Service

Total Number of UEs

(c) Dense Urban Environment
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(d) High-Rise Urban Environment
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Figure 4. Initial Setup of UEs in different environments.

The comparison between serviced and unserviced UEs reflects the adaptive capabilities
of the swarm UAV solution. For example, the suburban environment exhibits the highest
percentage of UEs with services across all user densities, achieving 95% service rates when
the UE count reaches 450. This is primarily attributed to better LOS conditions and reduced
interference, which improve the signal propagation and connectivity. In contrast, the
high-rise urban environment has the lowest service rate, with only 85% of UEs receiving
services at maximum user density. This is owing to increased signal attenuation, multipath
interference, and the challenges posed by NLOS propagation in high-rise settings.

The urban environment serves as a middle ground between the suburban and dense
urban scenarios. While achieving slightly lower service rates than suburban areas, the
urban environment demonstrates a relatively consistent performance across increasing
user densities, with service rates stabilizing at approximately 90% at high user densities.
The combination of a moderate building density and manageable interference levels in this
environment facilitates this balance.
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The dense urban and high-rise urban environments, however, show a gradual increase
in unserviced UEs as user density increases. This reflects the impact of spatial constraints
and interference, which limit the effective range of the UAV-based base stations. In contrast,
the suburban environment demonstrates the adaptive capabilities of the swarm UAV
solution, where the number of unserviced UEs remains consistently low, even as the user
density increases.

The significance of this initial UE organization lies in its ability to identify cover-
age gaps and optimize swarm UAVs deployment strategies. By clustering UEs in areas
with high service demand, swarm UAVs can allocate resources more efficiently, ensuring
that critical regions are prioritized. This process directly addresses fundamental wire-
less communication challenges such as load balancing, interference management, and
signal optimization.

Furthermore, the observed variations in service levels across environments emphasize
the need for environment-specific optimization strategies. For example, high-rise urban
settings may benefit from higher-density UAV swarms or hybrid deployment models that
combine static and mobile base stations to mitigate coverage loss. Similarly, in suburban
areas, favorable propagation conditions present opportunities for maximizing energy
efficiency while maintaining high service quality.

In summary, the distribution of UEs and their service status underscores the impor-
tance of adaptive clustering algorithms and environment-specific strategies in disaster
response networks. The ability of swarm UAVs to dynamically adjust their deployment
based on user density and environmental constraints ensures a robust and scalable solution
for improving coverage, connectivity, and QoS across diverse scenarios. This foundational
analysis forms the basis for further optimization efforts, particularly in environments with
complex topographical and network challenges.

5. Performance Evaluation of Proposed Solution
5.1. Evaluation Criteria and Experimental Setup

The evaluation criteria for the proposed MABS solution were systematically chosen to
comprehensively assess the path planning efficiency and overall performance in diverse
disaster response scenarios. Key parameters include the coverage ratio, QoS compliance,
and fitness scores. These metrics provide insights into the effectiveness of the solution for
managing network coverage, resource allocation, and user QoS under dynamic conditions.
In addition, the impact of mobility models on network performance, as well as the scalability
of the solution with increasing swarm UAVs, was analyzed to validate its robustness
and reliability.

The evaluation includes comparisons between the proposed method (GA + APC)
and established benchmarks, such as GA, PSO, and ACO. These comparisons not only
highlight the relative strengths of the solutions but also emphasize their practical utility in
disaster response networks. Each metric was carefully analyzed to demonstrate tangible
improvements in performance, scalability, and operational efficiency, particularly under
challenging conditions typical of disaster environments.

To validate the proposed MABS solution, a series of simulations were conducted
involving UAV swarms (1 to 10) and UE ranging from 50 to 450. These scenarios were
modeled across four distinct environments: suburban, urban, dense urban, and high-rise
urban, with varying propagation characteristics such as LOS and NLOS conditions. The
placement of the UE and base stations was randomized, following a Poisson distribution
with a spatial density of 25 km2.

