
Academic Editor: Diego

González-Aguilera

Received: 3 December 2024

Revised: 14 January 2025

Accepted: 16 January 2025

Published: 18 January 2025

Citation: Munguia, R.; Grau, A.;

Bolea, Y.; Obregón-Pulido, G. A

Simultaneous Control, Localization,

and Mapping System for UAVs in

GPS-Denied Environments. Drones

2025, 9, 69. https://doi.org/

10.3390/drones9010069

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Simultaneous Control, Localization, and Mapping System for
UAVs in GPS-Denied Environments
Rodrigo Munguia 1,*,† , Antoni Grau 2,† , Yolanda Bolea 2,† and Guillermo Obregón-Pulido 1,†

1 Department of Computer Science, University Center of Exact Science and Engineering,
University of Guadalajara, Guadalajara 44430, Mexico; guillermo.obregon@academicos.udg.mx

2 Department of Automatic Control, Technical University of Catalonia UPC, 08034 Barcelona, Spain
* Correspondence: rodrigo.munguia@academicos.udg.mx
† These authors contributed equally to this work.

Abstract: Unmanned Aerial Vehicles (UAVs) have gained significant attention due to their
versatility in applications such as surveillance, reconnaissance, and search-and-rescue
operations. In GPS-denied environments, where traditional navigation systems fail, the
need for alternative solutions is critical. This paper presents a novel visual-based Simulta-
neous Control, Localization, and Mapping (SCLAM) system tailored for UAVs operating
in GPS-denied environments. The proposed system integrates monocular-based SLAM
and high-level control strategies, enabling autonomous navigation, real-time mapping, and
robust localization. The experimental results demonstrate the system’s effectiveness in al-
lowing UAVs to autonomously explore, return to a home position, and maintain consistent
mapping in virtual GPS-denied scenarios. This work contributes a flexible architecture
capable of addressing the challenges of autonomous UAV navigation and mapping, with
potential for further development and real-world application.

Keywords: simultaneous control; localization; mapping; UAVs; GSP-denied; visual-based

1. Introduction
In recent years, Unmanned Aerial Vehicles (UAVs) have emerged as versatile platforms

with a wide range of applications spanning from surveillance and reconnaissance to search
and rescue missions [1]. The success of UAVs in these applications mostly depends on their
ability to autonomously navigate, perceive their surroundings, and maintain accurate local-
ization information [2]. While Global Positioning System (GPS) technology has represented
the main UAV navigation solution, there exist several GPS-denied environments such
as urban canyons, indoor spaces, and areas with significant electromagnetic interference
where alternative solutions are needed [3].

To address the limitations of GPS-dependent navigation in difficult environments,
the development of alternative onboard sensor-based solutions has gained significant
attention from the research community [4]. Among these, Visual-based Simultaneous
Localization and Mapping (SLAM) techniques have emerged as a promising solution for
enabling UAVs to localize themselves and map their surroundings in the absence of GPS
signals [5,6]. Visual-based SLAM systems use onboard cameras and computer vision
algorithms to construct a map of the environment while simultaneously estimating the
UAV’s position and orientation. This technology has demonstrated significant success in
various applications, including autonomous navigation, environmental monitoring, and
the inspection of infrastructure [7].

Drones 2025, 9, 69 https://doi.org/10.3390/drones9010069

https://doi.org/10.3390/drones9010069
https://doi.org/10.3390/drones9010069
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-2282-2884
https://orcid.org/0000-0003-4112-3325
https://orcid.org/0000-0002-7075-9878
https://doi.org/10.3390/drones9010069
https://www.mdpi.com/article/10.3390/drones9010069?type=check_update&version=1


Drones 2025, 9, 69 2 of 24

However, achieving robust and real-time performance in dynamic and GPS-denied
environments remains a formidable challenge [8]. This challenge becomes even more
noticeable when the UAV’s control and navigation tasks must be seamlessly integrated with
the SLAM system. Using state estimates from a SLAM system for control tasks significantly
impacts the performance and reliability of robotic operations. SLAM provides critical data
such as the robot’s position, orientation, and surrounding environment, which are essential
for accurate trajectory tracking, obstacle avoidance, and task execution. However, the
accuracy of these estimates depends on the SLAM system’s ability to handle sensor noise,
dynamic environments, and uncertainties in mapping. If the state estimates contain drift
or errors, they can propagate into control algorithms, causing instability, poor trajectory
adherence, or collisions. Moreover, since SLAM systems are computationally intensive,
delays in providing real-time state updates can hinder the responsiveness of control systems,
particularly in fast-changing environments.

In this work, we refer to the general problem of concurrently integrating control tasks
with localization and mapping tasks as SCLAM, or Simultaneous Control, Localization, and
Mapping. (In robotics, the acronym SCLAM has also been used to refer to Simultaneous
Calibration, Localization, and Mapping [9].) Applying SCLAM to UAVs in GPS-denied
environments presents a complex and compelling research challenge that demands innova-
tive approaches to address the intricacies of autonomous navigation and task execution
under significant constraints.

This paper aims to contribute to addressing some of the challenges outlined above by
presenting a novel vision-based SCLAM system specifically designed for UAVs operating
in GPS-denied environments. The proposed system leverages high-level control strategies
and a hybrid monocular-based SLAM method to enable UAVs to navigate autonomously
in the absence of GPS signals and build and maintain a consistent map of the environment.
We address key challenges such as real-time processing, autonomous exploration, and
home return, and the closing-the-loop problem.

Vision-based SCLAM systems, such as the one proposed in this paper, can be applied
in, for example, search-and-rescue operations in environments where GPS signals are
unavailable, such as indoors, underground, or in dense urban areas [10–12]. In such
scenarios, the UAV could autonomously navigate through the environment, building a
map of the area while simultaneously localizing itself within that map. The system’s ability
to handle real-time processing and solve the loop closure problem ensures that the UAV
can successfully return to its starting point (home return), even after exploring unknown
areas [13].

In summary, this work represents a significant advancement in enabling UAVs to
operate effectively in challenging GPS-denied environments, thereby expanding the scope
of applications for these versatile aerial platforms.

The remainder of this paper is organized as follows: Section 2 provides a brief overview
of related work in the field of vision-based SCLAM. Section 3 summarizes the contributions
of this work. In Section 4, we describe the design and architecture of our proposed SCLAM
system. Section 5 presents the experimental results and performance evaluations. Finally,
in Section 6, we conclude with a summary of our contributions and potential directions for
future research.

2. Related Work
This section provides an overview of relevant work in the development of SCLAM

systems, with a focus on approaches and methods tailored to Unmanned Aerial Vehicles,
especially those using cameras as their main sensory source.



