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Abstract: The unmanned aerial vehicle (UAV) industry has developed rapidly in recent
years and is being applied in a wide range of fields. However, incidents involving unautho-
rized UAVs that threaten public safety have occurred frequently, highlighting the need for
effective and accurate methods to detect and respond to illegal UAVs. This has led to the
emergence of various UAV detection technologies, among which passive radar stands out
due to its unique advantages. This review aims to offer insights that can support further
research and development in the field of UAV detection using passive radar. We begin by
exploring the origins of passive radar and then provide a comprehensive overview of its
progress from multiple angles, particularly focusing on its application in UAV detection.
Finally, we provide a forward-looking discussion on the future development trends and
challenges faced by passive radar in UAV detection.

Keywords: unmanned aerial vehicle (UAV); passive radar; clutter suppression; illuminators
of opportunity; orthogonal frequency division multiplexing (OFDM)

1. Introduction
Unmanned aerial vehicles (UAVs) have rapidly advanced in recent years, driven

by technological breakthroughs and industry growth. Beyond hardware improvements,
significant progress in algorithms, communication, and control systems has enabled UAVs
to complete tasks with greater efficiency and intelligence. They are now widely used in
applications such as search and rescue, wireless networks, real-time monitoring, logis-
tics, precision agriculture, and infrastructure inspection [1–6]. However, their widespread
adoption has raised concerns about privacy violations and public safety risks. UAVs can
infringe on personal privacy through unauthorized image capture and threaten critical
infrastructure and aviation safety, as seen in numerous incidents of UAV interference
with civil aviation. These issues highlight the urgent need for counter-UAV technologies,
with current detection methods including acoustic sensing, visual systems, radio-frequency
detection, and radar [7–9].

Acoustic sensing leverages audio signals and machine learning for UAV classification
and localization, offering low cost and easy deployment. Examples include microphone
arrays for UAV localization, where the power spectrum across different angles and fre-
quencies was utilized [10,11], and real-time audio-based systems for UAV detection [12].
However, acoustic methods face significant limitations, including short detection ranges,
the need for bulky arrays, and the exponential attenuation of audio signals with distance.
Additionally, these methods are less effective in noisy environments, such as airports, due
to high false alarm rates [13]. Vision-based detection relies on image processing techniques,
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using cameras and videos to identify UAVs. Advanced methods integrate machine learning
or infrared cameras for enhanced performance in low-light conditions, but challenges such
as background interference, high costs, and lower resolution persist [14,15]. Thus, vision-
based detection is typically integrated with radar systems for UAV detection to ensure
mutual validation, as discussed in [7]. Passive radio-frequency (RF) detection identifies
UAVs by analyzing communication signals, including WiFi fingerprints and transmitted
spectral patterns [16,17]. For example, a software-defined radio system was employed
in [18], but due to the inherent limitation of software-defined radio systems in providing
high range accuracy, a distance error exceeding 50 m was observed at specific detection
ranges, particularly for near-field UAVs. While RF detection is effective and economical, it
is limited against UAVs that follow preprogrammed flight paths without emitting signals.
These methods, despite their limitations, form the basis of ongoing research into more
robust counter-UAV technologies.

Radar offers the advantage of round-the-clock operation with minimal sensitivity
to weather conditions, enabling simultaneous and high-precision measurement of both
distance and velocity for detecting airborne targets. Active radar systems generally use
frequency-modulated continuous waves (FMCWs) to detect UAVs, requiring a carrier fre-
quency above 6 GHz [19]. The implementation of multiple-input multiple-output (MIMO)
techniques [20] allows for precise detection of UAVs at ranges up to 2 km. Additionally,
some research leverages micro-Doppler signatures for UAV classification or to differentiate
them from birds [21]. Despite these capabilities, active radar systems emit high levels of
radiation, making them unsuitable for densely populated areas. Furthermore, active radar
requires specially designed transmitters, which can be expensive and are vulnerable to
detection by UAVs through anti-radiation measures.