Simulations were designed to measure metrics such as coverage ratio, QoS compliance,
and fitness score over iterations ranging from 1 to 17,000, as shown in Table 2. The mobility
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impact was assessed by comparing the RWPM and RPGM models. By iteratively optimizing
the UAV swarm deployment and path planning, the experiments aimed to determine the
optimal configurations for maximizing coverage and service quality, while minimizing
resource consumption.

Table 3 outlines the local simulation parameters and configurations used to evaluate
the performance of the UAV swarm in the studied disaster response environment. The table
provides detailed specifications of the environment parameters. These parameters serve as
the foundation for assessing the scalability, adaptability, and reliability of networks under
various operational conditions. The environment is categorized into four distinct scenarios:
urban (E1), suburban (E2), dense urban (E3), and high-rise urban (E4), each characterized
by specific path-loss parameters (a, b), LOS, and NLOS attenuation factors. These scenarios
represent diverse terrain complexities encountered in real-world operations. The path-loss
parameters and attenuation factors are based on well-established communication models
and reflect the propagation characteristics unique to each environment [39]. None of the
other works discussed in Section 2 perfectly fit within the framework that was considered
in this study, and thus, for fairness of comparison, were not included. The closest work to
this effort is [29,37]; however, because this work introduces swarm-UAVs, different QoS
requirements, mobility models, and dynamic environments to this framework, it makes
a direct comparison with these works difficult, except if they are used as a special case.
For this reason, this work focuses on comparing the proposed hybrid APC-GA algorithm
with other algorithms such as GA, PSO, and ACO in different environments and studying
metrics such as coverage and latency. Furthermore, the latency metric was introduced
into the framework in dynamic disaster scenarios and adaptive mobility modeling for
the first time.

Table 3. Local simulation parameters and settings for UAV swarms [29,30,37,38].

Category Parameter Notation/Value Description

Environment Parameters

E1 (Urban) a = 9.61, b = 0.43, ηLOS = 0.1,
ηNLOS = 20

Path loss parameters for urban
environments.

E2 (Suburban) a = 4.88, b = 0.43, ηLOS = 0.1,
ηNLOS = 21

Suburb-specific signal-propagation
characteristics.

E3 (Dense Urban) a = 12.08, b = 0.11, ηLOS = 1.6,
ηNLOS = 23

Parameters for densely populated
urban environments.

E4 (High-Rise Urban) a = 27.23, b = 0.08, ηLOS = 2.3,
ηNLOS = 34 Parameters of high-rise urban areas.

5.2. Coverage Ratio vs. Number of UAV Swarms
5.2.1. Dense Urban Environment

In Figure 5, dense urban environments, the presence of tall buildings, and complex lay-
outs often introduce severe challenges to wireless communication, such as signal blockages
and increased interference. The results highlight the capability of the proposed GA + APC
method to handle such conditions effectively. With a coverage ratio peaking at 97% when
10 UAV swarms are deployed, the method demonstrates its adaptability and strength in
optimizing coverage despite high-density obstacles.

Interestingly, although the GA, PSO, and ACO benchmarks also showed improvements
as the number of UAV swarms increased, their growth was noticeably slower. For example,
the GA only reaches 91% coverage, suggesting that traditional optimization approaches lack
the nuanced adaptability of the proposed method. The collaborative nature of GA + APC,
which leverages both genetic evolution and path control, plays a crucial role in achieving
superior performance.
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This environment highlights the critical importance of dynamic path planning, particu-
larly in limited LOS communication scenarios. By strategically navigating these challenges,
the proposed method is a reliable choice for dense urban deployment.

1 2 3 4 5 6 7 8 9 10

Number of UAV Swarms

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
v
e
ra

g
e
 R

a
ti
o

Proposed (GA+APC)

GA Benchmark

PSO Benchmark

ACO Benchmark

Figure 5. Coverage ratio vs. number of UAV swarms in dense urban environment.