Drones 2025, 9, 69 3 of 24

A comprehensive survey by Shen et al. [14] highlights the various visual SLAM
techniques developed for UAVs. These techniques are pivotal for autonomous navigation
and mapping in GPS-denied environments. Among the methods reviewed, tightly coupled
visual–inertial navigation systems stand out for their robustness and real-time performance.
In the context of control and integration with UAVs, Shen et al. [14] proposed a tightly
coupled visual–inertial navigation system (VINS) that combines visual information with
inertial measurements to enhance the robustness of UAV navigation. This method addresses
the limitations of purely visual SLAM systems by incorporating inertial data, which is
particularly useful in dynamic environments. Forster et al. [15] introduced a visual–inertial
SLAM system that incorporates an efficient control algorithm to achieve precise navigation
in cluttered environments. This system uses tightly coupled visual–inertial data to enhance
the robustness and accuracy of UAV navigation.

Research by Zhang and Scaramuzza [16] focused on the integration of visual SLAM
with advanced control strategies to achieve autonomous navigation in cluttered environ-
ments. Their system employs a combination of visual SLAM and model predictive control
(MPC) to navigate UAVs through complex obstacle-laden areas, demonstrating signifi-
cant improvements in path planning and collision avoidance. Additionally, the work by
Faessler et al. [17] integrates a monocular SLAM system with nonlinear model predictive
control (NMPC) for agile drone flight. This approach allows UAVs to perform high-speed
maneuvers while maintaining accurate localization and mapping, crucial for applications
in dynamic environments.

Moreover, Li et al. [18] presented a monocular SLAM system specifically designed
for MAVs that also incorporates a control algorithm for robust flight in GPS-denied envi-
ronments. This system optimizes both computational efficiency and power consumption,
making it suitable for the limited resources available on MAV platforms. Their approach
includes a lightweight feature extraction method and an efficient map management strategy.
Mei et al. [19] focused on the development of a visual SLAM system integrated with a
robust control framework for outdoor UAV applications. Their approach addresses chal-
lenges related to varying lighting conditions and environmental dynamics, demonstrating
improved performance in outdoor scenarios.

Liu et al. [20] proposed an adaptive control and SLAM system for UAVs, integrating
a robust SLAM algorithm with an adaptive control strategy to handle dynamic environ-
mental changes and improve flight stability. Similarly, Kaufmann et al. [21] developed a
visual SLAM system combined with a learning-based control approach, enabling UAVs to
adaptively navigate through complex and unpredictable environments. Bachrach et al. [22]
presented a system that integrates visual SLAM with an adaptive control framework for
UAVs operating in indoor and outdoor environments. This system enhances the UAV’s
ability to maintain stability and accurate mapping even in rapidly changing environments.

Sun et al. [23] explored the use of reinforcement learning to enhance the integration
of SLAM and control systems for UAVs. Their approach leverages deep reinforcement
learning to optimize control policies in real-time, improving the UAV’s ability to navigate
and map dynamic environments.

In summary, the development of visual-based SCLAM systems for UAVs and MAVs
has seen substantial progress through various innovative approaches. These methods
encompass feature-based SLAM, visual–inertial fusion, deep learning-enhanced SLAM,
and advanced control integration. The continuous advancements in these areas are
crucial for achieving robust, real-time autonomous navigation and mapping in GPS-
denied environments.



Drones 2025, 9, 69 4 of 24

3. Contributions
This work aims to address the challenge of enabling a UAV equipped with a monocular

camera as its main sensor to perform autonomous exploration missions in GPS-denied
environments. In this work, an autonomous exploration mission is defined as the process
in which a UAV follows a predefined mission flight plan consisting of ordered high-level
commands such as take-off, flying to a point, exploring a specific area, returning to the
home position, and landing.

The main contribution of this work is the introduction of a novel system architec-
ture to address the aforementioned problem. Algorithms and methods are proposed for
realizing a complete system based on the described architecture. Specifically, this work
provides a detailed description of both high- and low-level control algorithms, while the
full description of the SLAM subsystem is available in a previous work by the authors. An
important characteristic of the proposed architecture is its flexibility and adaptability, as all
its subsystems and modules can be implemented using alternative techniques and methods
tailored to meet the requirements of the final application.

Another key contribution of this work is the introduction of a novel technique that
enables the UAV to return to its home position, even when significant error drift has
accumulated in the estimated pose. This technique addresses the common challenge faced
by robots attempting to return to their home position in GPS-denied environments.

4. Materials and Methods
4.1. Problem Description

The problem addressed in this work can be articulated as follows: this study focuses on
developing a navigation system that enables a multi-rotor UAV, equipped with a monocular
camera as its primary sensor, to carry out a fully autonomous exploration mission in a GPS-
denied environment. In this context, an exploration mission involves the UAV executing a
series of sequential actions: taking off from a known home position, either flying along a
predefined set of waypoints or exploring an area of a specific size, and then returning to the
home position for landing. It is important to note that this work assumes an obstacle-free
airspace; therefore, the issue of obstacle avoidance is not addressed.

It is important to clarify the key differences between the methodologies typically used
for evaluating the SLAM and the SCLAM methods:

• When using SLAM methods (Figure 1, upper plots), it is common to assume perfect
control, where the robot is manually guided along a predefined trajectory. As the
robot moves farther from its starting position, the estimated trajectory will inevitably
drift from the actual path due to integration errors. However, when the robot returns
to its base and detects a previously mapped area (a process known as loop closure),
the SLAM algorithm can reduce the accumulated error drift. The performance of
the SLAM algorithm is then evaluated by comparing the estimated trajectory to the
predefined path.

• Conversely, with SCLAM methods (Figure 1, lower plots), the pose estimated by the
SLAM subsystem is directly fed back to the autonomous control subsystem. This
means that the autonomous control treats the SLAM-estimated pose as the ground
truth. Consequently, any error in the SLAM-estimated position will result in a corre-
sponding error between the robot’s desired and actual positions. When a loop closure
occurs, the estimated robot position is corrected, enabling the control subsystem to
identify and adjust the actual drifted position of the robot.



Drones 2025, 9, 69 5 of 24

Figure 1. Comparison between the SLAM problem (upper plot) and the SCLAM problem (lower
plot) regarding the actual and estimated trajectories before and after loop closure.

4.2. System Architecture

Figure 2 depicts the architecture of the proposed SCLAM system. The flying robot is
assumed to be a multi-rotor equipped with a monocular camera and a standard array of
sensors commonly found in such devices, including an Inertial Measurement Unit (IMU),
Altimeter (barometer), and others.

The architecture comprises two key systems: SLAM and Control. The SLAM system
processes the onboard robot’s sensor data stream to compute the robot’s state (pose and
velocity). It also identifies and corrects trajectory loops to minimize error drift in estimates.
Meanwhile, the Control system utilizes feedback from SLAM estimates and other sensor
data to determine the rotor velocities necessary for the robot to execute high-level com-
mands such as exploring an area or navigating to a specific point. In the following sections,
each of these subsystems will be explained in detail.