Passive radar offers several advantages over active radar. First, since it does not emit
its own signals and relies on existing external electromagnetic sources, passive radar has
strong stealth capabilities, making it difficult for adversaries to detect and suitable for
military reconnaissance and counter-stealth applications. Second, passive radar eliminates
the need for onboard transmitters and high-power amplifiers, resulting in lower hardware
costs. Additionally, it has strong anti-interference capabilities because the adversary is
unaware of the specific external signals being utilized by the passive radar and may not
even detect the presence of the passive radar itself, making it difficult to implement tar-
geted jamming. Furthermore, passive radar can leverage various external signal sources
for detection, giving it an edge in complex environments.

Figure 1 presents the structure of this paper, which is organized to provide a flow
for understanding the application of passive radar in UAV detection. The acronyms IOs
(Illuminators of Opportunity) and RD (Range–Doppler) map, as used in the figure, refer to
external signals employed by passive radar for detection and a map that depicts the target’s
range and velocity information, respectively. It is important to note that the focus of this
paper is on small UAVs, particularly quadrotor drones, due to their prevalence in civilian
applications and the unique challenges they present in detection and tracking. Following
the introduction, Section 2 provides an overview of passive radar, including its origins
and signal processing workflow. Based on this workflow, Sections 3–5 delve into specific
aspects: the selection of IOs, signal processing methods, and special advancements in
UAV detection. Finally, Section 6 discusses future outlooks and challenges, while Section 7
concludes the paper.
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Figure 1. Outline of this paper.

2. An Overview of Passive Radar
2.1. The Origins of Passive Radar

Passive radar, which detects and tracks targets using external signals present in the
environment rather than emitting its own, has a historical foundation dating back to World
War II. The “Chain Home” radar utilized BBC broadcasting stations as signal sources,
marking some of the earliest passive radar systems [22,23]. Research into electromagnetic
wave propagation highlighted the critical role of radar frequency bands and waveforms
in detection performance. Unlike passive radar, active radar can transmit customized
waveforms for specific tasks, providing superior detection capabilities. In the 1980s, analog
TV signals were successfully used as IOs to detect aerial targets, reigniting interest in
passive radar [24]. With increasing spectrum congestion due to communication demands,
passive radar benefits from an abundance of IO sources [25]. Today, passive radar has
evolved to include advanced features like tracking and imaging and finds applications in
diverse scenarios such as urban, indoor, airspace, and maritime environments [26–30].

2.2. Signal Processing Workflow of Passive Radar

As discussed in the previous subsection, the IO signals used in passive radar are
usually not designed for radar purposes. While these signals often have large bandwidths,
providing high range resolution, their ambiguity functions typically exhibit high ambiguity
floors due to communication data and periodic ghost peaks caused by signal structures
such as pilots [31,32]. In practical scenarios, the receiver captures not only the target’s
signal but also direct waves from the IO and undesired multi-path clutter. The direct wave
often has the highest amplitude, and the power of clutter signals is usually much stronger
than the target echoes, resulting in high ambiguity floors and non-ideal side peaks that can
obscure targets and cause false alarms. Consequently, improving the signal-to-clutter ratio
(SCR) is an essential topic in passive radar systems.

To address the unique challenges of passive radar, a distinct signal processing frame-
work has been established, differing significantly from active radar systems [26,33,34].
Figure 2 illustrates the typical workflow. A reference antenna captures a high signal-to-
noise ratio (SNR) signal from the IO for clutter suppression or RD map generation, while
surveillance antennas collect target echoes from the area of interest. The workflow then
transitions to suppressing direct waves and multi-path clutter, typically using the refer-
ence signal or its reconstructed version. By analyzing delay and Doppler shifts, clutter
replicas are computed, their amplitudes estimated, and subsequently subtracted to achieve
clutter suppression.
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Figure 2. The typical signal processing flow of a passive radar system.

Next, the RD map estimation step is carried out. The most common approach is to
use a matched filter (MF) to plot the RD map. In some cases, unmatched filters may be
employed to save computational resources or improve the SCR. After obtaining the RD
map, the process moves to the target detection and tracking phase. In this stage, passive
radar operates similarly to active radar. Constant false alarm rate (CFAR) detection is
the most commonly used method. After detecting high-amplitude targets and recording
their information, further processing may be required. In cases where strong targets
obscure weaker ones, additional suppression and RD map recalculations may be required.
Typically, multiple detection antennas are employed, allowing the estimation of each
target’s angle. Combined with the delay and Doppler extracted from the RD map and
utilizing multiple coherent processing intervals (CPIs), targets can be associated on the RD
map or a two-dimensional plane. This helps eliminate false targets and eventually construct
their trajectories. It is important to note that due to the unique challenges faced by passive
radar, the signal processing workflow may not always follow a strictly sequential order.

