
Academic Editors: Anastasios Dimou,

Arne Schumann, Lars Sommer,

Dimitrios Zarpalas, Alessio Fascista

and Angelo Coluccia

Received: 30 November 2024

Revised: 8 January 2025

Accepted: 17 January 2025

Published: 19 January 2025

Citation: Xu, H.; Zhu, D. Multiple

Unmanned Aerial Vehicle

Collaborative Target Search by DRL:

A DQN-Based Multi-Agent Partially

Observable Method. Drones 2025, 9,

74. https://doi.org/10.3390/

drones9010074

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Multiple Unmanned Aerial Vehicle Collaborative Target Search
by DRL: A DQN-Based Multi-Agent Partially
Observable Method
Heng Xu and Dayong Zhu *

School of Information and Software Engineering, University of Electronic Science and Technology of China, No. 4,
Section 2, North Jianshe Road, Chengdu 610054, China
* Correspondence: cnzdy@uestc.edu.cn

Abstract: As Unmanned Aerial Vehicle (UAV) technology advances, UAVs have attracted
widespread attention across military and civilian fields due to their low cost and flexibility.
In unknown environments, UAVs can significantly reduce the risk of casualties and improve
the safety and covertness when performing missions. Reinforcement Learning allows
agents to learn optimal policies through trials in the environment, enabling UAVs to
respond autonomously according to the real-time conditions. Due to the limitation of the
observation range of UAV sensors, UAV target search missions face the challenge of partial
observation. Based on this, Partially Observable Deep Q-Network (PODQN), which is a
DQN-based algorithm is proposed. The PODQN algorithm utilizes the Gated Recurrent
Unit (GRU) to remember the past observation information. It integrates the target network
and decomposes the action value for better evaluation. In addition, the artificial potential
field is introduced to solve the potential collision problem. The simulation environment
for UAV target search is constructed through the custom Markov Decision Process. By
comparing the PODQN algorithm with random strategy, DQN, Double DQN, Dueling
DQN, VDN, QMIX, it is demonstrated that the proposed PODQN algorithm has the best
performance under different agent configurations.

Keywords: deep q-network; partially observable; unmanned aerial vehicle; multi-agent;
target search

1. Introduction
In the last few years, owing to advancements in sensor technology and wireless com-

munication technology, technologies related to UAVs have grown progressively mature and
widely applied in various fields [1]. Compared to manned aircraft, UAVs avoid constraints
such as pilot casualties and the need for pilot training, allowing more efficient task execu-
tion. Benefiting from advantages such as small size, low cost, and high maneuverability,
UAVs demonstrate great potential in both military and civilian domains [2].

However, as task requirements become increasingly complex, the limitations of single
UAV in anti-interference capability and perception range have become more pronounced.
The focus of research has shifted toward the collaboration of multi-UAV to execute tasks.

In the field of multi-UAV collaboration, target searching is fundamental and critical.
It requires that the UAV swarm be able to efficiently find specific targets in unknown
and complex environments. Most existing UAV systems rely on pre-programmed algo-
rithms or real-time control by ground operators, and these methods often exhibit clear
limitations in dealing with dynamic environment changes and complex tasks [3]. Faced

Drones 2025, 9, 74 https://doi.org/10.3390/drones9010074

https://doi.org/10.3390/drones9010074
https://doi.org/10.3390/drones9010074
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0009-0007-0997-103X
https://doi.org/10.3390/drones9010074
https://www.mdpi.com/article/10.3390/drones9010074?type=check_update&version=2

Drones 2025, 9, 74 2 of 23

with unknown terrains or emergency situations, the adaptability of preset programs is
insufficient, while manual remote control is constrained by communication delays and the
operator experience.

In this context, the dynamic path planning technology for searching becomes partic-
ularly important. It enables UAVs to adapt in real time to changes in their environment
and optimize their choices, ensuring they can flexibly complete tasks in complex search
environments. To improve the efficiency of target searches, Deep Reinforcement Learning
(DRL) demonstrates unique advantages as a machine learning method. DRL allows agents
to learn an optimal strategy through interaction with the environment, enabling machines
to possess autonomous decision-making capabilities through continuous iteration. Thus,
enabling multi-UAV to independently process environment information and make appro-
priate decisions during task execution through DRL has become a major challenge in the
current research field.

During the application process, several difficulties have emerged. On one hand, DRL
requires extensive exploration and trial-and-error processes, which can be prohibitively
costly in real-world environments. Based on this situation, many studies build simula-
tion environments in a lightweight way. However, these simulation environments often
involve multiple agents and targets, resulting in complex state space and action space that
complicate modeling and resolution [4]. On the other hand, the input of DRL algorithm
should be the state information of the environment. But UAVs cannot directly observe
the comprehensive search environment, which leads to biased evaluations of the action.
Therefore, improving DRL algorithms for partially observable problems is an essential
consideration for researchers [5].

To this end, this paper proposes a multi-UAV collaborative work framework, which
utilizes physical force field, value reinforcement learning, and multi-agent theory to achieve
multi-UAV collaborative target search in partially observable environments. The main
contributions are listed as follows.

• The Markov Decision Process (MDP) model of the UAV target search problem is es-
tablished with the proper action space, state space, and reward function that contains
various conditions. This model lays the foundation for algorithm design and simu-
lation experiment construction, providing a framework and direction for modeling
similar problems in the future.

• A novel value-based deep reinforcement learning model, Patricianly Observable Deep
Q-Network (PODQN), is proposed based on the Deep Q-Network (DQN) algorithm.
The PODQN algorithm can maintains historical observations to understand the whole
environment in partially observable scenarios without relying on global state infor-
mation. Furthermore, it achieves more accurate evaluations of each action through
optimizations such as target network and dueling architecture.

• The PODQN model is extended to a multi-agent framework for partially observable
problems, allowing each agent to use its own experience to train a general network,
thus accelerating model convergence.

This paper is organized as follows. Section 2 reviews the related research on UAV
target search. Section 3 discusses the MDP model established for the problem. Section 4
presents the proposed PODQN model. Section 5 describes the simulation experiments
and compares the model with other algorithms. Section 6 shows the conclusions and
future work.

2. Related Work
In the field of target search, conventional solutions rely on geometric search algorithms

to find all targets by maximizing the coverage of the assigned area [6]. In multi-UAV search

Drones 2025, 9, 74 3 of 23

tasks, breadth-first search is widely used. UAVs progressively explore along the boundary
according to the detection range of the sensor in the designated search area [7]. In addition,
spiral searches let UAVs move in a circular path around a center and gradually reduce
the circle’s radius, which achieves a comprehensive search of the assigned task area [8,9].
However, as an exhaustive strategy, the application of geometric search algorithms is
limited in practice. This is particularly the case when facing dynamic targets, where the
lack of robustness in these algorithms is significant. The movement of dynamic targets
may result in ineffective tracking, especially from unexplored to explored areas [10–13]. In
sparse search environments with few targets, exhaustive searches lead to unnecessary time
and resource consumption. Solutions to this problem include partitioning the task area into
multiple sub-areas and effectively distributing UAVs using task allocation algorithms.

Currently, the grid partitioning and Voronoi diagram-based partitioning are two preva-
lent methods for partitioning areas. Vinh et al. used the uniform grid partitioning to address
issues in convex polygonal areas [14]. They divided the area into several equal-area rectan-
gles based on the UAVs’ flight time and speed, achieving collaborative search by assigning
different sections to various UAVs. Xing et al. recursively divided the area into multiple
sub-polygons using sweep lines [15]. These sweep lines are used to perform equal-area
cuts to preserve the right angles of the original area, which can improve the efficiency of
search coverage. Chen et al. employed the weighted balanced graph to partition the entire
environment into responsibility areas for each UAV [16]. By updating the labels of each
region based on neighboring regions, it can select a connected area for each UAVs through
a defined function. However, in non-uniformly distributed scenarios, the grid partitioning
may waste a lot of computational resources in data-sparse areas [17]. In contrast, the
Voronoi diagram partitioning can automatically adjust according to the distribution of
point sets. Huang et al. mapped unknown domains into Voronoi diagrams for collaborative
search based on the measurement matrix and measurement noise, not only preventing
collisions between UAVs but also reducing the computational complexity to linear [18].

In the search methods described above, the task region is partitioned into several sub-
regions and assigned to each UAV [19]. While this approach is relatively simple, it lacks
collaboration among UAVs [20]. Heuristic algorithms, particularly those that simulate the
intelligent behaviors of biological swarms in nature, offer an idea to address this issue. The
inspiration for these algorithms comes from the collective behaviors of biological entities in
nature, such as flocks of birds and colonies of ants, showcasing impressive collaboration
and self-organization [21]. It is able to efficiently accomplish complex tasks without
centralized control, similarly to collaborative searches by UAV swarms [22]. Kashino et al.
set the target appearance probability and search environment confidence as optimization
objectives, employing genetic algorithms to make the optimal search [23]. Zhang and Chen
transformed the collaborative search problem into a multi-factor optimization problem,
including reconnaissance gains, flight consumption, and flight time [24]. They improved
the Harmony Search Algorithm for multi-UAV collaborative reconnaissance result in faster
convergence and greater benefits. Considering that genetic algorithms are susceptible to
local optima, Yang et al. integrated repulsive forces simulated by artificial potential fields
into the heuristic function of ant colony algorithms [25]. Moreover, they introduced an
adaptive pheromone evaporation factor to dynamically update the pheromone volatility
coefficient, gradually diminishing it to the minimum. Compared to traditional ant colony
algorithms, the improved algorithm can generate shorter trajectory lengths.

Collaborative target searching based on heuristic algorithms abstracts the search
process as an optimization problem and seeks its optimal solution to achieve target search.
The computational load of this method would significantly increase with the complexity
of the environment. On the other hand, DRL has attracted extensive research interest

Drones 2025, 9, 74 4 of 23

for its ability to enable UAVs to dynamically adjust their strategies based on real-time
feedback. Deng et al. discretized the task area into a grid and used the Double DQN
algorithm to train the UAV, demonstrating the effectiveness of this algorithm for search
problems [26]. Wu et al. solved the problem of limited observation range of UAVs by
dividing the area into sub-areas [27]. They combined the sub-domain search algorithm
with the Q-learning algorithm, segmenting the environment into sub-regions containing
target points to reduce the exploration in invalid areas. Jiang et al. introduced an ε–inspired
exploration strategy to enhance the Dueling DQN algorithm’s environmental perception
capabilities, utilizing a grid map to construct the simulation environment and comparing it
with baseline algorithms [28]. Boulares et al. divided the sea area into grids and set the
center of each part as the navigation node [29]. They achieved multi-UAV collaborative
search by assigning these nodes to UAVs trained by the DQN algorithm.