5.2.2. Urban Environment

In Figure 6, the urban environments represent a middle ground between dense urban
and suburban conditions with moderately distributed obstacles and user densities. The
proposed GA + APC method achieved a coverage ratio of 94% with 10 UAV swarms, which
surpassed all benchmarks, including GA (89%), PSO (88%), and ACO (89%).
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Figure 6. Coverage ratio vs. number of UAV swarms in urban environment.
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The relatively smaller performance gap among the methods compared to dense urban
scenarios suggests that less complex propagation conditions allow all algorithms to perform
reasonably well. However, the consistent outperformance of GA + APC highlights its
ability to extract additional efficiency by allocating swarm UAV resources. Notably, the
diminishing returns in coverage improvement beyond eight UAV swarms reveal a natural
coverage saturation point, where additional swarm UAVs contribute minimally to the
overall system performance.

5.2.3. Suburban Environment

Figure 7 highlights that suburban environments, characterized by open spaces and
minimal interference, exhibit the highest overall coverage ratios among all scenarios. The
results show that the proposed GA + APC method achieved 100% coverage with only nine
UAV swarms. This is a remarkable feature, especially when compared with GA (99%), PSO
(98%), and ACO (98%).
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Figure 7. Coverage ratio vs. number of UAV swarms in suburban environment.

These findings underscore the efficiency of the proposed method in leveraging fa-
vorable propagation conditions to minimize resource usage while maximizing coverage.
The benchmarks, while performing admirably, failed to match the resource efficiency of
GA + APC, indicating a lack of fine-grained adaptability to dynamic user distributions.
This scenario reinforces the value of advanced optimization techniques in ensuring effective
swarm UAV deployment, particularly in resource-limited situations.

5.2.4. High-Rise Urban Environment

The results for high-rise urban environments are shown in Figure 8 and present a
unique set of challenges owing to the vertical nature of obstacles and severe NLOS propa-
gation effects. In this setting, the proposed GA + APC method achieved a coverage ratio of
93% with 10 UAV swarms, outperforming the GA (88%), PSO (85%), and ACO (88%).

What stands out is the ability of the method to adapt to highly variable and unpre-
dictable signal conditions. The benchmarks exhibit slower coverage improvement, with
PSO showing particularly limited performance owing to its inherent reliance on simpler
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optimization strategies. The proposed method, on the other hand, benefits from its continu-
ous adaptability, enabling it to navigate the constraints of vertical environments effectively.
This capability is crucial for ensuring reliable communication in high-rise urban settings
where maintaining consistent coverage is often challenging.
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Figure 8. Coverage ratio vs. number of UAV swarms in high-rise urban environment.

Across all environments, the results reveal a clear pattern: the proposed GA + APC
method consistently outperforms traditional benchmarks, with its advantage being most
pronounced in challenging scenarios such as dense urban and high-rise urban areas. This
performance can be attributed to its adaptive path planning, intelligent resource allocation,
and its ability to handle complex interference patterns. The findings also emphasize the
importance of tailoring swarm UAV deployment strategies according to the specific char-
acteristics of each environment. While suburban areas benefit from minimal swarm UAV
usage owing to favorable conditions, urban and dense urban environments require more so-
phisticated optimization to address interference and NLOS challenges. The scalability and
robustness of the proposed method make it a versatile choice for diverse disaster response
scenarios. In summary, these results highlight the growing importance of collaborative and
adaptive optimization approaches in swarm UAV-based communication. By dynamically
adjusting to environmental challenges, the proposed GA + APC method offers a compelling
solution for enhancing the coverage and reliability of critical disaster response networks.