Many traditional IOs in passive radar systems are applicable for UAV detection. Given
the typically small size of UAVs, their detection is primarily conducted at relatively short
ranges. The clutter distribution in these scenarios is similar to that in classical airborne
detection, resulting in a signal processing workflow for passive radar detecting UAVs that
largely mirrors that of conventional passive radar. In the following sections, we introduce
the application of passive radar in UAV detection, focusing on IOs, signal processing,
and current advancements.

3. Choice of IOs for UAV Tracking in Passive Radar Systems
3.1. Types of IO for Passive Radar

In addition to radar-specific signals such as linear frequency-modulated (LFM) signals,
commonly used IOs include Digital Radio Mondiale (DRM, with only its HF band utilized
in passive radar), Frequency Modulation Radio (FM Radio), Digital Audio Broadcast (DAB),
Digital Video Broadcast–Terrestrial (DVB-T), global navigation satellite system (GNSS),
StarLink, OneWeb, InmarSat, Iridium, Wireless Fidelity (WiFi), Digital Video Broadcast–
Satellite (DVB-S), 3G, 4G, and 5G. These IOs cover frequency bands ranging from HF
to mmWave, with their coverage areas corresponding to different application scenarios.
Table 1 lists the information of the above signals, including their category, description,
and frequency range.

Determining whether a signal is suitable as an IO for UAV detection depends not
only on the radar performance reflected by the AF of the signal itself but also on the SNR,
which is the most critical factor. This primarily depends on two aspects: the power density
of the signal and the radar cross-section (RCS) of the UAV. This means that to meet the
SNR requirements for detection, these two factors must be comprehensively considered.
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Compared with the targets discussed above, UAVs are smaller in size, and their RCS
depends on the frequency of the IO. Typically, the match between the target size and the
signal wavelength is key to determining the RCS. For a larger RCS, the signal wavelength
should be equal to or smaller than the size of the object; otherwise, the RCS decreases
significantly with increasing wavelength.

Table 1. The main types of IO used by passive radar.

Signal Type Category Description Frequency Range

LFM Radar signal

LFM is a radar signal with a linearly
varying frequency over time, often used
for pulse compression to achieve better
range resolution in radar applications.

Depending on the radar system’s design.

DRM Broadcast Radio A digital radio system for broadcasting
on longwave bands. HF

FM Radio Broadcast Radio Analog radio broadcasting using
frequency modulation. VHF

DAB Broadcast Radio
A digital radio standard for broadcasting

in certain countries, offering clearer
sound and more stations.

VHF

DVB-T Broadcast TV A standard for digital terrestrial
television broadcasting. UHF

GNSS Satellite-Based Positioning A global navigation satellite system used
for positioning, navigation, and timing. L-band

StarLink Satellite Communication
A LEO satellite network providing

global broadband with high speed and
low latency.

Ku-band, Ka-band

OneWeb Satellite Communication A LEO satellite system offering
affordable global internet coverage. Ku-band, Ka-band

InmarSat Satellite Communication
A geostationary satellite network,

with new LEO systems for enhanced
global communication.

L-band, Ka-band

Iridium Satellite Communication
A LEO satellite network with

pole-to-pole coverage, ideal for remote
communication.

L-band

WiFi Wireless Communication A technology for local wireless data
transmission.

Industrial, Scientific, and Medical (ISM)
Bands (2.4 GHz, 5 GHz, 6 GHz)

DVB-S Satellite TV A standard for satellite television
broadcasting. C-band, Ku-band

3G Mobile Communication Third-generation cellular network
technology. UHF, L-band

4G Mobile Communication Fourth-generation cellular network
technology, used for high-speed internet. UHF, L-band

5G Mobile Communication
Fifth-generation cellular network
technology, designed for ultra-fast
internet speeds and low latency.