Although these methods have yielded positive results, many still focus on decompos-
ing multi-agent search problem into single-agent path planning or partial task allocation,
leaving the challenges of multi-agent coordination and partial observability underexplored.
In target search area, it operates with limited sensing range that each agent only has an
incomplete view of the overall search space. Therefore, an algorithm that can handle
partially observable states while facilitating effective UAV collaboration is indispensable.
Motivated by these considerations, our work proposes the PODQN approach is proposed
to address this central challenge.

3. MDP Model
As the theoretical basis of reinforcement learning, the MDP is used to describe how

an agent makes decisions in an uncertain environment. To apply DRL technology to solve
practical problems, it must be abstracted and modeled as a MDP model. In the real world,
the flight motion of the UAV is a three-dimensional physical model. However, considering
that the advanced sensors equipped with the UAV can adjust the focal length to clearly
observe the environment without changing the flight altitude, this study builds a two-
dimensional simulation environment to verify the effectiveness of the proposed algorithm.
In this environment, each UAV and each target is regarded as a particle. Subsequently, the
key elements of the MDP model would be described and DRL would use these elements to
model the interaction between the agent and the environment.

3.1. Action Space

The common way to discretize the action space is to use instructions in various
directions. However, the movement of UAVs in reality requires precise control. If simple
direction instructions are used as the movements of the UAV, the direction of the UAV
movement would suddenly change, which is inconsistent with the actual situation. In
real-world UAV applications, the yaw angle is a key parameter to describe the orientation of
the UAV. It defines the rotation angle of the UAV in the horizontal plane. Small adjustments
to the yaw angle can achieve more detailed control. Compared with directly commanding
the UAV to move left or right, adjusting the yaw angle is a more natural control method that
conforms to its physical characteristics. To let the UAV move continuously and smoothly
in the environment, the action space is defined as the different changes in yaw angle. The
updated coordinates are calculated by decomposing the yaw angle in the x and y axes and
the speed of the UAV.

During the actual search process of a UAV, the control system needs to make decisions
and execute them frequently based on the current environment. To reflect the maneuver-
ability of the UAV, as shown in Figure 1, the size of the action space A is set as 3, including

Drones 2025, 9, 74 5 of 23

a constant yaw angle, a clockwise rotation of 10 degrees, and a counterclockwise rotation
of 10 degrees. The expression of the action space is given by Equation (1):

A =
{

0,
π

18
, − π

18

}
(1)

Moderate angle changes allow the UAV to flexibly adjust its search route for differ-
ent situations.

Drones 2025, 9, 74 5 of 22

yaw angle. The updated coordinates are calculated by decomposing the yaw angle in the
x and y axes and the speed of the UAV.

During the actual search process of a UAV, the control system needs to make deci-
sions and execute them frequently based on the current environment. To reflect the ma-
neuverability of the UAV, as shown in Figure 1, the size of the action space 𝐴𝐴 is set as 3,
including a constant yaw angle, a clockwise rotation of 10 degrees, and a counterclockwise
rotation of 10 degrees. The expression of the action space is given by Equation (1):

𝐴𝐴 = �0,
𝜋𝜋

18
, −

𝜋𝜋
18

 � (1)

Moderate angle changes allow the UAV to flexibly adjust its search route for different
situations.

Figure 1. The action space.

3.2. State Space

When the agent performs an action, the environment would be updated to another
state in the state space. To provide enough information for training, the state space is de-
fined by both UAVs and targets. For each UAV, the necessary information is the location
and orientation. The position of a UAV is primarily represented by its 𝑥𝑥 and 𝑦𝑦 coordi-
nates. The orientation is represented by the cosine and sine functions of the yaw angle 𝑤𝑤,
which can avoid the discontinuity of special angles at boundary values and simplify the
calculation when the UAV updates its position. The status information of the UAV is
shown in Equation (2):

𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝜑𝜑 � (2)

For each target, its location and whether this target is searched are required. A Bool-
ean flag 𝜑𝜑 is used to store the search status of this target. This flag is False if the target
was not found, True otherwise. The target’s status information is shown in Equation (3):

𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝜑𝜑 � (3)

The accumulated status information of all UAVs and targets at the current moment
is the global status information. The dimensions of the state space are determined by the
number of UAVs and the number of targets. Specifically, for 𝑛𝑛 UAVs and 𝑚𝑚 targets, the
dimension of the state space will be 4𝑛𝑛 + 3𝑚𝑚. Referring to Equation (4), the state space
can be expressed as

𝑠𝑠 = 𝑛𝑛 × 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 + 𝑚𝑚 × 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (4)

Figure 1. The action space.

3.2. State Space

When the agent performs an action, the environment would be updated to another
state in the state space. To provide enough information for training, the state space is
defined by both UAVs and targets. For each UAV, the necessary information is the location
and orientation. The position of a UAV is primarily represented by its x and y coordinates.
The orientation is represented by the cosine and sine functions of the yaw angle w, which
can avoid the discontinuity of special angles at boundary values and simplify the calculation
when the UAV updates its position. The status information of the UAV is shown in
Equation (2):

starget =
{

xtarget, ytarget, φ
}

(2)

For each target, its location and whether this target is searched are required. A Boolean
flag φ is used to store the search status of this target. This flag is False if the target was not
found, True otherwise. The target’s status information is shown in Equation (3):

starget =
{

xtarget, ytarget, φ
}

(3)

The accumulated status information of all UAVs and targets at the current moment
is the global status information. The dimensions of the state space are determined by the
number of UAVs and the number of targets. Specifically, for n UAVs and m targets, the
dimension of the state space will be 4n + 3m. Referring to Equation (4), the state space can
be expressed as

s = n× sagent + m× starget (4)

3.3. Reward Function

The reward function is a standard for measuring the actions performed by an agent
in a certain state. The reward function provides a numerical signal to the agent, guiding
whether the current action approaches the goal. The agent can judge whether its action
selection is correct through the reward function. When designing the reward function,
the agent should be promoted to get as close to the expected goal as possible, so that the
benefits of each action taken by the agent are maximized. Additionally, the reward function

Drones 2025, 9, 74 6 of 23

should be stable enough and should not have extreme rewards or penalties. Combined
with the actual target search application, the reward function is divided into four parts.

First, the core of target search is that the UAV needs to find the set target. Each time
a target is discovered, the UAV receives a reward to encourage active exploration and
maximizing targets detection. If the UAV finds all targets, it should receive an additional
reward for the comprehensive search. This additional reward should be much greater than
the reward for finding one target, encouraging them to complete the whole mission. The
reward for the search target is shown in Equation (5):

Rtarget =

{
rt, find a target

rall , find all targets
(5)

In practical applications, the UAV flight is subject to multiple restrictions on the
environment and cost. For example, if there is wind in the sky that is opposite to the
direction of flight, the UAV needs to consume more fuel or electricity to maintain the
predetermined flight speed. To improve the UAV search efficiency and simplify the search
path, a penalty should be imposed on the UAV’s movement. This movement penalty
should be much smaller than the reward for discovering the target, preventing the UAV
from giving up searching for the target because of the high cost of movement. Specifically,
moving cost is defined in Equation (6):

Rmove = −rmove (6)

During the search mission, the UAV must operate within the set search range. If the
UAV deviates from these boundaries, it not only wastes time on the mission, but also
causes more serious safety impacts. In military activities, the risk of exposure increases
significantly if the UAV enters areas that are not allowed. Therefore, boundary penalties
are introduced to ensure that UAVs operate within authorized flight areas. When a UAV
crosses a boundary, it should immediately receive a negative reward that is greater than
the movement penalty and less than the reward for finding the target. This setting strikes
a balance by imposing a penalty severe enough to deter UAVs from straying outside the
boundaries, while still allowing them to explore flexibly. The boundary penalty is defined
in Equation (7):

Rout = −rout (7)

Although the airspace is generally more expansive compared to ground environments,
UAVs may still collide with aerial obstacles such as flocks of birds. In multi-UAV search
tasks, the risk of collision between UAVs would increase with the size of the swarm and
their mobility. To reduce the risk of collision, a collision penalty is imposed immediately
once the distance between a UAV and other UAVs or obstacles falls below a safe threshold.
The value of this penalty should be significantly higher than the general movement penalty
to ensure that the agent can prioritize collision avoidance during the training process. Its
collision penalty can be expressed in Equation (8):

Rcol = −rcol (8)

Considering the above four components, the reward function is defined in Equation (9).
Among them, αtarget, αmove, αout, αcol are the weights of the corresponding rewards in the
total rewards.

R = αtargetRtarget + αmoveRmove + αoutRout + αcol Rcol (9)

Drones 2025, 9, 74 7 of 23

When setting each weight, it is essential to analyze the specific application scenario
for search. For instance, boundary violations often carry the risk of information leaks
and serious safety hazards in military applications, which is advisable to appropriately
increase the weight of boundary penalty αout. Generally, αout lies between the weight of
movement penalty αmove and the search reward αtarget to ensure the agent remains inclined
to explore within an acceptable range, avoiding invalid searches beyond the boundary and
wasting time. Collisions between UAVs may cause significant losses or even directly lead to
mission failure. Increasing αcol can enhance the operational safety. The main purpose of the
movement weight αmove is to guide UAVs to continuously optimize the search path. But a
high value of αmove would lead to overly cautious or idle behavior, which affects the search
efficiency. Lastly, finding targets is the core objective of the search task, so sufficient weight
should be placed on the target search reward to encourage UAVs to find the target actively.
Nevertheless, the excessive expansion of αtarget would also lead the agent to ignore the
risk of collision or crossing boundary, resulting in instability or even failure of the overall
strategy. By reasonably adjusting the ratio between the above weights, an effective balance
between search efficiency and safety can be achieved under different environments and
safety requirements.

4. Methodology
The PODQN algorithm is proposed for the UAV search task based on the DQN

algorithm. The core concept of the PODQN algorithm is to use GRU layer to enhance the
model’s memory capabilities, enabling it to continuously improve its understanding of
the environment based on past observations to increase the search efficiency. It integrates
target network and dueling network to optimize the model architecture, allowing for more
accurate evaluation of the relative values of different actions. The working principle of the
PODQN algorithm is illustrated in Figure 2. The collected data of the interaction between
the agent and the environment are stored in the experience replay pool. During each
training iteration, the information observed by the UAV is fed into the PODQN algorithm,
which estimates the action-value function (Q-value) for each action in the current state and
selects the action with the highest Q-value for execution. By minimizing the Mean Squared
Error (MSE) loss function between the estimated Q-values from the current network and
the target Q-values computed by the target network, the algorithm iteratively updates the
network parameters.

Drones 2025, 9, 74 7 of 22

Considering the above four components, the reward function is defined in Equation
(9). Among them, 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 , 𝛼𝛼𝑚𝑚𝑜𝑜𝑡𝑡 , 𝛼𝛼𝑐𝑐𝑚𝑚𝑎𝑎 are the weights of the corresponding re-
wards in the total rewards.