The deployment of swarm UAVs has demonstrated remarkable success in restoring
the communication infrastructure in disaster-stricken areas, as depicted in Figures 5–8.
The proposed method (GA + APC) consistently outperformed traditional benchmarks,
achieving higher coverage ratios with fewer UAVs. In suburban environments, the solution
achieved nearly 100% coverage with 10 UAV swarms, whereas urban and dense urban
settings achieved coverage ratios of 94% and 97%, respectively. This superior performance
is attributable to the adaptive clustering mechanism that optimizes UAV placement and
path planning. Figures 5–8 further illustrate the relationship between the number of UAV
swarms and coverage in dense urban, urban, suburban, and high-rise urban environ-
ments, respectively. Despite the challenging propagation conditions, the proposed method
achieved 93% coverage with 10 UAVs, significantly outperforming the ACO benchmark,
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which achieved only 88% coverage under similar conditions. These results emphasize the
ability of the solution to address NLOS challenges and interference, which are common in
urban disaster scenarios.

The path planning optimization enabled by GA + APC is a key factor in achieving
high coverage ratios. As shown in Figures 5–8, the coverage ratios across all environments
increase significantly with the number of UAV swarms, demonstrating the scalability of
the solution. The suburban environment, with its open topology and minimal interference,
experienced the fastest improvement in coverage, reaching 100% with only eight UAV
swarms. In contrast, dense urban and high-rise environments require up to 10 UAVs to
achieve maximum coverage owing to increased propagation challenges.

The results in Table 4 demonstrate the performance of the proposed GA + APC
method in various operational environments, illustrating its adaptability and robustness
for addressing distinct communication challenges. In dense urban areas, where obstacles
such as tall buildings and severe interference impede communication, GA + APC achieved
a coverage ratio of 97%, significantly outperforming traditional benchmarks such as GA,
which attained a maximum of 91%. This outcome underscores the efficacy of GA + APC’s
dynamic path planning and optimization capabilities in surmounting NLOS challenges
and interference.

Table 4. Comparative table summarizing the findings.

Environment GA + APC
Coverage Ratio

Best Benchmark
Coverage Ratio Key Observations

Dense Urban Environment 97% 91% (GA)

GA + APC excels in managing severe inter-
ference and NLOS conditions through adap-
tive path planning, achieving significant im-
provement over traditional methods.

Urban Environment 94% 89% (GA,ACO)

Moderate performance gap owing to less
complex propagation conditions; GA + APC
maintains consistent superiority and re-
source efficiency.

Suburban Environment 100% 99% (GA)

Favorable conditions allow all methods to
perform well, but GA + APC achieves com-
plete coverage with fewer UAVs, emphasiz-
ing resource efficiency.

High-Rise
Urban Environment 93% 88% (GA,ACO)

GA + APC effectively navigate vertical ob-
stacles and severe NLOS challenges, demon-
strating strong adaptability in complex envi-
ronments.

In urban environments, the proposed method maintained its advantage, achieving
94% coverage compared with 89% achieved by GA and ACO. The reduced performance
differential reflects the relatively less complex propagation conditions in these scenarios.
Nevertheless, GA + APC’s consistently superior performance underscores its capacity to
optimize resource allocation and adapt to dynamic user distributions, ensuring efficient
coverage even in moderately challenging environments.

In suburban areas, which are characterized by open spaces and minimal interference,
the proposed method achieved full coverage (100%) with only nine UAV swarms. This
demonstrates its capacity for resource-efficient operation, particularly in scenarios with
favorable communication conditions. Although traditional benchmarks such as GA (99%)
and PSO (98%) performed well, they did not attain the same level of efficiency.

The results in high-rise urban environments further substantiate the advantages of
GA + APC, demonstrating a coverage ratio of 93% compared with 88% for GA and ACO.
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The vertical nature of obstacles in this scenario presents significant propagation challenges.
However, the proposed method consistently adapts to unpredictable signal conditions and
ensures a reliable coverage.

These findings underscore the scalability and robustness of the GA + APC method
under diverse deployment scenarios. Its capacity to optimize resource allocation and
address complex interference patterns renders it a versatile solution for enhancing UAV
swarm-based communication. This study further emphasizes the significance of tailoring
deployment strategies to environmental characteristics. Dense and high-rise urban areas
require advanced optimization to address interference and NLOS issues, while suburban
areas permit minimal resource utilization owing to favorable conditions. Overall, the
GA + APC method exhibits significant potential for improving communication reliability
and efficiency in critical disaster response scenarios.