Sub-6 GHz, mmWave

LFM signals are a common choice in active radar systems due to their excellent de-
tection capabilities, particularly in terms of resolution and performance. When employed
in passive radar, their characteristics differentiate the signal processing flow from that of
conventional passive radar. First, the signal format of LFM signals is simpler compared
with communication signals, which makes reconstruction more convenient. Even LFM
signals with unknown parameters can be reconstructed through parameter estimation [35].
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Furthermore, LFM signals benefit from the fact that the sidelobes caused by direct waves
and multi-path clutter are typically very low. This characteristic makes LFM signals less
susceptible to occlusion effects, meaning they do not require a separate clutter suppression
step. Therefore, the specific distribution of clutter in terms of its range and velocity does
not need to be precisely determined for suppression purposes. As a result, constructing the
RD map can be simplified to matching in just the delay dimension. To detect the targets,
methods such as moving target detection can be employed, leveraging the LFM signal’s
inherent properties. Consequently, employing LFM signals at moderately high frequencies
for UAV detection is expected to outperform other IOs in terms of detection performance.

For HF IOs represented by DRM signals, their coverage range typically extends to the
order of thousands of kilometers. Through ionospheric reflection, they enable beyond-line-
of-sight detection, making them ideal for passive radar systems used in aerial early warning
applications. However, the multi-path clutter received is highly complex, including direct
waves, ground clutter, sea clutter, and ionospheric clutter. These clutters extensively cover
the RD map, with ionospheric clutter being particularly challenging due to its time-varying
nature. Current suppression algorithms struggle to eliminate such clutter effectively, and as
a result, only feasibility verification experiments have been conducted [31,36], with detec-
tion ranges significantly shorter than the IO’s coverage range. For FM, DAB, and DVB-T
signals, their scenarios are similar. As broadcast signals, they provide wide coverage and
stable transmission, making them particularly suitable for aerial and maritime surveillance.
FM was utilized as an illuminator of opportunity to effectively detect targets after sup-
pressing clutter, as demonstrated by [33,37], establishing the basic framework for passive
radar signal processing. Subsequently, passive radar quickly expanded to incorporate more
signals and methods. These signals often transmit different channels simultaneously on
different carrier frequencies. System performance was enhanced by fusing multi-channel
information and employing multi-polarization techniques, as demonstrated in [38–40]. This
ultimately led to a multi-frequency and multi-polarization approach [41], which success-
fully tracked subsonic targets at distances exceeding 100 km using FM signals. However,
these signals, particularly DRM and FM signals, have relatively long wavelengths, which
render them unsuitable for UAV detection due to the small RCS of UAVs.

With the gradual maturity of passive radar systems using terrestrial IOs, recent years
have seen emerging interest in utilizing satellite signals as IOs. Satellite signals offer greater
flexibility as they do not rely on localized infrastructure like terrestrial IOs. This gives
satellite signals a unique advantage in remote areas, such as the open ocean, where other
illuminators may be unavailable. Navigation satellites are particularly well suited for mar-
itime detection. For example, global positioning systems (GPS) typically ensure coverage
by at least six satellites at any given location worldwide. GNSS signals were utilized to
detect river-based ship targets [42]. Additionally, the wide bandwidth of satellite signals
enables the use of inverse synthetic aperture radar (ISAR) technology to image targets,
allowing for classification and identification. Ship targets were successfully imaged using
DVB-S signals, as shown in [43]. Satellite signals are also suitable for monitoring small
targets, such as humans and vehicles. Due to the significant angular difference between
satellite signals and target echoes, the direct wave energy is relatively low, potentially elim-
inating the need for clutter suppression and simplifying the system. Vehicles were directly
detected at a distance of 200 m in an urban environment using DVB-S signals as IOs [44].
In addition to satellite navigation signals, low Earth orbit (LEO) communication satellites,
such as StarLink, OneWeb, Inmarsat, and Iridium, have gradually gained attention as
potential IOs for passive radar in recent years. These signals offer higher ground power
flux and theoretical global availability, which theoretically enhances the performance of
satellite-based passive radar systems. However, current research is confined to feasibility



Drones 2025, 9, 76 7 of 22

demonstrations [45–47] and preliminary findings [48,49], with no practical applications for
UAV detection reported to date.