Drones 2025, 9, 69 6 of 24

Figure 2. Proposed architecture.

4.3. SLAM System

The objective of the monocular-based SLAM system is to estimate the following robot
state vector xr:

xr =
[
eNR ωR rN vR

]T
(1)

The vector eNR = [θ, ϕ, ψ] describes the orientation of the robot’s coordinate frame
R relative to the navigation coordinate frame N . Here, θ, ϕ, and ψ are the Tait–Bryan
angles, also known as Euler angles, representing roll, pitch, and yaw, respectively. This work
employs the intrinsic rotation sequence ψ− ϕ− θ. The vector ωR = [ωx, ωy, ωz] indicates
the robot’s rotational velocity along the xR, yR, and zR axes defined in the robot frame R.
The vector rN = [xr, yr, zr] represents the robot’s position as expressed in the navigation
frame N . The vector vR = [vx, vy, vz] denotes the robot’s linear velocity along the xR, yR,
and zR axes, as measured in the robot frame R.

Since the proposed system is designed for local autonomous navigation tasks of robots,
the local tangent frame serves as the navigation frame. This navigation frame, denoted
as N , adheres to the NED (north-east-down) convention, with the robot’s initial position
establishing its origin. In this study, all coordinate systems are right-handed. Quantities
expressed in the navigation frame, the robot frame, and the camera frame are indicated by
superscripts N , R, and C, respectively (refer to Figure 3).

The robot’s state vector xr is estimated from a series of 2D visual measurements
zuv = [ui, vi]

T corresponding to static 3D points yN
i = [xi, yi, zi]

T in the robot’s environment.
Additionally, a series of auxiliary measurements zk are obtained from the robot’s onboard
sensors, such as the following:

• Attitude measurements ze = [θ, ϕ, ψ]T , which are acquired from the Attitude and
Heading Reference System (AHRS);

• Altitude measurements zzr = zr, which are obtained from the altimeter.

The SLAM system is designed to harness the strengths of two key methodologies
in a visual-based SLAM system: filter-based methods and optimization-based methods.
This integration leverages the complementary nature of these approaches. The system
architecture includes a filter-based SLAM subsystem for continuous local SLAM processes
and an optimization-based SLAM subsystem for maintaining a consistent global map of



Drones 2025, 9, 69 7 of 24

the environment. Running these components concurrently in separate processes enhances
both modularity and robustness, providing an additional layer of redundancy.

Figure 3. System parameterization.

A detailed description of the complete SLAM system can be found in a previous work
by the author [24], with the source code also available at [25]. This work will focus on
introducing the control functionality.

4.4. Control System
4.4.1. Low-Level Control

The goal of this subsystem is to manage the robot’s linear velocity along (x− y) axes,
as well as its altitude and yaw rate. Specifically, it calculates the required velocities for
the robot’s rotors, denoted by m = [m1, m2, m3, m4]

T , which are necessary to achieve the
desired control reference r = [v∗Rx , v∗Ry , v∗N

z , ω∗Rz ]. The components of the control reference
are defined as follows: v∗Rx : the target linear velocity of the robot along the x-axis in the
robot frame; v∗Ry : the target linear velocity of the robot along the y-axis in the robot frame;
v∗N

z : the target linear velocity of the robot along the z-axis (altitude) in the navigation
frame; ω∗Rz : the target angular velocity of the robot along the z-axis (yaw) in the robot
frame (see Figure 4).

Figure 4. Notation for the quad-rotor UAV used in this work, illustrating the rotors, thrust vectors,
and directions of rotation.



Drones 2025, 9, 69 8 of 24

To adjust its linear velocity along the x and y axes, the robot must vary its pitch
and roll accordingly. To compute the reference signals for pitch ϕref and roll θref, which
are necessary to achieve the desired velocities v∗Rx and v∗Ry , Proportional–Integral (PI)
controllers are employed:

ϕref = Kx,pex + Kx,i

∫
ex

θref = −(Ky,pey + Ky,i

∫
ey)

(2)

where ex = v∗Rx − vR
x and ey = v∗Ry − vR

y represent the error in velocities along the x and y
axes, respectively. The parameters Kx,p and Kx,i are the proportional and integral gains for
the x axis, while Ky,p and Ky,i are the proportional and integral gains for the y axis. The
actual linear velocities vR

x and vR
y can be measured using the robot’s optical flow sensor.

Alternatively, if the optical flow sensor is not available, vR
x and vR

y can be obtained from the
SLAM output.

The low-level pitch (uϕ) and roll (uθ) inputs are computed using a Proportional–
Derivative (PD) controller, while the low-level vertical (uz) and yaw (uψ) inputs are com-
puted using a Proportional (P) controller:

uθ = Kθ,pθ + ωR
x + θref

uϕ = Kϕ,pϕ + ωR
y + ϕref

uz = Kz,pez

uψ = Kψ,peψ

(3)

where ez = zref − zN
r and eψ = ω∗Rz − ωR

z represent, respectively, the error in altitude
and the error in angular velocity along the z axis. The vertical reference zref is updated
according to the target linear velocity along the z axis: zref = zref + v∗N

z ∆t. The parameters
Kθ,p, Kϕ,p, Kz,p, and Kψ,p are the proportional gains, and ∆t is the time step. The actual
pitch (ϕ) and roll (θ) can be obtained from the robot’s Attitude and Heading Reference
System (AHRS). The actual angular velocities of ωR

x , ωR
y , and ωR

z can be measured using
the robot’s Inertial Measurement Unit (IMU). The actual altitude zN

r can be measured using
the robot’s altimeter.

The robot’s rotors velocities [m1, m2, m3, m4]
T are computed from the inputs vector

[uz, uψ, uϕ, uθ ]
T through the following linear system:

m1

m2

m3

m4

 =


1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1




uz

uψ

uϕ

uθ

+


Kz,0

Kz,0

Kz,0

Kz,0

 (4)

where Kz,0 is a feed-forward constant representing the rotor velocity required to maintain
the robot in a hovering position. The low-level controller presented in this section is
the same as the one used by the DJI Mavic 2 Pro, the aerial robot employed in virtual
experiments. However, it is important to note that other low-level control techniques can
be used if needed.

The low-level control module directly manages two high-level commands:

• Take-off<>: To lift the robot from the ground when it is landed, the module sets the
vertical reference zref to a value slightly greater than zero (e.g., 0.5 m).

• Landing<>: When the robot’s altitude is near the ground (e.g., less than 0.2 m), the
command initiates landing by setting the rotor velocities to zero.