5.3. Fitness Score vs. Iterations

The fitness score results in Figure 9 reveal that the proposed method maintains signifi-
cantly higher and more stable scores over 17,000 iterations compared with the benchmarks.
Starting at 0.95, the fitness score of the proposed method decreased gradually, whereas
benchmarks such as GA, PSO, and ACO exhibited lower starting values (0.9, 0.85, and
0.8, respectively) and greater variability. This represents an initial improvement of ap-
proximately 5.6% over GA, 11.8% over PSO, and 18.8% over ACO, respectively. Such
improvements demonstrate the superior adaptability and stability of the proposed scheme
under various conditions.
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Figure 9. Fitness score vs. iterations for proposed function and benchmarks.

These results underscore the efficiency of the proposed method in maintaining optimal
performance despite network dynamics, such as mobility and different QoS requirements.
The slight decline in the fitness scores reflects the natural impact of mobility-induced
topology changes and energy depletion. This behavior is consistent with real-world
wireless communication networks, where dynamic user mobility necessitates periodic
re-optimization to maintain performance. The variability of benchmarks highlights their
susceptibility to suboptimal solutions, further emphasizing the robustness of the proposed
fitness function in ensuring consistent path planning and resource allocation.
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5.4. QoS Compliance vs. Number of UAV Swarms

The proposed method in Figure 10 achieves the highest QoS compliance across all
swarm configurations, with 98% compliance observed with 10 UAV swarms, compared to
94% for GA, 90% for PSO, and 92% for ACO. At lower swarm numbers (one UAV swarm),
the proposed method achieves 85% compliance, surpassing the benchmarks of 80% for GA,
75% for PSO, and 78% for ACO. These results represent an improvement of 6.25% over
GA, 13.33% over PSO, and 8.97% over ACO for lower swarm configurations. At higher
swarm configurations (10 UAV swarms), the proposed method achieved an improvement
of 4.26% over GA, 8.89% over PSO, and 6.52% over ACO. This demonstrated the scalability
and superior performance of the proposed scheme across diverse swarm configurations.

The strong QoS compliance achieved by the proposed method reflects its ability
to satisfy the stringent user requirements for data rates. This was achieved through
efficient resource allocation and dynamic swarm UAVs positioning. The results also
highlight the role of spatial diversity in enhancing network performance because increasing
the number of swarm UAVs reduces resource contention and ensures more consistent
service delivery. The lower compliance rates of the benchmarks can be attributed to their
less effective optimization algorithms, which struggle to effectively allocate resources in
high-demand scenarios.
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Figure 10. QoS compliance vs. number of UAV swarms.

5.5. Mobility Impact on Coverage

As shown in Figure 11, the RPGM mobility model outperforms the RWPM model in
terms of maintaining coverage over 17,000 iterations. While both models show a slight
decline in coverage percentages over time, the RPGM model consistently achieves higher
coverage due to its group mobility pattern. This result highlights the significant impact of
mobility models on wireless communication performance. The ability of the RPGM to serve
user clusters efficiently reduces the need for frequent swarm UAV repositioning, conserving
energy, and enhancing coverage. This aligns with real-world disaster response scenarios, in
which users often move in groups. The lower performance of the RWPM model indicates
its inability to adapt to such mobility patterns, resulting in reduced coverage efficiency.
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These findings underscore the importance of selecting appropriate mobility models to
optimize network performance in dynamic environments.
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Figure 11. Impact of mobility models on coverage provided by swarm UAVs.

The ability of the proposed method to dynamically adapt to environmental conditions
is shown in Figure 9, which compares the fitness scores of the proposed solution with
those of traditional benchmarks over 17,000 iterations. The stability of the fitness score,
averaging 0.95, highlights the robustness of the method and its ability to consistently
optimize UAV trajectories. This is particularly important in dynamic disaster scenarios, in
which environmental conditions can change rapidly.