In recent years, WiFi transmitters have become widely available as infrastructure
within buildings, offering wide bandwidth and stable signals, making them suitable for
surveillance applications. WiFi signals were successfully utilized as IOs to detect human
activities indoors in [50]. Notably, WiFi signals were employed for through-wall sensing of
human behaviors such as walking and waving, and even more fine-grained actions like
typing on a keyboard or breathing [51]. These detections were achieved by analyzing the
Doppler effects generated by human motion.

3.2. UAV Detection with Various IOs

To achieve a larger RCS for detection, the millimeter-wave band is commonly em-
ployed, as demonstrated in [52]. The feasibility of detecting UAVs using 5G signals in urban
environments was validated in [53], where simulations showed that at 60 GHz, the RCS of
a small UAV is 1000 times higher than at 2 GHz.

Reference [54] measured the RCS of UAVs across frequencies ranging from 1 GHz
to 10 GHz, revealing that the RCS at 1 GHz is only 5 dB smaller than at 10 GHz under a
zero-degree incidence angle. However, this relationship varies significantly with the angle
of incidence and polarization, which can greatly influence the scattering characteristics.
These factors must be considered when analyzing UAV detection performance. In airport
environments, Primary Surveillance Radars (PSRs) used by air traffic control typically
operate in the L-band or S-band and transmit LFM signals. These radars are primarily
used to monitor the airspace near airports, particularly for aircraft that are not equipped
with transponders. However, the application of PSRs for passive UAV detection remains
relatively rare.

For communication signals, 3D tracking of UAVs within tens of meters was achieved
using WiFi signals, as demonstrated in [55]. UAVs were successfully detected and tracked
using 3G signals at approximately 2 GHz, as shown in [56], while [57] demonstrated
effective detection of UAVs in a static urban environment using 4G Long Term Evolu-
tion (4G LTE) signals at 1.8675 GHz. Furthermore, 1800 MHz global system for mobile
communications (GSM) signals were employed in [58] to track UAVs across multiple
receiver locations.

For satellite signals, certain high-frequency satellite signals have demonstrated fea-
sibility for UAV detection. The detection of UAVs and humans using DVB-S signals at a
carrier frequency of 10.7 GHz was validated in [59]. GNSS signals were utilized in [60] to
detect UAVs, leveraging the simultaneous online availability of multiple satellites. This
approach involved identifying targets with high SNR reference channels and detecting
UAVs across multiple channels simultaneously for higher SNR.

Although ground-based broadcast signals commonly used in passive radar systems
generally have wavelengths larger than the diameter of UAVs, resulting in UAVs having
very small RCS, their high transmission power has motivated many studies to explore their
potential for UAV detection. DVB-T signals were employed to simultaneously detect UAVs
and other civil aircraft at airports [61]. The use of 783 MHz digital terrestrial multimedia
broadcast (DTMB) signals to detect and track a quadrotor UAV with a maximum diameter
of 35 cm was successfully demonstrated in [62]. Notably, the detection of fixed-wing micro-
UAVs using a DAB-based passive radar, achieving a detection range of up to 1.2 km, was
reported in [63].
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4. Signal Processing Methods for UAV Detection Using Passive Radar
4.1. Clutter Suppression Algorithms in Passive Radar System

In the context of UAV detection, clutter suppression is particularly critical due to the
small size and slow movement of UAVs, which makes them highly susceptible to being
masked by strong clutter signals in passive radar systems. As discussed earlier, targets
in unprocessed data are often obscured by a high clutter floor caused by clutter signals,
making clutter suppression crucial. However, traditional algorithms like MTI and CLEAN
do not perform well in clutter suppression for passive radar systems. The Extensive Can-
cellation Algorithm (ECA), proposed by [37], improves upon this by projecting the signal
onto directions orthogonal to the clutter space, effectively suppressing clutter. This method
is based on two assumptions: First, both the target and the clutter are modeled as static
discrete point targets, with distinct delays and Doppler frequencies. As a result, the clutter
signal can be represented as a delayed and Doppler-shifted version of the reference signal.
Second, the correlation between the clutter and the target is minimal. Due to the delay and
Doppler differences, the clutter and target are not located within each other’s main lobe.