𝑅𝑅 = 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 + 𝛼𝛼𝑚𝑚𝑜𝑜𝑡𝑡𝑅𝑅𝑚𝑚𝑜𝑜𝑡𝑡 + 𝛼𝛼𝑐𝑐𝑚𝑚𝑎𝑎𝑅𝑅𝑐𝑐𝑚𝑚𝑎𝑎 (9)

When setting each weight, it is essential to analyze the specific application scenario
for search. For instance, boundary violations often carry the risk of information leaks and
serious safety hazards in military applications, which is advisable to appropriately in-
crease the weight of boundary penalty 𝛼𝛼𝑚𝑚𝑜𝑜𝑡𝑡. Generally, 𝛼𝛼𝑚𝑚𝑜𝑜𝑡𝑡 lies between the weight of
movement penalty 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 and the search reward 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 to ensure the agent remains in-
clined to explore within an acceptable range, avoiding invalid searches beyond the bound-
ary and wasting time. Collisions between UAVs may cause significant losses or even di-
rectly lead to mission failure. Increasing 𝛼𝛼𝑐𝑐𝑚𝑚𝑎𝑎 can enhance the operational safety. The
main purpose of the movement weight 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 is to guide UAVs to continuously optimize
the search path. But a high value of 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 would lead to overly cautious or idle behavior,
which affects the search efficiency. Lastly, finding targets is the core objective of the search
task, so sufficient weight should be placed on the target search reward to encourage UAVs
to find the target actively. Nevertheless, the excessive expansion of 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 would also
lead the agent to ignore the risk of collision or crossing boundary, resulting in instability
or even failure of the overall strategy. By reasonably adjusting the ratio between the above
weights, an effective balance between search efficiency and safety can be achieved under
different environments and safety requirements.

4. Methodology
The PODQN algorithm is proposed for the UAV search task based on the DQN algo-

rithm. The core concept of the PODQN algorithm is to use GRU layer to enhance the
model’s memory capabilities, enabling it to continuously improve its understanding of
the environment based on past observations to increase the search efficiency. It integrates
target network and dueling network to optimize the model architecture, allowing for
more accurate evaluation of the relative values of different actions. The working principle
of the PODQN algorithm is illustrated in Figure 2. The collected data of the interaction
between the agent and the environment are stored in the experience replay pool. During
each training iteration, the information observed by the UAV is fed into the PODQN al-
gorithm, which estimates the action-value function (Q-value) for each action in the current
state and selects the action with the highest Q-value for execution. By minimizing the
Mean Squared Error (MSE) loss function between the estimated Q-values from the current
network and the target Q-values computed by the target network, the algorithm itera-
tively updates the network parameters.

Figure 2. The working principle of the PODQN algorithm.

Drones 2025, 9, 74 8 of 23

4.1. Target Network

The core objective of DQN is to approximate the optimal action-value function, en-
abling the agent to achieve the maximum expected return by performing the action with
the highest value. During the training process of the neural network, random noise or
errors with a mean of zero may occur. While the values outputted by DQN are unbiased
estimations of the actual values, DQN overestimates the true value of each action during
maximization efforts. During training, the DQN algorithm would randomly select experi-
ence replay arrays from the experience replay pool as training data. Since different actions
occur at different frequencies in the experience replay pool, the degree of overestimation
for each action’s value also varies. This could lead to the continual amplification of overes-
timated action values, eventually causing biases in the agent’s choice of actions. As defined
in Equation (10), the formula of the DQN algorithm for calculating the target action-value
∼
yt is as follow:

∼
yt = rt + γQ(st+1, argmax

a∈A
Q(st+1, a; w); w) (10)

In Equation (10), rt denotes the current moment’s reward, γ signifies the discount
factor and Q(st+1, a; w) represents the estimated action-value of the agent acting a in state
st+1 by the network w.

As shown in Figure 3, the PODQN algorithm introduces a target network to address
the overestimation issue. It does not solely rely on the estimated value of the current
network to select actions and calculate their values.

Drones 2025, 9, 74 8 of 22

Figure 2. The working principle of the PODQN algorithm.

4.1. Target Network

The core objective of DQN is to approximate the optimal action-value function, ena-
bling the agent to achieve the maximum expected return by performing the action with
the highest value. During the training process of the neural network, random noise or
errors with a mean of zero may occur. While the values outputted by DQN are unbiased
estimations of the actual values, DQN overestimates the true value of each action during
maximization efforts. During training, the DQN algorithm would randomly select ex-
perience replay arrays from the experience replay pool as training data. Since different
actions occur at different frequencies in the experience replay pool, the degree of overes-
timation for each action’s value also varies. This could lead to the continual amplification
of overestimated action values, eventually causing biases in the agent’s choice of actions.
As defined in Equation (10), the formula of the DQN algorithm for calculating the target
action-value 𝑦𝑦𝑡𝑡� is as follow:

𝑦𝑦𝑡𝑡� = 𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑄𝑄 (𝑠𝑠𝑡𝑡+1, argmax
𝑡𝑡∈𝐴𝐴

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎;𝑤𝑤) ;𝑤𝑤) (10)

In Equation (10), 𝑟𝑟𝑡𝑡 denotes the current moment’s reward, γ signifies the discount
factor and 𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎;𝑤𝑤) represents the estimated action-value of the agent acting a in state
𝑠𝑠𝑡𝑡+1 by the network w.

As shown in Figure 3, the PODQN algorithm introduces a target network to address
the overestimation issue. It does not solely rely on the estimated value of the current net-
work to select actions and calculate their values.

Figure 3. The relationship between the current network and target network.

First, the action 𝑎𝑎∗ with the highest action-value is selected by the current network
𝑤𝑤, as shown in Equation (11):

𝑎𝑎∗ = argmax
𝑡𝑡∈𝐴𝐴

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎;𝑤𝑤) (11)

Then, the target action-value 𝑦𝑦𝑡𝑡� is calculated using the target network. The neural
network structure of the target network is identical to that of DQN, but it has different
parameters 𝑤𝑤−. The calculation formula is given by Equation (12):

𝑦𝑦𝑡𝑡� = 𝑟𝑟𝑡𝑡 + 𝛾𝛾 𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎∗;𝑤𝑤−)
 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾 𝑄𝑄 �𝑠𝑠𝑡𝑡+1, argmax

𝑡𝑡∈𝐴𝐴
𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎;𝑤𝑤) ;𝑤𝑤−� (12)

In contrast, the PODQN algorithm uses two networks for action selection and evalu-
ation, reducing the positive bias caused by estimating the maximum return using the same
network. Since the update process alternates between two networks, even if either net-
work overestimates the value of an action, the effect of this overestimation will be cor-
rected through the update of the other network, reducing the cumulative error caused by
overestimation.

Figure 3. The relationship between the current network and target network.

First, the action a∗ with the highest action-value is selected by the current network w,
as shown in Equation (11):

a∗ = argmax
a∈A

Q(st+1, a; w) (11)

Then, the target action-value
∼
yt is calculated using the target network. The neural

network structure of the target network is identical to that of DQN, but it has different
parameters w−. The calculation formula is given by Equation (12):

∼
yt = rt + γQ(st+1, a∗; w−)

= rt + γQ

(
st+1, argmax

a∈A
Q(st+1, a; w); w−

)
(12)

In contrast, the PODQN algorithm uses two networks for action selection and eval-
uation, reducing the positive bias caused by estimating the maximum return using the
same network. Since the update process alternates between two networks, even if either
network overestimates the value of an action, the effect of this overestimation will be
corrected through the update of the other network, reducing the cumulative error caused
by overestimation.

Drones 2025, 9, 74 9 of 23

4.2. Dueling Network

Algorithms of the DQN type require calculating the action-value Q for each action.
However, only the maximum action-value Q is needed for most states. The PODQN
algorithm addresses this issue by decomposing the action-value function into the state
value function and the advantage function. Without altering the input and output of the
network, the architecture is optimized to better understand the value of states and the
advantages of different actions, achieving more stable and efficient learning. Figure 4
illustrates the changes if dueling architecture is introduced. The formula of advantage
function Aπ(s, a) is expressed in Equation (13):

Aπ(s, a) = Qπ(s, a)−Vπ(s) (13)

where Qπ(s, a) represents the action-value for state s and action a as calculated by the
policy function π. Vπ(s) represents the state-value for state s if the policy function is π,
which also represents the average of Qπ(s, a) across all actions.

Drones 2025, 9, 74 9 of 22

4.2. Dueling Network

Algorithms of the DQN type require calculating the action-value Q for each action.
However, only the maximum action-value Q is needed for most states. The PODQN algo-
rithm addresses this issue by decomposing the action-value function into the state value
function and the advantage function. Without altering the input and output of the net-
work, the architecture is optimized to better understand the value of states and the ad-
vantages of different actions, achieving more stable and efficient learning. Figure 4 illus-
trates the changes if dueling architecture is introduced. The formula of advantage function
𝐴𝐴𝜋𝜋(𝑠𝑠,𝑎𝑎) is expressed in Equation (13):

𝐴𝐴𝜋𝜋(𝑠𝑠,𝑎𝑎) = 𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎) − 𝑉𝑉𝜋𝜋(𝑠𝑠) (13)

where 𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎) represents the action-value for state 𝑠𝑠 and action 𝑎𝑎 as calculated by the
policy function π. 𝑉𝑉𝜋𝜋(𝑠𝑠) represents the state-value for state 𝑠𝑠 if the policy function is π,
which also represents the average of 𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎) across all actions.

Figure 4. The traditional DQN (left) and DQN with dueling architecture (right).