Drones 2025, 9, 69 9 of 24

4.4.2. Waypoint Control

The goal of this subsystem is to manage the robot’s position and yaw. Specifically,
it calculates the required velocities [vR

x , vR
y , vN

z , ωz] needed for the robot to move to the
desired position (waypoint) [x∗N

r , y∗N
r , z∗N

r , ψ∗].
To achieve this, the following signal errors are computed:

eN
x = x∗N

r − xN
r

eN
y = y∗N

r − yN
r

eN
z = z∗N

r − zN
r

eψ = ψ∗ − ψ

(5)

where [xN
r , yN

r , zN
r , ψ] represents the actual position and yaw of the robot, which are obtained

from the robot state vector xr estimated by the SLAM system.
The x-y error is transformed from navigation coordinates to robot coordinates:[

eR
x

eR
y

]
=

[
cos ψ sin ψ

− sin ψ cos ψ

][
eN

x
eN

y

]
(6)

A proportional control strategy with logarithmic smoothing is used to compute the
velocities [vR

x , vR
y , vN

z , ωz]:

vR
x = −kpx · log10(

∣∣∣eR
x

∣∣∣+ 1.0) · sign(eR
x )

vR
y = −kpy · log10(

∣∣∣eR
y

∣∣∣+ 1.0) · sign(eR
y )

vN
z = kpz · log10(

∣∣∣eN
z

∣∣∣+ 1.0) · sign(eN
z )

ωz = kpψ · log10(
∣∣eψ

∣∣+ 1.0) · sign(eψ)

(7)

where parameters kpx , kpy , kpz , and kpψ are the proportional gains. At each time step, the
computed velocities are sent as inputs to the low-level control module until the following
condition is met:

(
∣∣∣eN

x

∣∣∣ < exy,max) and (
∣∣∣eN

y

∣∣∣ < exy,max) and (
∣∣∣eN

z

∣∣∣ < ez,max) and (
∣∣eψ

∣∣ < eψ,max) (8)

where exy,max, ez,max and eψ,max are the maximum allowable errors for each position dimen-
sion. Thus, when the above condition is true, it is assumed that the robot has arrived at the
desired waypoint. It is important to note that there is a trade-off when tuning the maximum
allowable errors. Reducing these values will improve waypoint accuracy but this is also
likely to increase the time required to reach each point due to the additional corrections
needed to minimize the errors.

The waypoint control module directly manages the following high-level command:

• Go-to-point< x∗N
r , y∗N

r , zN
r , ψ∗ >: Commands the robot to move to the specified

position and orientation.

4.4.3. Visual Marks-Based Control

The goal of this subsystem is to manage the robot’s position and yaw relative to a
visual reference. Specifically, it calculates the required velocities [vR

x , vR
y , vN

z , ωz] needed
for the robot to move to the desired position [x∗Vr , y∗Vr , z∗Vr , ψ∗V ], where the superscript V

denotes a local coordinate frame attached to a visual marker (see Figure 5).



Drones 2025, 9, 69 10 of 24

Figure 5. Reference frames used for visual marks-based control. An Aruco marker is used in
this work.

To achieve this, the following signal errors are computed:

eN
x = x∗Vr − xV

r

eN
y = y∗Vr − yV

r

eN
z = z∗Vr − zV

r

eψ = ψ∗V − ψV

(9)

where [xV
r , yV

r , zV
r , ψV ] represents the actual position and yaw of the robot with respect to

the visual marker. These values are computed by solving the Perspective-n-Point (PnP)
problem. The PnP problem involves determining the camera pose based on a set of known
3D points (i.e., anchors) in the scene and their corresponding 2D projections in the image
captured by the camera [26].

In this case, let hi(cV
H , pV

i ) denote the predicted projection of the 3D point pV
i in the

image plane, and vi denote the measured (matched) projection of pV
i in the image plane.

Also, let cV represent the camera pose defined in the visual marker frame. The PnP problem
can be formulated as the minimization of the total reprojection error d(hi(cV , pV

i ), vi) for n
points pV

i . This can be expressed mathematically as follows:

min
cV

n

∑
i=1

d(hi(cV , pV
i ), vi)

2 (10)

Here, cV represents the estimated camera pose with respect to the visual marker frame
that minimizes the PnP problem. In this work, the aruco::estimatePoseSingleMarkers method
from the OpenCV library [27] is used to solve this (10).

Velocities [vR
x , vR

y , vN
z , ωz] are computed using the same proportional control strategy

with logarithmic smoothing described in Equations (6)–(8).
The visual-mark control module directly manages the following high-level command:

• Go-to-point-visual< x∗Vr , y∗Vr , zV
r , ψ∗V >: Commands the robot to move to the speci-

fied position and orientation respect to the visual mark.



Drones 2025, 9, 69 11 of 24

4.4.4. Trajectory Generation

The goal of this subsystem is to generate flight trajectories that address high-level
commands, such as ’Explore Area’ or ’Go Home,’ by computing the waypoints that compose
these trajectories.

Explore-area < xa, ya, λy > generates a series of n waypoints p1, p2,...,pn that com-
pose a flight trajectory, as illustrated in Figure 6. This trajectory is designed to explore
a rectangular area of 2 ∗ xa × 2 ∗ ya with a constant altitude zN

r and yaw ψ for a robot
initially positioned at [xN

r(0), yN
r(0), zN

r(0), ψ(0)]. In this case, pi is defined as the i-th waypoint,

pi = [xN
r(i), yN

r(i), zN
r(0), ψ(0)], that composes the trajectory.

Figure 6. Pattern used by the Explore-area command (left plot) and side image overlap illustration
(right plot).

In the flight pattern illustrated in Figure 6 (left plot), ∆y = f (λy, hr) represents the dis-
placement between each segment of the flight trajectory along the y-axis. This displacement
determines the degree of image overlap, as shown in the right plot. Specifically, ∆y depends
on the local altitude of the robot hr and the overlapping factor λy. In aerial photogrammetry,
image overlapping refers to the intentional overlap of consecutive aerial images captured
during a flight. Effective overlapping is essential for generating high-quality orthoimages,
digital elevation models (DEMs), and other products, as it allows for reliable stitching of
images and improved data integrity.

First, the displacement ∆y that satisfies the overlapping factor λy, given the robot’s
current altitude hr, is computed. To achieve this, we calculate the position of a virtual
landmark pC

v = [xC
v , yC

v , zC
v ]

T with respect to the camera frame from the following equation:

pC
v = d ∗ hc (11)

where d = hv/hc · [0, 0, 1]T is the depth of the virtual feature pC
v and hc = f (u, v)−1 is the

normalized vector pointing from the optical center of the camera to the virtual feature pC
v .

Here, f (u, v)−1 denotes the inverse of the camera projection model (see [24]), and u and
v are the column and row dimension corresponding to the image resolution, respectively.
The robot’s current altitude hr can be obtained directly from a range sensor or computed
using the local SLAM map.

Given the above, ∆y is computed as follows:

∆y =
∣∣∣yC

v

∣∣∣(1 + λy) (12)

where λy ∈ (−1, ∞). Note that ∆y can range from just above zero to infinity.