In UAV detection scenarios, this orthogonality is crucial for isolating UAV targets
from static or slow-moving clutter. As previously discussed, clutter signals induce a high
ambiguity floor (sidelobe), which reflects the correlation between clutter and target signals.
However, the ambiguity floor is generally lower than −30 dB. Therefore, the clutter signal
and the target signal can be considered nearly orthogonal, allowing for effective clutter
suppression by the orthogonal operator, albeit with a slight degradation in the target’s SNR.
In summary, the masking effect of the ambiguity floor is caused by the correlation between
the target signal and the clutter signal. When an orthogonal operator is used to suppress
clutter, it disregards this weak correlation. As a result, the portions of the target signal that
are correlated with the clutter signal are also subtracted. This process inevitably causes a
reduction in the SNR to some extent.

The success of the ECA algorithm has inspired a variety of clutter suppression meth-
ods, which have in turn broadened the application scope of passive radar systems. In [33],
a multi-stage framework is proposed to address the complex, multi-layered clutter and its
associated ambiguous floor, which provides a foundation for other passive radar clutter
suppression algorithms, particularly iterative methods. However, for the ECA algorithm,
even when the clutter range in the RD domain is relatively small, it still requires the con-
struction of a massive clutter dictionary matrix. This, in turn, demands computationally
expensive matrix multiplications and the inversion of the correlation matrix. As a result,
both the spatial complexity (memory requirements) and the temporal complexity (compu-
tational time) become intolerable, making the algorithm impractical in many real-world
scenarios. In UAV detection scenarios, where clutter signals sometimes overlap across
multiple layers or multiple UAV targets are present, stronger targets may obscure weaker
ones. The multi-stage framework can iteratively reveal both the clutter and the targets,
ultimately achieving effective detection.

To mitigate this issue, the ECA Batches (ECA-B) algorithm is introduced, which
first segments the signal in the time domain and applies the ECA algorithm to each seg-
ment. This leads to an expansion of the notch in the RD domain along the Doppler axis.
The broader notch allows for the suppression of a wider range of clutter while using a
smaller clutter space. This is particularly useful for UAV detection, where the motion-
induced Doppler spread of clutter can otherwise obscure the target signal. This approach
is particularly advantageous for suppressing clutter that results from variations in the
motion state during the accumulation time. However, during the suppression process,
the segments are treated independently, leading to non-ideal structures in the RD map after
suppression. To address this, the sliding ECA (ECA-S) was introduced in [64], which inher-
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its the advantages of ECA-B while alleviating the non-ideal sidelobe suppression caused
by the segmentation. Additionally, the frequency-domain dual version of ECA-B, the GSC
algorithm, performs suppression in the frequency domain [65]. This approach achieves
a wider notch in the distance dimension of the RD map and exhibits better suppression
performance for frequency-varying clutter and IOs with carrier offset. For UAV detection,
where IOs like 5G and WiFi often exhibit frequency offsets, GSC has proven effective in
addressing such challenges.

The reason why segmented algorithms produce larger suppression notches can be
qualitatively explained from two perspectives. First, when the signal is segmented, the reso-
lution of the RD map is reduced. As a result, for the same suppression unit, the suppression
range is naturally larger at lower resolution. Second, signal segmentation shortens the
signal length, which increases the correlation between clutter components. This correlation
leads to a broadening of the mainlobe, thereby enlarging the suppression notch. However,
the enlargement of the suppression notch comes with a cost. Not only does it correspond
to a wider clutter range, but it also increases the likelihood of affecting the target signal,
resulting in reduced SNR. Therefore, it is crucial to select an appropriate segment length to
balance clutter suppression and target protection.

In the above algorithms, clutter vectors are typically generated at integer sampling
points in the RD map, referred to as “on-grid”. However, real-world clutter is usually
“off-grid” and “unresolved”, which limits the “expression” of the clutter matrix. As a
result, even after suppression, the residual clutter energy remains considerable. The first
application of oversampling to the RD map was introduced in [66]. As a result of over-
sampling, the correlation between clutter vectors increases, leading to a large condition
number for the correlation matrix, which becomes nearly non-invertible. To resolve this
issue, the Moore–Penrose pseudo-inverse was introduced to replace the inverse matrix
in the orthogonal operator. Physically, this approach minimizes the total clutter energy,
making it possible to effectively suppress continuously distributed clutter.