The QoS compliance of a solution is another area of significant improvement. Figure 10
shows that the proposed method achieved a compliance rate of 98% with 10 UAV swarms,
compared to 94% for the GA benchmark and 90% for the PSO benchmark. This improve-
ment is a direct result of the adaptive clustering and path planning mechanisms of the
solution, which ensures that UAVs are strategically positioned to minimize latency and
maximize throughput.

The analysis of the UE coverage across different environments, as shown in Figure 7,
further elucidates the effectiveness of the solution. In suburban settings, 95–100% of
UEs received services, even at higher user densities. Urban and dense urban environ-
ments, although more challenging, still achieved service rates exceeding 90%, highlight-
ing the robustness of the solution in maintaining connectivity despite interference and
high user density.

Figure 11 compares the coverage achieved under the two mobility models: RPGM
and RWPM. RPGM consistently provided higher coverage, maintaining an average of
95% over 17,000 iterations compared with 90% for RWPM. This performance disparity
can be attributed to the ability of the RPGM to simulate clustered user movements, which
aligns better with the UAV swarm clustering algorithm. Conversely, the dispersed mobility
pattern of RWPM posed greater challenges for coverage, emphasizing the need for tailored
deployment strategies based on user mobility patterns.
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5.6. Latency vs. Number of UAV Swarms

The formula used to compute latency across all environments is as follows:

L = L0 +
α

Coverage Ratio
− β · NUAV (38)

L0 (base latency) represents the fixed latency due to inherent system delays, such as
processing time at the UAV, communication setup time, or other constant factors unrelated
to coverage or swarm size. This was assumed to be constant across environments. In the
term α

Coverage Ratio , coverage ratio represents the proportion of users effectively covered by
the UAV swarm. A higher coverage ratio generally reduces network delays because more
users are served effectively. α is a weight that controls the influence of the coverage ratio
on latency. Larger values of α indicate that insufficient coverage has a more significant
impact on latency. The term α

Coverage Ratio models the inverse relationship between coverage
and latency: when coverage is low, fewer users are served and the network experiences
congestion, leading to higher latency. The term −β · NUAV accounts for the fact that
increasing the number of UAVs can reduce the load on individual UAVs and improve
overall communication efficiency. NUAV is the number of UAVs in the swarm. A larger
swarm size allows for a better resource distribution, leading to reduced latency. β is a
weight that quantifies how much latency is reduced per additional UAV in the swarm.
Larger values of β indicate that adding more UAVs has a stronger effect on lowering latency.

5.6.1. Dense Urban Environment

Figure 12 illustrates the outcomes for high-rise urban settings, which are characterized
by intense interference, greater user concentration, and significant NLOS challenges. Due
to the intricacy of the terrain and user distribution, all algorithms experience higher latency
compared to suburban and urban environments. The GA + APC approach demonstrated
the most rapid decrease in latency as the swarm size grew, capitalizing on its adaptive clus-
tering and optimization abilities. Comparative methods like PSO and ACO exhibit slower
latency reductions, indicating their limited capacity to dynamically adjust to severe NLOS
conditions and high-density user distributions. While GA performs marginally better than
PSO and ACO, it still falls short of the proposed method due to its inability to effectively
consider real-time mobility and communication constraints. The GA + APC method exhib-
ited superior adaptability and resource efficiency in densely populated urban areas, making
it particularly well-suited for environments with high interference and user density.

5.6.2. Urban Environment

Figure 13 displays the outcomes for urban settings. These environments present greater
challenges due to higher user concentrations and elevated interference levels. Despite this,
the GA + APC approach consistently achieves lower latency than other methods across all
swarm sizes, with a more pronounced decrease in latency as UAV swarm numbers grow.
While techniques like GA and PSO show moderate performance, they struggle to match the
GA + APC method’s adaptability, especially in scenarios with fewer UAV swarms. ACO
demonstrates the highest latency, attributed to its slower convergence and less flexible path
planning capabilities in this context. The GA + APC approach effectively manages the
heightened user density and interference typical of urban environments, showcasing its
resilience under moderately complex conditions.
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Figure 12. Latency vs. number of UAV swarms in dense urban environment.
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Figure 13. Latency vs. number of UAV swarms in urban environment.