Drones 2025, 9, 69 12 of 24

The first waypoint p1, corresponding to the left-lower corner of the trajectory, is
computed as follows:

p1 = [(xN
r(i) + xa), (yN

r(i) − ya), zN
r(0), ψ(0)].

The remaining n − 1 = (4 ∗ ⌊ya⌋/∆y) + 1 waypoints p2,...,pn are computed using
Algorithm 1.

Algorithm 1 Waypoints p2,...,pn generation

1: right← f alse
2: c_lr ← 0
3: for i← 2 to (4 ∗ ⌊ya⌋/∆y + 3) do
4: c_lr ← c_lr + 1
5: if right then
6: xN

r(i) ← xN
r(0) + xa

7: yN
r(i) ← yN

r(0) − ya

8: if c_lr = 2 then
9: right← f alse

10: c_lr ← 0
11: else
12: ya ← ya − ∆y
13: end if
14: else
15: xN

r(i) ← xN
r(0) − xa

16: yN
r(i) ← yN

r(0) − ya

17: if c_lr = 2 then
18: right← true
19: c_lr ← 0
20: else
21: ya ← ya − ∆y
22: end if
23: zN

r(i) ← zN
r(0)

24: ψ(i) ← ψ(0)
25: end if
26: end for

Finally, using the command Go-to-point< x∗N
r , yN

r , zN
r , ψ >, each waypoint pi with

i = 1, . . . , n, which was computed previously, is executed sequentially to guide the robot in
exploring the desired area. If a closing-loop condition occurs, the method terminates and
returns a true value.

Go-home <> moves the robot from its current position [xN
r , yN

r , zN
r , ψ] to the home

(hovering) position [0N , 0N , zN
r , 0]. At first glance, one might think that this could be

achieved simply by using Go-to-point< 0, 0, zN
r , 0 >. However, the accumulated error drift

in the estimated trajectory (see Section 4.1) can cause the robot to be far from the home
position, even when it “thinks” it has returned.

One way to determine if the robot has successfully returned near the home position
is to visually recognize the home. In this work, an Aruco marker (see Figure 5) located
at the ground level of the home position is used to facilitate this task. Moreover, if the
home position is recognized, the SLAM algorithm can close the loop and minimize the
accumulated error drift in the estimated trajectory. If the robot is commanded to return
to its home but the home is not visually recognized (and the loop is not closed) during
the flight trajectory, it is assumed that the robot has lost track of the home position due to
accumulated error drift in the SLAM estimates.



Drones 2025, 9, 69 13 of 24

The approach to tackle the above problem is to define a search region, the size of which
is determined by the following simple uncertainty model:

ṙ(t) = ξ(t) (13)

where r is the radius of the search area, and ξ(t) represents zero-mean Gaussian white
noise with power spectral density defined by σ2

r , specifically ξ(t) ∼ N (0, σ2
r ). In this case,

σr is heuristically set to conservatively account for the increasing error drift in the estimated
trajectory. This is performed in such a way that, when the robot “thinks” it has returned
to the home position, the true home position lies within the search area (see Figure 7,
upper-left plot).

Then, the robot is commanded to explore the search region using the command
Explore-area< r, r, λy > to try to find the home (see Figure 7, upper-right plot). If the
home is recognized and the SLAM system closes the loop during the exploration, then the
corrected position of the robot is obtained, and a final (small) approach to [0N , 0N , zN

r , 0] is
commanded (see Figure 7, lower-right plot).

Figure 7. The go-home command utilizes an uncertainty model to define a search region for locating
the visual marker at the home position when it is not found in the expected location due to accumu-
lated error drift (upper-left plot). The explore-area method, constrained to this search region, is then
used to locate the home position (upper-right plot). If the home is detected, the SLAM system closes
the loop, minimizing pose error and allowing the robot to successfully navigate to the home position
(lower-right plot).



Drones 2025, 9, 69 14 of 24

Algorithm 2 summarizes the Go-home <> command.

Algorithm 2 Go-home<> command

1: Success← Go-to-point < 0, 0, zN
r , 0 >

2: if Success then
3: if CloseLoop then
4: Success← Go-to-point < 0, 0, zN

r , 0 >
5: if Success then
6: Go-home successful!!
7: Return true
8: end if
9: else

10: Success← Explore-area < r, r, λy >
11: if CloseLoop then
12: Success← Go-to-point < 0, 0, zN

r , 0 >
13: if Success then
14: Go-home successful!!
15: Return true
16: end if
17: else
18: Go-home unsuccessful!!
19: Return false
20: end if
21: end if
22: end if

5. Results
The proposed visual-based SCLAM system was implemented in C++ within the ROS 2

(Robot Operating System 2) framework [28]. Each subsystem described in the system
architecture (see Figure 2) has been developed as a ROS 2 component. Additionally, Webots
was utilized for testing the system. Webots is widely recognized in research, education, and
industry for prototyping and testing robotic algorithms in a virtual environment prior to
real-world deployment [29]. The source code for implementing the proposed visual-based
SCLAM system is available at [30].

Figure 8 illustrates the Mars-like environment used in the virtual experiments, along
with a frame captured by the downward-facing monocular camera of the robot, showcasing
the visual features tracked at that moment. The flying robot used in our virtual experiments
is a DJI Mavic 2 Pro. For our analysis, we capture image frames from the front monocular
camera at a resolution of 400 × 240 pixels and a rate of 30 frames per second. Additionally,
we also incorporate measurements from the IMU and altimeter.

5.1. Low-Level Control

Figure 9 compares each low-level control signal reference v∗Rx , v∗Ry , zref, and ω∗Rz with
their corresponding actual responses vR

x , vR
y , zN

r , and ωR
z . The reference altitude is defined

as zref = zref + v∗N
z ∆t.

It is observed that the low-level control system effectively tracks the reference inputs.
For the linear velocities v∗Rx and v∗Ry , the integral terms minimize steady-state error. In
contrast, the altitude and yaw velocity control employ a Proportional (P) controller, leading
to inherent steady-state errors in their outputs. These steady-state errors in altitude and
yaw are subsequently managed by the high-level control system.



Drones 2025, 9, 69 15 of 24

Figure 8. Virtual experiments were conducted in a Mars-like environment using the Webots simulator
(main plot). A frame captured from the robot’s onboard camera shows the visual landmarks tracked
by the SLAM system (upper-left plot).

60 70 80 90 100 110 120

0.15

0.10

0.05

0.00

0.05

0.10

0.15

70 80 90 100 110 120

0.15

0.10

0.05

0.00

0.05

0.10

0.15

20 30 40 50 60
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

20 30 40 50 60 70 80

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Figure 9. Comparison between reference signals v∗Rx , v∗Ry , zref, and ω∗Rz and their responses vR
x , vR

y ,
zN

r , and ωR
z obtained from the low-level control subsystem.