Therefore, the advantage function illustrates the advantage of a specific action in
comparison to the average value. If the advantage value of an action is the greatest, it
signifies that the return obtained by performing this action will be higher than others.
Although the actual values of the advantage function and the action-value function differ,
the optimal action can be obtained through the advantage function only, resulting in re-
duced computation. By transforming the previous expression, Equation (14) shows the
action-value function output by the PODQN algorithm:

𝑄𝑄𝜋𝜋(𝑠𝑠,𝑎𝑎) = 𝐴𝐴𝜋𝜋(𝑠𝑠,𝑎𝑎) + 𝑉𝑉𝜋𝜋(𝑠𝑠) (14)

In the PODQN algorithm, two neural networks 𝐷𝐷(𝑠𝑠,𝑎𝑎;𝑤𝑤𝐴𝐴) and 𝑉𝑉(𝑠𝑠,𝑎𝑎;𝑤𝑤𝐴𝐴) are
used to approximate the optimal advantage function and the optimal state-value function
respectively. By substituting 𝐴𝐴𝜋𝜋(𝑠𝑠,𝑎𝑎) and 𝑉𝑉𝜋𝜋(𝑠𝑠) in the previous formula with the corre-
sponding neural networks, the optimal action-value function Q is approximated accord-
ing to Equation (15):

𝑄𝑄(𝑠𝑠,𝑎𝑎;𝑤𝑤) = 𝐷𝐷(𝑠𝑠,𝑎𝑎;𝑤𝑤𝐷𝐷) + 𝑉𝑉(𝑠𝑠;𝑤𝑤𝑉𝑉) (15)

Nonetheless, these networks exhibit non-identifiability. 𝑉𝑉(𝑠𝑠;𝑤𝑤𝑉𝑉) and 𝐷𝐷(𝑠𝑠,𝑎𝑎;𝑤𝑤𝐷𝐷)
can vary freely without altering the output Q value, leading to unstable parameters during
training and ineffective convergence. To promote the stable training without changing the
output, a constant zero term max

𝑡𝑡∈𝐴𝐴
𝐷𝐷(𝑠𝑠,𝑎𝑎;𝑤𝑤𝐷𝐷) is added. As defined in Equation (16), the

expression for the action-value function output by the PODQN algorithm is updated to:

𝑄𝑄(𝑠𝑠,𝑎𝑎;𝑤𝑤) = 𝐷𝐷(𝑠𝑠,𝑎𝑎;𝑤𝑤𝐷𝐷) + 𝑉𝑉(𝑠𝑠;𝑤𝑤𝑉𝑉) − max
𝑡𝑡∈𝐴𝐴

𝐷𝐷(𝑠𝑠,𝑎𝑎;𝑤𝑤𝐷𝐷) (16)

where 𝐴𝐴 represents the action space of this environment. The reasoning process for
max
𝑡𝑡∈𝐴𝐴

𝐷𝐷(𝑠𝑠,𝑎𝑎;𝑤𝑤𝐷𝐷) being constantly zero is shown in Equation (17):

Figure 4. The traditional DQN (left) and DQN with dueling architecture (right).

Therefore, the advantage function illustrates the advantage of a specific action in
comparison to the average value. If the advantage value of an action is the greatest, it
signifies that the return obtained by performing this action will be higher than others.
Although the actual values of the advantage function and the action-value function differ,
the optimal action can be obtained through the advantage function only, resulting in
reduced computation. By transforming the previous expression, Equation (14) shows the
action-value function output by the PODQN algorithm:

Qπ(s, a) = Aπ(s, a) + Vπ(s) (14)

In the PODQN algorithm, two neural networks D
(
s, a; wA) and V

(
s, a; wA) are used

to approximate the optimal advantage function and the optimal state-value function respec-
tively. By substituting Aπ(s, a) and Vπ(s) in the previous formula with the correspond-
ing neural networks, the optimal action-value function Q is approximated according to
Equation (15):

Q(s, a; w) = D
(

s, a; wD
)
+ V

(
s; wV

)
(15)

Nonetheless, these networks exhibit non-identifiability. V
(
s; wV) and D

(
s, a; wD) can

vary freely without altering the output Q value, leading to unstable parameters during
training and ineffective convergence. To promote the stable training without changing the
output, a constant zero term max

a∈A
D
(
s, a; wD) is added. As defined in Equation (16), the

expression for the action-value function output by the PODQN algorithm is updated to:

Q(s, a; w) = D
(

s, a; wD
)
+ V

(
s; wV

)
−max

a∈A
D
(

s, a; wD
)

(16)

Drones 2025, 9, 74 10 of 23

where A represents the action space of this environment. The reasoning process for
max
a∈A

D
(
s, a; wD) being constantly zero is shown in Equation (17):

A∗(s, a) = Q∗(s, a)−V∗(s)
max
a∈A

A(s, a) = max
a∈A

Q∗(s, a)−V∗(s)

= max
a∈A

Q∗(s, a)−max
a∈A

Q∗(s, a)

= 0

(17)

In practical applications, employing the average value for calculations often results
in a more stable model than using the maximum value. As defined in Equation (18), the
formula for computing Q-values is:

Q(s, a; w) = D
(

s, a; wD
)
+ V

(
s; wV

)
− 1
|A|∑a

D(s, a; wD) (18)

4.3. Gated Recurrent Unit

Since the sensors carried by UAVs have fixed sensing ranges and capabilities, each
UAV can only collect information within the coverage range of its sensors. Collaboration
of multi-UAV also typically covers only a small portion of the search area. This limitation
makes it impossible to accurately evaluate the value of each action based only on a small
part of the whole status. To overcome this problem, a feasible strategy is to let UAVs mem-
orize past observation data and utilize all available information to make decisions. It can
gradually enhance the overall understanding of the environmental state and make policy
more rational. Recurrent Neural Network (RNN) is introduced to remember previously
observation information.

Among RNN and its variants, Gated Recurrent Unit (GRU) is adopted for below
advantages. Compared with traditional RNNs, GRU offers improved gradient flow mech-
anisms which can alleviate the gradient vanishing problem in long-term data sequences.
While Long Short-Term Memory (LSTM) is commonly used to address vanishing or explod-
ing gradients, GRU merges the forget gate and the input gate into an update gate, offering
a simpler structure with fewer parameters, resulting in reduced computational costs and
faster training. This property is beneficial for real-time UAV target search tasks, where both
rapid evaluation and time-sensitive responses are crucial.

Furthermore, the dimension of GRU’s hidden layer is set to 64 based on preliminary
experiments balancing representation capability and computational efficiency. Smaller
hidden size is insufficient to capture complex spatiotemporal relationships in UAV search
scenarios, whereas significantly larger dimensions increased model complexity and training
times without yielding substantial improvements in accuracy or stability. Hence, the
64-dimensional hidden layer reflects a well-founded tradeoff between performance and
resource constraints. The architecture of GRU is shown in Figure 5.

The GRU layer adopts a gating mechanism to manage the long-term memory and
short-term updating of information. It mainly contains update gate and reset gate. Update
gate is used to control the extent to which the hidden state from previous timestep is
retained at the current timestep, preserving long-term dependencies within the sequence.
Its expression is shown in Equation (19):

zt = σ(Wz·[ht−1, xt] + bz) (19)

where Wz and bz are the weight and bias terms of the update gate. σ represents the sigmoid
activation function. ht−1 is the hidden state of the previous timestep. xt is the input for the
current timestep.

Drones 2025, 9, 74 11 of 23

Drones 2025, 9, 74 10 of 22

𝐴𝐴∗(𝑠𝑠,𝑎𝑎) = 𝑄𝑄∗(𝑠𝑠,𝑎𝑎) − 𝑉𝑉∗(𝑠𝑠)
max
𝑡𝑡∈𝐴𝐴

𝐴𝐴(𝑠𝑠,𝑎𝑎) = max
𝑡𝑡∈𝐴𝐴

𝑄𝑄∗(𝑠𝑠,𝑎𝑎) − 𝑉𝑉∗(𝑠𝑠)

= max
𝑡𝑡∈𝐴𝐴

𝑄𝑄∗(𝑠𝑠,𝑎𝑎) − max
𝑡𝑡∈𝐴𝐴

𝑄𝑄∗(𝑠𝑠,𝑎𝑎)

= 0

(17)

In practical applications, employing the average value for calculations often results
in a more stable model than using the maximum value. As defined in Equation (18), the
formula for computing Q-values is:

𝑄𝑄(𝑠𝑠,𝑎𝑎;𝑤𝑤) = 𝐷𝐷(𝑠𝑠,𝑎𝑎;𝑤𝑤𝐷𝐷) + 𝑉𝑉(𝑠𝑠;𝑤𝑤𝑉𝑉) −
1

|𝐴𝐴|�𝐷𝐷(𝑠𝑠,𝑎𝑎;𝑤𝑤𝐷𝐷

𝑡𝑡

) (18)

4.3. Gated Recurrent Unit

Since the sensors carried by UAVs have fixed sensing ranges and capabilities, each
UAV can only collect information within the coverage range of its sensors. Collaboration
of multi-UAV also typically covers only a small portion of the search area. This limitation
makes it impossible to accurately evaluate the value of each action based only on a small
part of the whole status. To overcome this problem, a feasible strategy is to let UAVs
memorize past observation data and utilize all available information to make decisions. It
can gradually enhance the overall understanding of the environmental state and make
policy more rational. Recurrent Neural Network (RNN) is introduced to remember pre-
viously observation information.

Among RNN and its variants, Gated Recurrent Unit (GRU) is adopted for below ad-
vantages. Compared with traditional RNNs, GRU offers improved gradient flow mecha-
nisms which can alleviate the gradient vanishing problem in long-term data sequences.
While Long Short-Term Memory (LSTM) is commonly used to address vanishing or ex-
ploding gradients, GRU merges the forget gate and the input gate into an update gate,
offering a simpler structure with fewer parameters, resulting in reduced computational
costs and faster training. This property is beneficial for real-time UAV target search tasks,
where both rapid evaluation and time-sensitive responses are crucial.

Furthermore, the dimension of GRU’s hidden layer is set to 64 based on preliminary
experiments balancing representation capability and computational efficiency. Smaller
hidden size is insufficient to capture complex spatiotemporal relationships in UAV search
scenarios, whereas significantly larger dimensions increased model complexity and train-
ing times without yielding substantial improvements in accuracy or stability. Hence, the
64-dimensional hidden layer reflects a well-founded tradeoff between performance and
resource constraints. The architecture of GRU is shown in Figure 5.

Figure 5. The architecture of Gated Recurrent Unit.

The GRU layer adopts a gating mechanism to manage the long-term memory and
short-term updating of information. It mainly contains update gate and reset gate. Update

Figure 5. The architecture of Gated Recurrent Unit.

The reset gate is used to combine the latest input information with the observation
information from the previous timestep, capturing short-term dependencies in the sequence.
Its expression is shown in Equation (20):

rt = σ(Wr·[ht−1, xt] + br) (20)

Among them, Wr and br are the weight and bias terms of the reset gate. GRU regulates
the flow of information through update gates and reset gates so the model can effectively
learn useful information from the sequence of observation data and maintain the memory
of past behaviors.

4.4. Multi-Agent Framework for the PODQN Algorithm

To implement the cooperation of UAVs in target search missions, a shared network is
used to train all UAVs. Each UAV inputs its interaction information with the environment
into the shared network and selects its action based on the output. The behaviors and
learning experiences of all UAVs are fed back to the same network, allowing each UAV
to further optimize the policy based on the behaviors of other UAVs and promoting
the collaborative efficiency of the entire swarm. In addition, all UAVs sharing the same
network can eliminate the need for independent tuning of each agent during the training
process, reducing the overall number of parameters and accelerating the learning process
of the system.

Figure 6 clearly depicts the relationship between each agent and the shared network.
Each UAV transmits real-time data to the shared network. The network analyzes the
observation data and returns corresponding actions to guide the UAV in its search. Then,
the UAV provides the reward obtained by performing the selected action to the system for
updating the network parameters. Through this method, the UAV swarm can achieve close
collaborative search while maintaining autonomy, significantly improving search efficiency
and accuracy.