5.6.3. Suburban Environment

Figure 14 displays the outcomes for suburban settings, where all algorithms exhibit
consistently low latency due to favorable conditions, including fewer obstacles and a
relatively uniform user distribution. As the number of UAV swarms grows, the proposed
GA + APC technique surpasses the benchmark methods (GA, PSO, and ACO). At lower
swarm counts, higher latency is observed due to limited coverage and increased user-to-
UAV ratios. Nevertheless, the GA + APC approach minimizes latency by dynamically
optimizing UAV trajectories and clusters based on user mobility and communication
requirements. Latency decreases markedly as swarm size increases, indicating improved
coverage and more efficient resource allocation. The benchmark algorithms (GA, PSO, and
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ACO) demonstrate slower latency reductions, underscoring the limitations of their static
or less adaptive optimization strategies in addressing dynamic user needs. The suburban
environment showcased the scalability of the proposed method, achieving near-optimal
latency with larger swarm sizes.
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Figure 14. Latency vs. number of UAV swarms in suburban environment.

5.6.4. High-Rise Urban Environment

Figure 15 illustrates the outcomes for high-rise urban settings, which present the most
significant challenges due to vertical obstructions, extreme NLOS conditions, and irregular
user distribution. These factors contribute to the highest latency across all algorithms
compared to other environments, highlighting the complexity of maintaining uninter-
rupted communication in such intricate scenarios. The GA + APC approach surpassed the
benchmark methods, demonstrating notably reduced latency as swarm sizes increased. Its
capacity to dynamically adjust UAV trajectories around obstacles and enhance commu-
nication pathways ensures superior performance. Benchmark algorithms like PSO and
ACO show minimal improvement in latency reduction with larger swarm sizes, indicating
their limited efficacy in navigating vertical barriers and sustaining QoS compliance. While
the GA exhibits moderate enhancements, it falls short of matching the adaptability and
efficiency of the proposed GA + APC method. This approach excels in high-rise urban
environments by effectively addressing vertical obstacles and severe NLOS challenges,
thereby maintaining low latency.

The GA + APC approach consistently demonstrated the lowest latency in all environ-
ments, showcasing its adaptability and effectiveness in managing dynamic user distribu-
tions and communication needs. Suburban and urban settings exhibited comparatively low
latency due to fewer obstructions and moderate user density. More challenging conditions
were presented by dense urban Figure 12 and high-rise urban Figure 15 environments,
where latency remained higher because of complex terrains and severe NLOS conditions.
The proposed method’s adaptability ensured superior performance in these demanding
scenarios. The benchmark algorithms (GA, PSO, and ACO) showed varying degrees of
effectiveness. GA performed relatively well in urban and dense urban environments, while
PSO and ACO struggled in more complex settings. The GA + APC method consistently
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outperformed all benchmarks, especially in high-density and high-obstacle environments,
underscoring its robustness and efficiency. These results confirm the effectiveness of the
GA + APC method in minimizing latency across diverse settings. Its exceptional ability to
handle real-time mobility, communication constraints, and severe infrastructure challenges
makes it an optimal solution for UAV path planning in disaster response scenarios.
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Figure 15. Latency vs. number of UAV swarms in high-rise urban environment.

6. Conclusions
This study presents a comprehensive approach for optimizing UAV swarm deploy-

ment for DRNs, focusing on enhancing communication coverage, user mobility, and QoS.
By combining GA + APC, the proposed method provides a practical and innovative solu-
tion to the challenges posed by post-disaster scenarios, where traditional communication
infrastructure is often severely compromised.

The evaluation of the proposed approach across various environments, including
suburban, urban, dense urban, and high-rise urban scenarios, highlighted its versatility
and robustness. Compared with established benchmarks, such as GA, PSO, and ACO, the
GA + APC method consistently achieves higher coverage ratios, better QoS compliance,
and better fitness scores, even with increasing iterations and diverse mobility models.
These results underscore its capability to address the dynamic requirements of real-world
DRN applications while ensuring efficient resource utilization.