5.2. Waypoint Control

Figure 10 compares each waypoint control signal reference x∗N
r , y∗N

r , z∗N
r , and ψ∗r with

their corresponding actual responses xN
r , yN

r , zN
r , and ψr.

It is observed that the waypoint control system effectively tracks the reference inputs,
indicating that the flying robot can move to the desired position and orientation within
its environment. Furthermore, the control strategy incorporating logarithmic smoothing
allows for the handling of arbitrarily large initial errors in pose.



Drones 2025, 9, 69 16 of 24

140 160 180 200

0.0

0.5

1.0

1.5

2.0

100 120 140 160 180 200 220

2.0

1.5

1.0

0.5

0.0

30 40 50 60 70 80 90 100
2.2

2.4

2.6

2.8

3.0

40 60 80 100 120

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 10. Comparison between reference signals x∗N
r , y∗N

r , z∗N
r , and ψ∗r and their responses xN

r , yN
r ,

zN
r , and ψr obtained from the waypoint control subsystem.

The results presented in Figure 10 were obtained by conservatively tuning the
controller (kpx = kpy = exy,max = 0.5). Figure 11 shows the results for the refer-
ence signals x∗N

r and y∗N
r , but in this case with slightly increased parameter values

(kpx = kpy = exy,max = 0.75). These results demonstrate a faster response but at the
cost of a larger overshoot. Alternatively, the low-level controller could be tuned alongside
the waypoint controller to achieve different responses if needed. However, other control
strategies could also be employed, particularly if more aggressive responses are required.

100 110 120 130 140 150 160 170 180

0.0

0.5

1.0

1.5

2.0

100 110 120 130 140 150 160 170 180

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Figure 11. Comparison between the reference signals x∗N
r and y∗N

r , and their corresponding responses
xN

r and yN
r , obtained by slightly increasing the control gains kpx and kpy , as well as the maximum

allowable error exy,max.

5.3. Visual-Mark-Based Control

Figure 12 compares each signal reference x∗Vr , y∗Vr , z∗Vr , and ψ∗Vr provided to the
visual-mark-based control system with their corresponding actual responses xV

r , yV
r , zV

r ,
and ψV

r .
It is observed that the visual-mark-based control system effectively tracks the reference

inputs, indicating that the flying robot can move to the desired position and orientation
relative to the Aruco visual mark. This controller requires the visual mark to be within the
field of view of the robot’s onboard camera. Consequently, its working space is constrained
to the area above the visual mark, with its size dependent on the robot’s altitude above the
mark. In this case, the robot was commanded to fly at an altitude of 5 m to perform the
desired trajectory over the x-y plane.



Drones 2025, 9, 69 17 of 24

100 120 140 160 180 200 220 240 260

2.0

1.5

1.0

0.5

0.0

100 120 140 160 180 200 220 240 260

0.0

0.5

1.0

1.5

2.0

40 60 80 100 120 140

2.0

2.5

3.0

3.5

4.0

4.5

5.0

40 60 80 100 120 140

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 12. Comparison between reference signals x∗Vr , y∗Vr , z∗Vr , and ψ∗Vr and their responses xV
r , yV

r ,
zV

r , and ψV
r obtained from the Visual-mark-based control subsystem.

5.4. Explore Area

Figure 13 presents a comparison of the robot’s flying trajectories obtained using the
command Explore-area < 5, 3, λy > at an altitude of 3 . The parameter values for λy are set
to {0.0,−0.25,−0.5}. With this command, the robot explores a rectangular area measuring
5 × 3 m, as detailed in Section 4.4.4.

The overlapping factor λy determines the degree of image side overlap, which refers
to the overlap between images captured from adjacent flight lines. As observed in the
figure, the amount of overlap increases from the left plot to the right plot.

Figure 13. Comparison of trajectories obtained from the Explore-area command using three different
values for λy.

5.5. Full Exploration Mission

In this experiment, the following autonomous exploration mission was assigned to
the robot:
Take-off<>→ Go-to-point-visual< 0, 0, 3, 0 >→ Go-to-point< −25, 0, 3, 0 >

→ Explore-area< 5, 15, 0 >→Go-to-point< −15, 15, 3, 0 >→Go-to-point< −15, 0, 3, 0 >

→ Go-home<>→ Landing<>

The objective is to evaluate the entire SCLAM system by commanding the flying
robot to autonomously take-off, navigate to a point distant from its home, explore an
area of the environment, and then return to its home position to land. In scenarios where
GPS is available, executing this mission would be relatively straightforward, potentially
requiring only a visual-servoing control scheme to refine the landing process. Conversely,



Drones 2025, 9, 69 18 of 24

in GPS-denied environments, the accumulated error in the estimated pose throughout
the trajectory leads to a discrepancy between the robot’s desired and actual positions, as
discussed in Section 4.1. This issue is addressed by the ”Go-home” strategy outlined in
Section 4.4.4.

Figure 14 presents the results obtained from the previously described mission. Plot (a)
shows the moment when the robot has just completed the command Go-to-point< −25, 0, 3, 0 >

and is about to execute the command Explore-area< 5, 15, 0 >. At this point, there is min-
imal error drift, but the search area defined by the uncertainty model (13) has begun to
expand. In Plot (b), the robot has finished exploring and is in the process of executing the
command Go-home<>, having returned to the position where it is supposed to recognize
its home. However, due to the accumulated error in the estimated pose, the home position
is not recognized, prompting the robot to search for it within the region defined by the
search area. The accumulated error drift in the estimated robot’s pose also affects the
accuracy of the Explore-area<> command. In this case, Plot (b) also shows a comparison
between the desired area to be explored using the Explore-area< 5, 15, 0 > command and
the actual area explored.

In Plot (c), the robot is traversing the home area while exploring the search area. At
this stage, the SLAM system successfully detects the visual marker, enabling loop closure.
In Plot (d), the SLAM system has closed the loop, effectively minimizing error drift, which
means that the estimated pose of the robot aligns with its actual pose. Consequently, the
robot is now able to execute the final approach to the home position and land. Additionally,
after loop closure, it can be observed how the estimated global map, computed during the
flight trajectory produced by the Explore-area<> command (indicated in Plot (d) as the
Estimated explored area), more closely corresponds to the actual explored area.

The accuracy of the Go-home process was evaluated by calculating the Mean Absolute
Error (MAE) of the distance between the UAV’s home position and landing position across
20 experimental runs. The result was 0.12± 0.06σ m.

Tables 1 and 2 provide statistics regarding the Local and Global SLAM processes,
respectively. It can be observed that the duration of the autonomous flying mission was
approximately 14 min (837 s), during which a global map comprising 56,412 landmarks
was constructed. Additionally, it is noteworthy that the computation times for both the
local and global SLAM processes are shorter than the execution time, indicating real-
time performance.