Based on the above method, the hierarchical structure of the PODQN algorithm is
shown in Figure 7. In this structure, two convolutional layers with the ReLU activation
layer extract features from the input observation state. Two linear layers map the feature
vector to the input dimensions of the GRU layer, solving the problem of insufficient
information caused by incomplete observations. The subsequent linear layer integrates the
time-dependent features output by the GRU layer into a fixed-size vector, which serves as
the input of the State Value stream and Action Advantage stream in the dueling architecture.

The State Value stream outputs a real number, indicating the state’s expected return.
The Action Advantage stream outputs a vector with the same dimensions as the action
space. Each dimension represents the advantage value of the corresponding action. By

Drones 2025, 9, 74 12 of 23

adding the outputs of two streams, the value of each action in this state can be calculated.
Next, the model would choose an action through the action selection strategy.

Drones 2025, 9, 74 11 of 22

gate is used to control the extent to which the hidden state from previous timestep is re-
tained at the current timestep, preserving long-term dependencies within the sequence.
Its expression is shown in Equation (19):

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑧𝑧) (19)

where 𝑊𝑊𝑧𝑧 and 𝑏𝑏𝑧𝑧 are the weight and bias terms of the update gate. 𝜎𝜎 represents the
sigmoid activation function. ℎ𝑡𝑡−1 is the hidden state of the previous timestep. 𝑥𝑥𝑡𝑡 is the
input for the current timestep.

The reset gate is used to combine the latest input information with the observation
information from the previous timestep, capturing short-term dependencies in the se-
quence. Its expression is shown in Equation (20):

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑡𝑡 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑡𝑡) (20)

Among them, 𝑊𝑊𝑡𝑡 and 𝑏𝑏𝑡𝑡 are the weight and bias terms of the reset gate. GRU reg-
ulates the flow of information through update gates and reset gates so the model can ef-
fectively learn useful information from the sequence of observation data and maintain the
memory of past behaviors.

4.4. Multi-Agent Framework for the PODQN Algorithm

To implement the cooperation of UAVs in target search missions, a shared network
is used to train all UAVs. Each UAV inputs its interaction information with the environ-
ment into the shared network and selects its action based on the output. The behaviors
and learning experiences of all UAVs are fed back to the same network, allowing each
UAV to further optimize the policy based on the behaviors of other UAVs and promoting
the collaborative efficiency of the entire swarm. In addition, all UAVs sharing the same
network can eliminate the need for independent tuning of each agent during the training
process, reducing the overall number of parameters and accelerating the learning process
of the system.

Figure 6 clearly depicts the relationship between each agent and the shared network.
Each UAV transmits real-time data to the shared network. The network analyzes the ob-
servation data and returns corresponding actions to guide the UAV in its search. Then,
the UAV provides the reward obtained by performing the selected action to the system
for updating the network parameters. Through this method, the UAV swarm can achieve
close collaborative search while maintaining autonomy, significantly improving search
efficiency and accuracy.

Figure 6. The relationship between each agent and the shared network. Figure 6. The relationship between each agent and the shared network.

Drones 2025, 9, 74 12 of 22

Based on the above method, the hierarchical structure of the PODQN algorithm is
shown in Figure 7. In this structure, two convolutional layers with the ReLU activation
layer extract features from the input observation state. Two linear layers map the feature
vector to the input dimensions of the GRU layer, solving the problem of insufficient infor-
mation caused by incomplete observations. The subsequent linear layer integrates the
time-dependent features output by the GRU layer into a fixed-size vector, which serves as
the input of the State Value stream and Action Advantage stream in the dueling architec-
ture.

Figure 7. The architecture of the PODQN model.

The State Value stream outputs a real number, indicating the state’s expected return.
The Action Advantage stream outputs a vector with the same dimensions as the action
space. Each dimension represents the advantage value of the corresponding action. By
adding the outputs of two streams, the value of each action in this state can be calculated.
Next, the model would choose an action through the action selection strategy.

4.5. Action Selection Strategy

During the network training process, always choosing the action with the greatest
value to perform will lead the approximated value function to fall into local optimum if
collected sample is biased. The ε-greedy strategy is used to balance whether the UAV
should explore or use known information to select actions. There is a hyperparameter 𝜀𝜀
that determines the balance between exploration and exploitation

𝑎𝑎 = �
argmax

𝑡𝑡∈𝐴𝐴
𝑄𝑄(𝑠𝑠,𝑎𝑎;𝑤𝑤), 𝑤𝑤𝑓𝑓𝑡𝑡ℎ 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑎𝑎𝑏𝑏𝑓𝑓𝑎𝑎𝑓𝑓𝑡𝑡𝑦𝑦 1 − ε

𝑟𝑟𝑎𝑎𝑛𝑛𝑓𝑓𝑝𝑝𝑚𝑚 𝑎𝑎𝑎𝑎𝑡𝑡𝑓𝑓𝑝𝑝𝑛𝑛, 𝑤𝑤𝑓𝑓𝑡𝑡ℎ 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑎𝑎𝑏𝑏𝑓𝑓𝑎𝑎𝑓𝑓𝑡𝑡𝑦𝑦 𝜀𝜀
 (21)

In the later stages of training, the model has approximated the optimal policy
through extensive trials so it can accurately evaluate the potential value of each action.
Continuing random exploration at this stage may cause the model to deviate from the
efficient policy that has been found. So, the annealing strategy is used to gradually de-
crease the value of 𝜀𝜀 as the training epochs increase. The decay function is defined in
Equation (20).

ε = �
ε − 𝜀𝜀𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎 , ε > 𝜀𝜀𝑚𝑚𝑚𝑚𝑎𝑎
ε, 𝜀𝜀 ≤ 𝜀𝜀𝑚𝑚𝑚𝑚𝑎𝑎

 (22)

where 𝜀𝜀𝑚𝑚𝑚𝑚𝑎𝑎 is the lowest limit to which ε can decay and 𝜀𝜀𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎 is the decay speed of ε.
In the early stages of training, model needs to try unknown actions to explore the envi-
ronment. As training progresses, model can evaluate the rewards of different behaviors
to gradually approximate the optimal policy. ε is also appropriately decreased. To pre-
vent the model from prematurely converging to the local optimum and ignoring other

Figure 7. The architecture of the PODQN model.

4.5. Action Selection Strategy

During the network training process, always choosing the action with the greatest
value to perform will lead the approximated value function to fall into local optimum
if collected sample is biased. The ε-greedy strategy is used to balance whether the UAV
should explore or use known information to select actions. There is a hyperparameter ε

that determines the balance between exploration and exploitation

a =

argmax
a∈A

Q(s, a; w), with propability 1− ε

random action, with propability ε
(21)

In the later stages of training, the model has approximated the optimal policy through
extensive trials so it can accurately evaluate the potential value of each action. Continuing
random exploration at this stage may cause the model to deviate from the efficient policy
that has been found. So, the annealing strategy is used to gradually decrease the value of ε

as the training epochs increase. The decay function is defined in Equation (20).

ε =

{
ε− εanneal , ε > εmin

ε, ε ≤ εmin
(22)

Drones 2025, 9, 74 13 of 23

where εmin is the lowest limit to which ε can decay and εanneal is the decay speed of
ε. In the early stages of training, model needs to try unknown actions to explore the
environment. As training progresses, model can evaluate the rewards of different behaviors
to gradually approximate the optimal policy. ε is also appropriately decreased. To prevent
the model from prematurely converging to the local optimum and ignoring other potentially
useful states, εmin ensures the model retains some exploratory capability in the later stages
of training.

4.6. Artificial Potential Field

In unknown search environments, each UAV needs to dynamically adjust its flight path
based on real-time information about the surrounding environment to avoid other UAVs.
The artificial potential field method is a collision avoidance method based on physical
mechanics. It treats each UAV as a particle subject to potential forces exerted to it. Each
UAV calculates the vector superposition of all the forces it receives in the potential field,
and it moves under the effect of the resultant force, achieving the autonomous movement
with collision avoidance. Figure 8 presents the repulsive force between UAVs.

Drones 2025, 9, 74 13 of 22

potentially useful states, 𝜀𝜀𝑚𝑚𝑚𝑚𝑎𝑎 ensures the model retains some exploratory capability in
the later stages of training.

4.6. Artificial Potential Field

In unknown search environments, each UAV needs to dynamically adjust its flight
path based on real-time information about the surrounding environment to avoid other
UAVs. The artificial potential field method is a collision avoidance method based on phys-
ical mechanics. It treats each UAV as a particle subject to potential forces exerted to it.
Each UAV calculates the vector superposition of all the forces it receives in the potential
field, and it moves under the effect of the resultant force, achieving the autonomous move-
ment with collision avoidance. Figure 8 presents the repulsive force between UAVs.

Figure 8. Schematic diagram of force in UAVs. Different UAVs have different colors, and circles of
different colors represent the range of repulsive force that the UAV corresponding to each color is
subject to.

In the repulsive potential field, the repulsive potential is emitted from each UAV and
the potential force can be divided into two parts. If the distance between UAVs is longer
than the prescribed safe distance 𝜌𝜌0, the potential force would be 0. As the UAVs continue
to fly, the repulsive force is inversely proportional to the distance if the distance between
two UAVs is less than 𝜌𝜌0. At each moment, all repulsive forces experienced by each UAV
are calculated and resolved into x and y axes to update the UAV’s position. The distance
between UAVs is calculated by the Euclidean distance and Equation (23) shows the po-
tential field function.

𝑈𝑈𝑡𝑡𝑡𝑡𝑟𝑟(𝑞𝑞) = �
0, d > 𝜌𝜌0
𝜇𝜇 𝑣𝑣
d

, d ≤ 𝜌𝜌0
 (23)

In this formula, 𝜇𝜇 represents potential force factor and 𝑣𝑣 represents the flight speed
of the UAV. In practical applications, the configuration of hyperparameters needs to be
adjusted according to the needs of specific application scenarios. 𝜌𝜌0 is the key factor in
determining the threshold for triggering repulsive forces. In the case of high flight speed
and large size of the UAV, appropriately increasing 𝜌𝜌0 can extend the reaction time to
avoid collision. Conversely, 𝜌𝜌0 can be appropriately lower if the UAV is equipped with
sensors with wide detection ranges and high accuracy. Its excellent perception ability en-
ables it to detect obstacles in advance and avoid them in time.

In addition, 𝜇𝜇 is used to adjust the intensity of the repulsive force. In scenarios
where perception accuracy is lower or communication latency exists, a higher 𝜇𝜇 is re-
quired to avoid collisions. However, excessively large 𝜇𝜇 may result in unnecessary devi-
ations in flight paths, leading to additional search distance and energy consumption. For

Safe distance
Repulsive force

Repulsive force

Safe distance

Figure 8. Schematic diagram of force in UAVs. Different UAVs have different colors, and circles of
different colors represent the range of repulsive force that the UAV corresponding to each color is
subject to.