One of the main findings is the proposed algorithm’s adaptability to managing user
mobility and challenging environmental conditions. The integration of the RWPM and
RPGM mobility models demonstrates their resilience and ability to maintain consistent
performance, even as user densities and base station losses increase. This adaptability is
critical for ensuring reliable communication coverage during disaster relief operations,
where conditions can change rapidly and unpredictably.

Although this study addresses numerous critical challenges, certain aspects remain
beyond the scope and represent valuable avenues for future research. For instance, the
incorporation of terrain variations and meteorological conditions into the optimization
framework will enhance the algorithm’s adaptability to real-world scenarios. Subsequent
investigations will also explore real-time network demand management utilizing predictive
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algorithms to facilitate rapid response to dynamic events. Furthermore, fault tolerance
mechanisms such as rerouting strategies and resource redundancy should be developed to
ensure uninterrupted connectivity in disaster-affected areas.

Given the significance of UAV energy constraints, subsequent research will incor-
porate energy-efficient trajectory optimization and renewable energy solutions to extend
operational endurance. Furthermore, ensuring user privacy during data collection and
relay operations is a critical focus, with plans to implement encryption protocols, privacy-
preserving data aggregation, and adherence to privacy standards.

Future research could investigate integrating more advanced machine learning models
to enable real-time decision-making and trajectory optimization. Additionally, the potential
to incorporate multi-modal communication technologies, such as 5G or satellite integration,
could further expand the scope and effectiveness of UAV-enabled networks. Future research
could also investigate further optimization of latency in high-rise urban environments
and integration with advanced communication technologies, such as 5G, to achieve even
better performance.

This study makes a significant contribution to disaster response by introducing a
robust and scalable UAV swarm deployment strategy. The proposed GA + APC approach
enhances communication reliability and sets a foundation for future advancements in UAV-
enabled technologies. Although this study focuses on disaster scenarios, the methodology
and insights gained have broader applications, including smart cities, agriculture, and
industrial logistics. This study serves as a stepping stone toward more resilient and efficient
communication networks, addressing the critical need for innovation in times of crisis.
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BS Base station
BPS Bits per second
bps Bits per second
Bw Bandwidth for a channel in Hz
C Capacity
C Capacity in bps
CHs Cluster heads
COW Cell on wings
CSV Comma-separated values
D2D Device-to-device
DCUD Distributed clustering for user devices
DDQN Double deep Q-networks
DR Distance ratio
DRN Disaster response networks
EH Energy harvesting
ƒ Frequency in MHz
FPA Flower pollination algorithm
GA Genetic algorithm
GHO Grasshopper optimization
hb Height of the base station
hm Height of the mobile aerial base station
HZ Hertz
ILP Integer linear programming
IMSIA Improved multi-objective swarm intelligence algorithm
IoT Internet of things
IQR Interquartile range
IR Intersection ratio
KBPS Kilobits per second
LOS Line-of-sight
LTE Long-term evolution
mMTC massive machine-type communications
MABS Mobile aerial base stations
Mbps Megabits per second
MHZ Megahertz
MIMO Multiple-input multiple-output
NLOS Non-line-of-sight
PL Path loss
PSO Particle swarm optimization
PSR Path smoothness ratio
QoS Quality of service
RoI Region of interest
RPGM Reference point group mobility
RWPM Random waypoint model
SFOA Smart flower optimization algorithm
SILC Swarm intelligence-based localization and clustering
SNR Signal-to-noise ratio
SINR Signal-to-interference-plus-noise ratio
SR Service ratio
UE User equipment
UAVs Unmanned aerial vehicles
URLLC Ultra-reliable, low-latency communication
VD Voronoi diagram
VDG Voronoi diagram graph
WPT Wireless power transfer
λ Density value for Poisson distribution
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