Table 1. Statistics of the local SLAM process. In this table, feats:I/D is the relation between the total
number of initialized and the deleted EKF features, Feat/Frame is the average number of features
per frame, Time(s)/Frame is the average computation time per frame, and Comp/Exec Time(s) is the
relation between the total computation time and total execution time.

Feats:I/D Feat/Frame Time(s)/Frame Comp/Exec Time(s)

Local SLAM 36,610/36,421 194.5 ± 11.80σ 0.0261 ± 0.010σ 526.05/836.90

Table 2. Statistics of the global mapping process. In this table, number KF is the total number
of Key-frames contained by the global map, Anchors:I/D is the relation between the number of
initialized and deleted anchors carried out by the global mapping process, Time(s)/Frame is the
average computation time per update, and Comp/Exec Time(s) is the relation between the total
computation time and total execution time.

Number KF Anchors:I/D Time per Update (s) Comp/Exec Time(s)

Global Map 555 88,350/31,938 0.354602 ± 0.12 197.15/836.90



Drones 2025, 9, 69 19 of 24

Figure 14. Plots (a–d) show the map, estimated, and actual robot trajectories obtained from a fully
autonomous exploration mission at four different stages. Camera frames captured at each stage are
displayed in plots (a–c). Note that the robot successfully returned to and landed at the home position
(plot (d)) after correcting for accumulated error drift.



Drones 2025, 9, 69 20 of 24

5.6. Experiment in an Indoor Environment

To gain deeper insights into the performance of the proposed visual-based SCLAM
system, additional virtual experiments were conducted in a factory-like indoor environ-
ment. Figure 15 illustrates the environment and the flight trajectory employed in these
experiments. To enhance the clarity of the experimental results, the trajectory is divided
into three segments, each represented by a distinct color. The same flying robot, with the
same sensor configuration used in previous experiments, was employed here.

In this experiment, the following autonomous exploration mission was assigned to
the robot: Take-off<>→ Go-to-point-visual< 0, 0, 3, 0 >→ Go-to-point< 15, 0, 3, 0 >

→ Go-to-point< 15, 3, 3, 0 > → Go-to-point< 15, 0, 3, 0 > → Go-to-point< 3, 0, 3, 0 >

→ Go-to-point< 3, 3, 3, 0 > → Go-to-point< 3, 3, 4, 0 > → Go-to-point< 10, 3, 4, 0 >

→ Go-to-point< 3, 3, 4, 0 >→ Go-to-point< 3, 3, 3, 0 >→ Go-to-point< 3, 0, 3, 0 >→
Go-home<>→ Landing<>

Figure 15. Virtual experiments were conducted in a controlled, factory-like indoor environment. The
flight trajectory is represented in three distinct color segments for easier interpretation.

Figure 16 illustrates the estimated flight trajectory and map, along with the actual
flight trajectory, presented from the upper (x-y) and lateral (z-y, z-x) views for one of the
experiments. As expected, as the UAV moved farther from its home position, some error
drift occurred between the estimated and actual flight trajectories, leading to a correspond-
ing drift between the commanded flight trajectory and the actual one. However, despite
the error drift, the Go-home command successfully returned the robot to its home position
with a precision comparable to that of the previous experiments.



Drones 2025, 9, 69 21 of 24

Figure 16. Results obtained from the experiment conducted in the factory-like indoor environment.

6. Conclusions
The results from the virtual experiments indicate that the proposed SCLAM system

effectively enables a multi-rotor UAV, equipped with a monocular camera as its primary
sensor, to perform fully autonomous exploration missions in GPS-denied environments.
These missions include taking off, navigating to a point, exploring the surrounding area,
and returning to the home position to land.

Unlike other related methods that focus on evaluating specific estimation-control
schemes, this proposal aims to provide a general SCLAM architecture designed to address
the challenges of autonomous exploration from a high-level perspective. Importantly,
the subsystems within this architecture can be implemented using various control and
estimation techniques. For instance, the low-level module could be realized using a
predictive control scheme instead. Given the above, it is more appropriate to interpret the
virtual experimental results as a validation of a proposed architecture’s viability, rather
than an evaluation of a final proposal’s performance.

This does not detract from the fact that the algorithms provided in this work perform
reasonably well and can be used to fully implement the proposed architecture. The virtual
experiments show that the UAV is able to complete fully autonomous exploration missions.
Specifically, the UAV is able to return to its home position with good accuracy, thus mini-



Drones 2025, 9, 69 22 of 24

mizing the error drift in the estimated position accumulated during the flight trajectory.
The results from virtual experiments in two different GPS-denied environments are pre-
sented. Additionally, the computation time statistics validate the real-time performance of
the system. The results for the low-level control subsystem, waypoint control subsystem,
visual-mark-based control subsystem, and the exploring area algorithm are also presented
to validate their expected performance.

Future work could focus on exploring various control, estimation, and trajectory
generation techniques for implementing the subsystems within the proposed architecture.
This could include the use of alternative control algorithms to enable spiral or circular
movements, as well as control methods that produce faster or more aggressive movement
responses. While virtual experiments offer valuable insights into the potential performance
of the SCLAM system in real-world scenarios, future efforts should also aim to extend
these experiments to actual environments, similar to the approach taken with the SLAM
subsystem in the author’s previous work.

Author Contributions: The contributions of each author are as follows: Conceptualization, R.M.
and A.G.; methodology, R.M. and Y.B.; software, Y.B. and G.O.-P.; validation, R.M., G.O.-P. and A.G.;
investigation, Y.B. and G.O.-P.; resources, A.G.; writing—original draft preparation, R.M.; writing—
review and editing, R.M. and A.G.; visualization, G.O.-P.; supervision, R.M. and A.G.; funding
acquisition, A.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been funded by the Spanish Ministry of Science and Innovation project
ROCOTRANSP (PID2019-106702RB-C21/AEI /10.13039/501100011033).

Data Availability Statement: The source code is available in [30] under the MIT license.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

SCLAM Simultaneous Control Localization and Mapping
UAV Unmanned Aerial Vehicle
GPS Global Positioning System
SLAM Simultaneous Localization and Mapping
VINS Visual Inertial Navigation System
MPC Model Predictive Control
NMPC Nonlinear Model Predictive COntrol
MAV Micro Aerial Vehicle
NED North-East-Down
EKF Extended Kalman Filter
AHRS Attitude and Heading Reference System
PI Proportional Integral
PD Proportional Derivative
P Proportional
IMU Inertial Measurement Unit
PnP Perspective-n-Point
ROS Robot Operating System
MAE Mean Absolute Error
KF Key Frame



Drones 2025, 9, 69 23 of 24

References
1. Smith, J.K.; Jones, L.M. Applications of Unmanned Aerial Vehicles in Surveillance and Reconnaissance. J. Aer. Technol. 2022,

45, 112–125.
2. Brown, A.R.; White, C.D. Autonomous Navigation and Perception for Unmanned Aerial Vehicles. Int. J. Robot. Autom. 2021,

28, 567–581.
3. Johnson, P.Q.; Lee, S.H. Challenges in GPS-Dependent Navigation for UAVs in GPS-Denied Environments. J. Navig. Position.