In the repulsive potential field, the repulsive potential is emitted from each UAV
and the potential force can be divided into two parts. If the distance between UAVs is
longer than the prescribed safe distance ρ0, the potential force would be 0. As the UAVs
continue to fly, the repulsive force is inversely proportional to the distance if the distance
between two UAVs is less than ρ0. At each moment, all repulsive forces experienced by
each UAV are calculated and resolved into x and y axes to update the UAV’s position. The
distance between UAVs is calculated by the Euclidean distance and Equation (23) shows
the potential field function.

Urep(q) =

{
0, d > ρ0
µ v
d , d ≤ ρ0

(23)

In this formula, µ represents potential force factor and v represents the flight speed
of the UAV. In practical applications, the configuration of hyperparameters needs to be
adjusted according to the needs of specific application scenarios. ρ0 is the key factor in
determining the threshold for triggering repulsive forces. In the case of high flight speed
and large size of the UAV, appropriately increasing ρ0 can extend the reaction time to avoid
collision. Conversely, ρ0 can be appropriately lower if the UAV is equipped with sensors

Drones 2025, 9, 74 14 of 23

with wide detection ranges and high accuracy. Its excellent perception ability enables it to
detect obstacles in advance and avoid them in time.

In addition, µ is used to adjust the intensity of the repulsive force. In scenarios where
perception accuracy is lower or communication latency exists, a higher µ is required to
avoid collisions. However, excessively large µ may result in unnecessary deviations in flight
paths, leading to additional search distance and energy consumption. For non-emergency
tasks, reducing µ can enhance the stability and continuity of the flight path.

4.7. Algorithm Process

The pseudocode of this algorithm is shown in Algorithm 1 and the following are the
steps for running the PODQN algorithm:

(1) Initialization: Before starting training, the parameters w of the current network, the
parameters w′ of the target network, and the experience replay buffer should be
initialized. The experience replay buffer is used to store observations, actions and
rewards. Then, jump to the start state of environment and store the information in the
experience replay buffer.

(2) Select action at: At each moment, each agent can select the action based on the
ε-greedy strategy.

(3) Obtain environmental feedback: After the action at is executed, the UAV would
receive the new state ot+1 and the reward rt.

(4) Update the experience replay buffer: store the experience replay array (o, at, rt, ot+1)
into the experience replay buffer. If the experience replay buffer overflows, the latest
experience will be used to replace the initially stored experience.

(5) Update the current network parameters: randomly sample a batch of samples from
the experience replay buffer and calculate the TD error δt:

δt = Q(ot, a; w)− rt − γ×max
a∈A

Q
(
ot, a; w′

)
(24)

Among them, γ represents discount factor.
(6) Backpropagation: Calculate the gradient ∇wQ(ot, a; w) and use the gradient descent

method to update the parameters of the current network w. Equation (25) presents
the formula for updating parameters:

w← w− α× δt ×∇wQ(ot, a; w) (25)

where α represents the learning rate.
(7) Update target network parameters w′: To enhance the stability during the training

process, the soft update method is used to make the parameters of the target network
slightly closer to the parameters of the current network each time it is updated. The
soft update formula is given by Equation (26):

w′ ← τw + (1− τ)w′ (26)

where τ represents the soft update factor.
(8) Iteration: Repeat steps 2–7 until the maximum training epoch is reached.

Drones 2025, 9, 74 15 of 23

Algorithm 1: The pseudocode for the training process of the PODQN algorithm.

Input: Training parameters: learning rate α, discount factor γ, experience replay buffer D, training
period T, soft update factor τ

Output: Action-value Q
1. Initialize the parameters w, w′ of the current network Q(o, a; w) and the target network Q′(o,

a; w′)
2. Initialize the experience replay buffer D and the parameter ε for annealing ε-greedy strategy
3. For episode 1 to T do
4. Reset the environment and observe the initial state o1

5. While observation ot is not the terminal do
6. Calculates the action with the highest Q-value in action space based on the

observation ot by the current network
7. Select an action at using the annealing ϵ-greedy strategy
8. Execute action at, obtain reward rt and observe the new state 0t+1

9. Store (ot, at, rt, ot+1) into experience replay buffer D
10. Randomly sample experience data from experience replay buffer D

11. Calculate the target action-value
∼
yt = rt + γQ

(
st+1, argmax

a∈A
Q(ot+1, at; w); w−

)
12. Calculate the Mean-Square Error loss function L(w) = E

[(∼
yt −Q(ot, at; w)

)2
]

13. Calculate gradient ∇wL(w)

14. Update the parameters of the current network w to minimize the loss function:
w← w− α∇wL(w)

15. Update the parameters of the target network by soft updating: w′ ← τw + (1− τ)w′

16. End while
17. End for

5. Experiments and Discussions
RL requires agents to interact with the environment to obtain training data instead of

using pre-prepared datasets. To verify the effect of the approach, a simulation environment
is established to simulate realistic search scenarios. Table 1 details the hyperparameter
settings of the PODQN model. The configuration of each hyperparameter should compre-
hensively consider the computational complexity, feature extraction capabilities, and model
convergence performance to ensure that the model has good adaptability and robustness
in multi-UAV collaborative search tasks. Parameter configurations are determined based
on tuning experience and preliminary experiments to balance the model performance with
computational cost.

Through multiple preliminary experiments results, it was found that the convolution
layers with given hyperparameters can effectively capture the input environmental informa-
tion. Further changing the convolution size would significantly increase the training time
while the improvement in searching is relatively limited. The current settings of network
sufficiently meet the need of feature extraction. Further adjustments on it may lead to
redundant calculations and even introduce the overfitting problem. The 64-dimensional
hidden layer is able to ensure the accurate policy while achieving fast training convergence
speed and low memory consumption. It can capture effective temporal features without
excessively increasing model complexity. The parameters of the ϵ-greedy strategy were
also validated through experiments, ensuring the agent maintains broad exploration in
the early stages and gradually shifts to exploiting accumulated experience as training
progresses. The learning rate and soft update factor showed good convergence stability in
preliminary experiments.

Drones 2025, 9, 74 16 of 23

Table 1. Hyperparameter settings of the PODQN model.

Hyperparameter Description Value

dim_1 The number of output channels of the convolutional layer 1 4
kernel_size_1 The convolution kernel size of the convolutional layer 1 4

stride_1 The stride size of the convolutional layer 1 2
dim_2 The number of output channels of the convolutional layer 2 1

kernel_size_2 The convolution kernel size of the convolutional layer 2 3
stride_2 The stride size of the convolutional layer 2 1

padding_2 Padding of the second convolutional layer 1
out_features_1 Dimensions of the output vector of linear layer 1 16
out_features_2 Dimensions of the output vector of linear layer 2 64
rnn_hidden_dim The hidden state dimension of the GRU layer 64
out_features_3 Dimensions of the output vector of linear layer 3 64
out_features_4 Dimensions of the output vector of linear layer 4 1
out_features_5 Dimensions of the output vector of linear layer 5 3

batch_size Batch size for experience replay 32
buffer_size The size of the experience replay buffer 3000

ε1 The initial value of ε in the ε-greedy strategy 1
εanneal Decay speed of ε in ε-greedy strategy 9.5 × 10−5

εmin Minimum value of ε in ε-greedy strategy 5 × 10−2

optimizer Optimizer during model training Adam
α Learning rate 1 × 10−4

τ Soft update factor of the target network 5 × 10−2

The simulation environment is a limited search area based on a search map with a size
of 50 × 50. All UAVs are assumed to search at the same altitude and at a constant speed.
The direction of the UAV is determined by changing the yaw angle by executing actions
in the action space. When the distance between the UAVs falls below the effective range
of the repulsive field, the resulting repulsive force would compel each UAV to move in
the direction opposite to the other UAV’s position. The observation data collected by each
UA consist of its coordinates, yaw angle, and the number of targets within its observation
range. The condition for a target to be successfully found is that the distance between
the target and the UAV is less than the observation range. To prevent unbounded search,
a fixed search time limit is set in the experiment. Each episode would terminate once
all UAVs reach this time limit or once all targets have been found. Table 2 presents the
hyperparameters configured for the experiment.

Table 2. Parameter table of simulation scenario.

Hyperparameter Description Value

ρ0 Safe distance between UAVs 3
v Flight speed of UAV 1

tlimit Search time limit of UAV 50
αt Weight of reward for finding a target 10

αout Weight of the penalty for UAVs exceeding the boundary 3
αmove Weight of the consumption of each step of UAV’s movement 1
αcol Weight of the penalty for collision between UAVs 5
µ Factors of repulsion between UAVs 0.8

The number of targets is set to 15 and the position of each target will be appropriately
adjusted according to its determinacy for simulating the situation in which the target
position is biased or updated late in reality. The coordinates of the determined target will
be imported directly from the specified file. For undetermined targets, their coordinates
will change randomly based on the provided fuzzy position to simulate possible position
deviations. Table 3 lists the certainty of the targets and the corresponding coordinates
mapped to the map in detail.

Drones 2025, 9, 74 17 of 23

Table 3. The related information of each target.

Target Determinacy Position

T1 false (40.0, 40.0)
T2 true (35.0, 35.0)
T3 false (35.0, 37.0)
T4 false (36.5, 36.5)
T5 true (37.5, 37.5)
T6 false (37.5, 37.5)
T7 true (45.0, 44.0)
T8 true (36.0, 36.0)
T9 false (41.0, 41.0)
T10 false (38.5, 37.5)
T11 true (34.5, 35.0)
T12 false (35.5, 36.0)
T13 false (42.5, 42.0)
T14 true (39.5, 39.5)
T15 false (33.0, 33.5)

Three, four, and five UAVs are selected as experimental objects to reflect the collabora-
tion of multi-UAV. Each evaluation matrix is obtained by randomly generating 20 rounds
in each training cycle and taking the average, reducing the impact of randomness in one
round and reflecting the performance reliably.

5.1. Scenario I: Three UAVs

Figure 9a,b show the training process of the proposed PODQN algorithm, DQN,
Double DQN, Dueling DQN, Value Decomposition Network (VDN), QMIX and random
policy. As can be seen from curves, the reward of random search algorithm is kept near a low
value, indicating it is difficult to optimize according to the feedback from the environment.
The number of targets found by the DQN algorithm fluctuates significantly over time.
Although it can occasionally find more targets, the overall performance lacks consistency
and the found targets is close to zero in some training stages. Similarly, the corresponding
reward curve frequently experiences reward declines and intervals of negative rewards
with the overall trend failing to demonstrate a continuous increase. For Double DQN,
the average number of targets found is higher than 10 during most of the training period,
while the reward curve experiences sharp fluctuations many times throughout the training
process and more than half of the reward values are below 0. The overall performance
fluctuation of the Dueling DQN algorithm is the largest and there is a large performance
gap even between adjacent training epochs. When training to about 54,000 epochs, its
reward value stabilizes at about −1800, indicating that the algorithm has not found an
effective search strategy. The performance of VDN is not stable during the learning process.
Although it can find more targets sometimes, the overall stability is poor and the curve
fluctuates significantly, which indicates that VDN is easily affected by environmental
changes. In contrast, QMIX found more targets than the previous algorithms. However, it
can be seen from its reward curve that most of the reward values are still below 0. Even
if some targets are successfully found, the search path still needs to be further optimized.
Compared with other algorithms, the PODQN algorithm can find more targets in most
periods with obvious peak values and small changes, showing best performance. A more
intuitive comparison can be obtained from Table 4.