2020, 17, 215–230.
4. Williams, R.S.; Davis, M.A. Sensor-Based Solutions for UAV Navigation in Challenging Environments. IEEE Trans. Robot. 2023,

39, 78–92.
5. Anderson, E.T.; Wilson, B.R. Visual Simultaneous Localization and Mapping for UAVs: A Comprehensive Review. Int. J. Comput.

Vis. 2022, 50, 321–345.
6. Anderson, E.T.; Wilson, B.R. Visual-Based SLAM Techniques: A Survey of Recent Advances. IEEE Trans. Robot. 2022, 38, 123–137.
7. Garcia, M.A.; Patel, S.R. Applications of Visual-Based SLAM in Autonomous Aerial Vehicles. J. Auton. Syst. 2023, 36, 178–192.
8. Miller, L.H.; Robinson, A.P. Challenges in Real-Time UAV Navigation in Dynamic Environments. IEEE Robot. Autom. Lett. 2021,

26, 4210–4217.
9. Della Corte, B.; Andreasson, H.; Stoyanov, T.; Grisetti, G. Unified Motion-Based Calibration of Mobile Multi-Sensor Platforms

With Time Delay Estimation. IEEE Robot. Autom. Lett. 2019, 4, 902–909. [CrossRef]
10. Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans.

Robot. 2017, 33, 1255–1262. [CrossRef]
11. Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018,

34, 1004–1020. [CrossRef]
12. Shan, T.; Englot, B. LIO-SAM: Tightly-Coupled Lidar Inertial Odometry via Smoothing and Mapping. In Proceedings of the 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January
2021; pp. 5135–5142.

13. Kumar, P.; Zhang, H. Real-time Loop Closure for UAVs in GPS-denied Environments. Auton. Robot. 2023, 59, 49–63.
14. Shen, S.; Michael, N.; Kumar, V. Tightly-coupled monocular visual-inertial fusion for autonomous flight of rotorcraft MAVs. In

Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015;
IEEE: Piscataway, NJ, USA, 2015; pp. 5303–5310.

15. Forster, C.; Pizzoli, M.; Scaramuzza, D. SVO: Fast semi-direct monocular visual odometry. In Proceedings of the 2014 IEEE
International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; IEEE: Piscataway, NJ,
USA, 2014; pp. 15–22.

16. Zhang, Y.; Scaramuzza, D. Model Predictive Control for UAVs with Integrated Visual SLAM. In Proceedings of the 2018 IEEE
International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May ; IEEE: Piscataway, NJ, USA, 2018;
pp. 1731–1738.

17. Faessler, M.; Kaufmann, E.; Scaramuzza, D. Differential flatness-based control of quadrotors for aggressive trajectories. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
1–24 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5729–5736.

18. Li, M.; Kim, B.; Mourikis, A. Real-time monocular SLAM for MAVs with improved map maintenance. In Proceedings of the 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016;
IEEE: Piscataway, NJ, USA, 2016; pp. 1764–1771.

19. Mei, J.; Huang, S.; Wang, D.; Mei, X.; Li, J. Robust outdoor visual SLAM and control for UAVs. In Proceedings of the 2017 IEEE
International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 6493–6499.

20. Liu, S.; Lu, L.; Yang, Y.; Wang, H.; Xie, L. Visual SLAM and adaptive control for UAVs in dynamic environments. In Proceedings
of the 2019 IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 5633–5639.

21. Kaufmann, E.; Loquercio, A.; Ranftl, R.; Dosovitskiy, A.; Koltun, V.; Scaramuzza, D. Deep Drone Acrobatics. IEEE Robot. Autom.
Lett. 2020, 38, 23–31.

22. Bachrach, A.; Prentice, S.; He, R.; Henry, P.; Huang, A.; Krainin, M.; Maturana, D.; Fox, D.; Roy, N. Estimation, Planning, and
Mapping for Autonomous Flight Using an RGB-D Camera in GPS-Denied Environments. Int. J. Robot. Res. 2012, 31, 1320–1343.
[CrossRef]

23. Sun, Y.; Ho, Y.S.; Qian, C.; Shao, L.; Zhang, H. Reinforcement learning-based visual SLAM for autonomous UAV navigation. In
Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 2402–2409.

http://doi.org/10.1109/LRA.2019.2892992
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.1177/0278364912455256


Drones 2025, 9, 69 24 of 24

24. Munguía, R.; Trujillo, J.C.; Obregón-Pulido, G.; Aldana, C.I. Monocular-Based SLAM for Mobile Robots: Filtering-Optimization
Hybrid Approach. J. Intell. Robot. Syst. 2023, 109, 53. [CrossRef]

25. SLAM Source Code. Available online: https://github.com/rodrigo-munguia/Hybrid_VSLAM (Accessed on 17 January 2025).
26. Wu, Y.; Hu, Z. PnP Problem Revisited. J. Math. Imaging Vis. 2006, 24, 131–141. [CrossRef]
27. Itseez. Open Source Computer Vision Library. 2015. Available online: https://github.com/itseez/opencv (Accessed on

17 January 2025).
28. Macenski, S.; Foote, T.; Gerkey, B.; Lalancette, C.; Woodall, W. Robot Operating System 2: Design, architecture, and uses in the

wild. Sci. Robot. 2022, 7, eabm6074. [CrossRef] [PubMed]
29. Webots: Mobile Robot Simulation Software. Available online: https://cyberbotics.com/ (accessed on 17 January 2025).
30. SCLAM Source Code. Available online: https://github.com/rodrigo-munguia/SCLAM-UAVs (accessed on 17 January 2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10846-023-01981-5
https://github.com/rodrigo-munguia/Hybrid_VSLAM
http://dx.doi.org/10.1007/s10851-005-3617-z
https://github.com/itseez/opencv
http://dx.doi.org/10.1126/scirobotics.abm6074
http://www.ncbi.nlm.nih.gov/pubmed/35544605
https://cyberbotics.com/
https://github.com/rodrigo-munguia/SCLAM-UAVs

	Introduction
	Related Work
	Contributions
	Materials and Methods
	Problem Description
	System Architecture
	SLAM System
	Control System
	Low-Level Control
	Waypoint Control
	Visual Marks-Based Control
	Trajectory Generation


	Results
	Low-Level Control
	Waypoint Control
	Visual-Mark-Based Control
	Explore Area
	Full Exploration Mission
	Experiment in an Indoor Environment 

	Conclusions
	References