Drones 2025, 9, 74 18 of 23Drones 2025, 9, 74 18 of 22

Figure 9. Experimental results for seven algorithms over multiple epochs. (a) Curves of the number
of targets found by three UAVs based on different algorithms; (b) Curves of episode rewards by
three UAVs based on different algorithms; (c) Curves of the number of targets found by four UAVs
based on different algorithms; (d) Curves of episode rewards by four UAVs based on different al-
gorithms; (e) Curves of the number of targets found by five UAVs based on different algorithms; (f)
Curves of episode rewards by five UAVs based on different algorithms.

5.2. Scenario II: Four UAVs

Figure 9c,d show the training process of different algorithms under four UAVs. The
random policy shows significant performance deficiencies. Its reward value hovers in the
negative area in most cases and fluctuate around −470. While higher rewards may occa-
sionally be obtained, this is an accidental result of randomness rather than a stable perfor-
mance of the algorithm. The DQN algorithm is capable of finding more than 10 targets in
certain stages, but it would abruptly decline to a low level or even drop to 0. Meanwhile,
its reward curve exhibits repeated fluctuations over time with a significant improvement
around 80,000 epochs followed by a decrease back to approximately −3000. This oscilla-
tory behavior between high and low performance indicates that the policy is not yet stable
and has not achieved steady convergence. The Double DQN algorithm remained rela-
tively stable until the last 20,000 epochs. Its reward curve showed a downward trend from
nearly 1000 to around −900 and never recovered to a positive value. The Dueling DQN
algorithm was able to find 12 to 13 targets before training to approximately 32,000 epochs.

Figure 9. Experimental results for seven algorithms over multiple epochs. (a) Curves of the number
of targets found by three UAVs based on different algorithms; (b) Curves of episode rewards by three
UAVs based on different algorithms; (c) Curves of the number of targets found by four UAVs based
on different algorithms; (d) Curves of episode rewards by four UAVs based on different algorithms;
(e) Curves of the number of targets found by five UAVs based on different algorithms; (f) Curves of
episode rewards by five UAVs based on different algorithms.

Table 4. Search data comparison of different numbers of UAVs under different methods.

Number of
UAVs Index Random DQN Double

DQN
Dueling

DQN VDN QMIX PODQN

Three

Average number of
targets found 7.3 5.9 6.00 4.8 8.50 12.35 15.0

Average number
of rewards −74.35 −489.5 −429.0 −1479 −451.0 −348.5 1248.05

Four

Average number of
targets found 7.85 8.55 10.4 12.55 10.9 13.7 14.9

Average number
of rewards −61.2 −1336 −226 −1219.5 27 −790 1237

Five

Average number of
targets found 13.35 6.3 10.4 15 14 14.25 15.0

Average number
of rewards −56.6 −2446 −384 1210.95 −348 −207.55 1443

Drones 2025, 9, 74 19 of 23

5.2. Scenario II: Four UAVs

Figure 9c,d show the training process of different algorithms under four UAVs. The
random policy shows significant performance deficiencies. Its reward value hovers in
the negative area in most cases and fluctuate around −470. While higher rewards may
occasionally be obtained, this is an accidental result of randomness rather than a stable per-
formance of the algorithm. The DQN algorithm is capable of finding more than 10 targets
in certain stages, but it would abruptly decline to a low level or even drop to 0. Meanwhile,
its reward curve exhibits repeated fluctuations over time with a significant improvement
around 80,000 epochs followed by a decrease back to approximately−3000. This oscillatory
behavior between high and low performance indicates that the policy is not yet stable and
has not achieved steady convergence. The Double DQN algorithm remained relatively
stable until the last 20,000 epochs. Its reward curve showed a downward trend from nearly
1000 to around −900 and never recovered to a positive value. The Dueling DQN algorithm
was able to find 12 to 13 targets before training to approximately 32,000 epochs. But its
search policy changed rapidly, resulting in it only being able to find 1 target in subsequent
training. Although it occasionally recovered to the level of finding 12 targets, this phe-
nomenon was not sustained, and it would return to the poor performance in the following
epoch. The VDN algorithm once found all the targets. However, its reward fluctuates
around −260 in most training epochs. This may be because it fell into a local optimal solu-
tion and there was no further strategy adjustment. The QMIX algorithm is highly volatile
throughout the training process and does not have an obvious upward or downward trend.
The number of discovered targets and the reward frequently alternate between peaks and
troughs, indicating its erratic performance. Only the PODQN algorithm has an overall
upward trend. Even though it fluctuates in some stages, it would recover quickly and
remain at a high level in most stages, showing the excellent overall performance.

5.3. Scenario III: Five UAVs

Figure 9e,f show the training process under five UAVs. The random policy is relatively
flat and has a small fluctuation range. The reward keeps fluctuating around 0 throughout
the training process, staying at a low level. The DQN algorithm has obvious stage peaks
with the number of targets consistently maintained between 8 and 12 in specific training
intervals such as 20,000 to 30,000 epochs. Then, it would decline to a low number of targets
and a negative reward range of approximately −3000 to −3500. DQN has learned some
high-value action sequences under the current training settings, but it lacks continuous
reinforcement of this policy. The Dueling DQN algorithm shows the largest fluctuations
in the curve of found targets, demonstrating significant performance differences between
two close epochs. Additionally, the reward curve generally shows a declining trend,
occasionally spike briefly before quickly dropping below −3000. In contrast, the Double
DQN algorithm shows strong search performance initially. But it experiences a steep
decline at about 68,000 epochs with the reward falling below −700. After this turning
point, curves rise a little but the reward remains stable at less than 0. The VDN algorithm
is similar to the Double DQN algorithm. Although the number of targets found in the
later stage is stable around 14, its rewards show that its search path needs to be further
optimized. The performance of the QMIX algorithm seems to be relatively stronger from
Figure 9e. But the reward exhibits fluctuations exceeding 2000 starting from 21,000 epochs.
The PODQN algorithm has similar performance and small fluctuation most of the time.
However, its peak value is larger and has stabilized in the last 10,000 epochs, indicating the
most reliable performance.

Combined with the above analysis, it is not difficult to conclude that the proposed
PODQN algorithm displays stable performance and remarkable convergence. When

Drones 2025, 9, 74 20 of 23

extended to multi-agents, its performance is also better than various DQN-based algorithms
and commonly used algorithms, which can maintain stable performance gains even as the
number of agents increases.

5.4. Multi-UAV Collaborative Analysis

Figure 10a,b present the performance of the PODQN algorithm under three different
numbers of UAVs. It can be observed that the PODQN algorithm shows significant perfor-
mance and convergence on evaluation metrics as the number of UAVs increases. When
the number of agents is 3, the PODQN algorithm demonstrates a rapid convergence speed
and a high cumulative reward, indicating that it can quickly find effective collaborative
strategies in smaller-scale multi-agent systems. When the number of UAVs increased
to four and five, despite large fluctuations in the early stages of training due to policy
adjustments brought resulting from environmental exploration, its convergence speed still
maintains a high level and the number of found targets also maintains a stable and gradual
increase, highlighting the robust adaptability and scalability involving a greater number
of UAVs. Additionally, the stability of the strategy is not largely affected as the number
of UAVs increases, indicating that the PODQN algorithm can effectively mitigate policy
oscillations in multi-UAV collaboration tasks and improve the efficiency.

Drones 2025, 9, 74 20 of 22

number of UAVs. Additionally, the stability of the strategy is not largely affected as the
number of UAVs increases, indicating that the PODQN algorithm can effectively mitigate
policy oscillations in multi-UAV collaboration tasks and improve the efficiency.

Figure 10. Experimental results for the PODQN algorithm over multiple UAV configurations. (a)
Curves of the number of targets found by the PODQN algorithm Based on Different UAV Configu-
ration; (b) Curves of Episode Rewards by the PODQN algorithm Based on Different UAV Configu-
ration.

However, this study only addresses cases involving three, four, and five UAVs.
When the scale of UAVs further expands to dozens or hundreds, the linear or even expo-
nential growth of state space and action space caused by the increase in the number of
agents will lead to a significant increase in the complexity of policy optimization. In this
context, the performance may level off or even cause bottlenecks in some cases. To reduce
the computational cost of the PODQN algorithm and speed up the convergence speed in
large-scale UAV systems, a hierarchical learning framework can be introduced based on
the existing shared network framework to divide the large-scale UAV swarm into several
sub-groups. Each subgroup independently learns policies within its local scope and
makes collaboration among subgroups through the global level. Furthermore, deploying
a distributed framework can accelerate training by distributing the processing of large-
scale training data across different nodes. Each UAV can independently interact with the
environment and sample experience. This distributed mechanism can not only train net-
works of different modules at the same time to improve the convergence speed but also
enhance the scalability of the algorithm in more complex task environments.

6. Conclusions
In general, this paper aims to achieve dynamic and adaptive target search for UAVs

through reinforcement learning. Considering the limitations of UAVs in observing the
environment, this paper proposes the PODQN algorithm to solve its partially observable
problem in practical applications. First, the target search task is modeled as a partially
observable Markov Decision Process and an innovative reward function is designed for
different search scenarios. Subsequently, the network architecture of the PODQN algo-
rithm is introduced in detail and extended to multi-agent systems. Through experiments
in simulation environments and comparative analysis with other algorithms, the PODQN
algorithm shows stronger stability and better performance under different numbers of
UAV configurations.

Figure 10. Experimental results for the PODQN algorithm over multiple UAV configurations.
(a) Curves of the number of targets found by the PODQN algorithm Based on Different UAV
Configuration; (b) Curves of Episode Rewards by the PODQN algorithm Based on Different
UAV Configuration.

However, this study only addresses cases involving three, four, and five UAVs. When
the scale of UAVs further expands to dozens or hundreds, the linear or even exponential
growth of state space and action space caused by the increase in the number of agents
will lead to a significant increase in the complexity of policy optimization. In this context,
the performance may level off or even cause bottlenecks in some cases. To reduce the
computational cost of the PODQN algorithm and speed up the convergence speed in
large-scale UAV systems, a hierarchical learning framework can be introduced based

Drones 2025, 9, 74 21 of 23

on the existing shared network framework to divide the large-scale UAV swarm into
several sub-groups. Each subgroup independently learns policies within its local scope and
makes collaboration among subgroups through the global level. Furthermore, deploying
a distributed framework can accelerate training by distributing the processing of large-
scale training data across different nodes. Each UAV can independently interact with
the environment and sample experience. This distributed mechanism can not only train
networks of different modules at the same time to improve the convergence speed but also
enhance the scalability of the algorithm in more complex task environments.

6. Conclusions
In general, this paper aims to achieve dynamic and adaptive target search for UAVs

through reinforcement learning. Considering the limitations of UAVs in observing the
environment, this paper proposes the PODQN algorithm to solve its partially observable
problem in practical applications. First, the target search task is modeled as a partially
observable Markov Decision Process and an innovative reward function is designed for
different search scenarios. Subsequently, the network architecture of the PODQN algorithm
is introduced in detail and extended to multi-agent systems. Through experiments in
simulation environments and comparative analysis with other algorithms, the PODQN
algorithm shows stronger stability and better performance under different numbers of
UAV configurations.

Although the constructed simulation environment has accounted for as many real-
world factors as possible, it cannot fully replicate the complexity and random disturbances
of real-world scenarios. For this reason, future work would focus on introducing practical
factors such as noise caused by sensor errors and communication delays. Additional
consideration would be given to uncontrollable environmental disturbances, including
wind field perturbations and terrain interference. By deploying and testing the algorithm
on more realistic UAV platforms, the robustness and feasibility of the system can be further
evaluated under more complex perception and communication conditions, which would
contribute to providing a more comprehensive solution for the deployment of multi-UAV
cooperative search in real-world scenarios.

Author Contributions: Conceptualization, H.X.; methodology, H.X.; software, H.X.; validation, H.X.;
formal analysis, H.X.; investigation, H.X.; resources, D.Z.; data curation, H.X.; writing—original draft
preparation, H.X.; writing—review and editing, H.X.; visualization, H.X.; supervision, D.Z.; project
administration, H.X. All authors have read and agreed to the published version of the manuscript.

Funding: Supported by Sichuan Science and Technology Program (Granted No. 2024ZDZX0011).

Data Availability Statement: Data will be made available on request.

Acknowledgments: Special thanks to Zhu Dayong for his guidance and encouragement; his support
and suggestions were instrumental for the writing and completion of this thesis.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Maddikunta, P.K.R.; Hakak, S.; Alazab, M.; Bhattacharya, S.; Gadekallu, T.R.; Khan, W.Z.; Pham, Q.-V. Unmanned Aerial Vehicles

in Smart Agriculture: Applications, Requirements, and Challenges. IEEE Sens. J. 2021, 21, 17608–17619. [CrossRef]
2. Marques, L.; Vale, A.; Vaz, P. State-of-the-Art Mobile Radiation Detection Systems for Different Scenarios. Sensors 2021, 21, 1051.

[CrossRef] [PubMed]
3. Aibin, M.; Aldiab, M.; Bhavsar, R.; Lodhra, J.; Reyes, M.; Rezaeian, F.; Saczuk, E.; Taer, M.; Taer, M. Survey of RPAS Autonomous

Control Systems Using Artificial Intelligence. IEEE Access 2021, 9, 167580–167591. [CrossRef]
4. Albrecht, S.V.; Stone, P. Autonomous Agents Modelling Other Agents: A Comprehensive Survey and Open Problems. Artif. Intell.

2018, 258, 66–95. [CrossRef]

https://doi.org/10.1109/JSEN.2021.3049471
https://doi.org/10.3390/s21041051
https://www.ncbi.nlm.nih.gov/pubmed/33557104
https://doi.org/10.1109/ACCESS.2021.3136226
https://doi.org/10.1016/j.artint.2018.01.002

Drones 2025, 9, 74 22 of 23

5. Meng, L.; Gorbet, R.; Kulić, D. Partial Observability During DRL for Robot Control. arXiv 2022, arXiv:2209.04999.
6. Cabreira, T.M.; Brisolara, L.B.; Ferreira, P.R., Jr. Survey on Coverage Path Planning with Unmanned Aerial Vehicles. Drones 2019,

3, 4. [CrossRef]
7. Sarkar, M.; Yan, X.; Erol, B.A.; Raptis, I.; Homaifar, A. A Novel Search and Survey Technique for Unmanned Aerial Systems in

Detecting and Estimating the Area for Wildfires. Robot. Auton. Syst. 2021, 145, 103848. [CrossRef]
8. Xia, Y.; Chen, C.; Liu, Y.; Shi, J.; Liu, Z. Two-Layer Path Planning for Multi-Area Coverage by a Cooperative Ground Vehicle and

Drone System. Expert Syst. Appl. 2023, 217, 119604. [CrossRef]
9. Fan, X.; Li, H.; Chen, Y.; Dong, D. UAV Swarm Search Path Planning Method Based on Probability of Containment. Drones 2024,

8, 132. [CrossRef]
10. Milan, A.; Roth, S.; Schindler, K. Continuous Energy Minimization for Multitarget Tracking. IEEE Trans. Pattern Anal. Mach. Intell.

2013, 36, 58–72. [CrossRef] [PubMed]
11. Odeh, A. Taxonomy of Cluster-Based Target Tracking System in Wireless Sensor Networks. Int. J. Sens. Wirel. Commun. Control

2020, 10, 649–658. [CrossRef]
12. Gul, F.; Mir, S.; Mir, I. Coordinated Multi-Robot Exploration: Hybrid Stochastic Optimization Approach. In Proceedings of the

AIAA SciTech 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 1414.
13. Queralta, J.P.; Taipalmaa, J.; Pullinen, B.C.; Sarker, V.K.; Gia, T.N.; Tenhunen, H.; Gabbouj, M.; Raitoharju, J.; Westerlund, T.

Collaborative Multi-Robot Search and Rescue: Planning, Coordination, Perception, and Active Vision. IEEE Access 2020, 8,
191617–191643. [CrossRef]

14. Vinh, K.; Gebreyohannes, S.; Karimoddini, A. An Area-Decomposition Based Approach for Cooperative Tasking and Coordination
of UAVs in a Search and Coverage Mission. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March
2019; pp. 1–8.

15. Xing, S.; Wang, R.; Huang, G. Area Decomposition Algorithm for Large Region Maritime Search. IEEE Access 2020, 8,
205788–205797. [CrossRef]

16. Chen, Y.; Mou, Z.; Lin, B.; Zhang, T.; Gao, F. Complete Coverage Path Planning for Data Collection with Multiple UAVs. In
Proceedings of the 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates,
21–24 April 2024; pp. 1–6.

17. Baudrillard, J. Managing Multi-Valued Horizons Within a Structural Interpretation Framework. Ph.D. Thesis, Université Grenoble
Alpes, Grenoble, France, 2018.

18. Huang, C.; Du, B.; Chen, M. Multi-UAV Cooperative Online Searching Based on Voronoi Diagrams. IEEE Trans. Aerosp. Electron.
Syst. 2024, 60, 3038–3049. [CrossRef]

19. Ma, Y.; Li, X.; Jiao, Y.; Guo, L.; Ren, S.; Zhang, Q. A Fast Multi-UAV Cooperative Reconnaissance Method Exploiting Payload
Diversity. In Proceedings of the 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), London, UK, 26–29 September
2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6.

20. Javaid, S.; Saeed, N.; Qadir, Z.; Fahim, H.; He, B.; Song, H.; Bilal, M. Communication and Control in Collaborative UAVs: Recent
Advances and Future Trends. IEEE Trans. Intell. Transp. Syst. 2023, 24, 5719–5739. [CrossRef]

21. Cuevas, E.; Fausto, F.; González, A. New Advancements in Swarm Algorithms: Operators and Applications; Springer:
Berlin/Heidelberg, Germany, 2020.

22. Zhou, Y.; Rao, B.; Wang, W. UAV Swarm Intelligence: Recent Advances and Future Trends. IEEE Access 2020, 8, 183856–183878.
[CrossRef]

23. Kashino, Z.; Nejat, G.; Benhabib, B. Multi-UAV Based Autonomous Wilderness Search and Rescue Using Target Iso-Probability
Curves. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14
June 2019; pp. 636–643.

24. Yao-zhong, Z.; Lan, C. Multi-UAVs Cooperative Reconnaissance Based on Improved Harmony Search Algorithm. In Proceedings
of the 2018 5th International Conference on Information Science and Control Engineering (ICISCE), Zhengzhou, China, 20–22
July 2018; pp. 346–350.

25. Yang, Y.; Xiong, X.; Li, J. UAV Trajectory Planning via Adaptive Potential Field Ant Colony Algorithm. In Proceedings of the
2023 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Yibin, China, 22–24
September 2023; pp. 1–5.

26. Deng, G.; Yao, X.; Wang, B.; He, X.; Fei, Q. Research on UAV Coverage Search Based on DDQN in Unknown Environments. In
Proceedings of the 2023 China Automation Congress (CAC), Chongqing, China, 17–19 November 2023; pp. 2826–2831.

27. Wu, J.; Sun, Y.; Li, D.; Shi, J.; Li, X.; Gao, L.; Yu, L.; Han, G.; Wu, J. An Adaptive Conversion Speed Q-Learning Algorithm for
Search and Rescue UAV Path Planning in Unknown Environments. IEEE Trans. Veh. Technol. 2023, 72, 15391–15404. [CrossRef]

https://doi.org/10.3390/drones3010004
https://doi.org/10.1016/j.robot.2021.103848
https://doi.org/10.1016/j.eswa.2023.119604
https://doi.org/10.3390/drones8040132
https://doi.org/10.1109/TPAMI.2013.103
https://www.ncbi.nlm.nih.gov/pubmed/24231866
https://doi.org/10.2174/2210327910999200606230150
https://doi.org/10.1109/ACCESS.2020.3030190
https://doi.org/10.1109/ACCESS.2020.3037679
https://doi.org/10.1109/TAES.2024.3362320
https://doi.org/10.1109/TITS.2023.3248841
https://doi.org/10.1109/ACCESS.2020.3028865
https://doi.org/10.1109/TVT.2023.3297837

Drones 2025, 9, 74 23 of 23

28. Jiang, W.; Bao, C.; Xu, G.; Wang, Y. Research on Autonomous Obstacle Avoidance and Target Tracking of UAV Based on Improved
Dueling DQN Algorithm. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021;
pp. 5110–5115.

29. Boulares, M.; Fehri, A.; Jemni, M. UAV Path Planning Algorithm Based on Deep Q-Learning to Search for a Floating Lost Target
in the Ocean. Robot. Auton. Syst. 2024, 179, 104730. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.robot.2024.104730

	Introduction
	Related Work
	MDP Model
	Action Space
	State Space
	Reward Function

	Methodology
	Target Network
	Dueling Network
	Gated Recurrent Unit
	Multi-Agent Framework for the PODQN Algorithm
	Action Selection Strategy
	Artificial Potential Field
	Algorithm Process

	Experiments and Discussions
	Scenario I: Three UAVs
	Scenario II: Four UAVs
	Scenario III: Five UAVs
	Multi-UAV Collaborative Analysis

	Conclusions
	References