In particular, an iterative algorithm known as the Matching Pursuit (MP) algo-
rithm [67,68] was introduced, which suppresses the strongest clutter and its surrounding
oversampling points in each iteration. Computing the pseudo-inverse matrix requires
singular value decomposition (SVD). A singular value analysis on the correlation matrix
was performed in [69], where it was found that the singular values rapidly decay after a
certain point. This indicates that most of the singular values and their corresponding singu-
lar vectors can be discarded without significantly affecting the suppression performance.
This observation provides a computational advantage. The MP algorithm is effective for
lightweight suppression tasks, but its convergence may be impacted by large-scale clutter,
causing the clutters to rise and fall in turn in the suppression process. Moreover, the high
computational cost of SVD can be a limitation. In UAV detection, when the clutter range
is not large, and there are many uncorrelated and sparse clutter components, like planes,
the MP algorithm is particularly suitable.

The suppression algorithms outlined above do not impose specific signal form re-
quirements. However, many IO systems, including DRM, DAB, DVB-T, WiFi, 4G, and 5G,
adopt the Orthogonal Frequency Division Multiplexing (OFDM) scheme. By exploiting the
unique characteristics of these signals, such as their frequency and time-domain properties,
further advantages in clutter suppression can be achieved. In UAV detection, many OFDM-
based IOs are particularly advantageous due to their big bandwidth for high data rates and
spectral efficiency, enabling better resolution in the RD map. ECA by Carrier (ECA-C) [70]
is specifically designed for OFDM signals. It takes advantage of the orthogonality of the
individual subcarriers within the guard interval, transforming the correlation matrix into
a diagonal matrix. This eliminates the need for matrix inversion and subsequent matrix



Drones 2025, 9, 76 10 of 22

multiplications, significantly improving computational efficiency. However, when the
orthogonality of the OFDM subcarriers is disturbed, such as when the clutter delay exceeds
the cyclic prefix of the OFDM symbol or when a small Doppler shift is present, the ECA-C
algorithm may fail. In real-world scenarios, even static scenes can exhibit minor Doppler
shifts, which can significantly affect the algorithm’s performance. To address this, the ECA
by Carrier and Doppler Shift (ECA-CD) algorithm [71,72] was proposed. By expanding the
clutter subspace for each carrier into multiple Doppler replicas, it can effectively suppress
targets with minor Doppler shifts. However, its performance degrades rapidly as the
Doppler frequency increases or when the delay exceeds the cyclic prefix length. In a typical
scenario, ECA-CD extends the suppression range by up to ±2 Doppler units compared
with ECA-C, effectively addressing minor Doppler shifts. However, for larger Doppler
shifts, the performance improvement is negligible.

4.2. Method of Estimating RD Map

Beyond clutter suppression algorithms, generating the RD map is a key part of the
signal processing. The MF is the most common approach, where the received signal is
correlated with the reference signal in its delay-Doppler domain, maximizing the SNR for
optimal detection. Furthermore, by replacing the surveillance signal with the reference
signal and computing the inner product with its own delay-Doppler version, the ambiguity
function can be obtained, which reflects the radar performance of the signal. The RD
map computed using the MF requires substantial computational resources. However,
for UAV detection, the computational cost of the MF can be a limitation, particularly in
real-time applications. The batch algorithm proximate matched filter (PMF) [34] segments
the signal and neglects the phase shifts caused by Doppler frequency in each segment.
Although a Doppler frequency reduces SNR slightly, this decline is often negligible, making
PMF popular in radar systems. In UAV detection, PMF offers a computationally efficient
alternative, particularly when targeting small, low-speed UAVs in cluttered environments.

Both the MF and PMF can be considered as the summation of ambiguity functions with
varying amplitudes, centered at different positions on the RD map. This aggregation leads
to undesirable artifacts, such as high sidelobes and ghost peaks, which are present in both
MF and PMF. For OFDM signals, the PMF can be adapted by setting the segment length to
one symbol duration and discarding the cyclic prefix. The signal is then transformed into
the subcarrier domain using FFT. For the reference signal used in matching, the complex
amplitude of each subcarrier is replaced with its reciprocal, forming the reciprocal filter
(RpF) [73]. The RpF uses an inverse mechanism to whiten the signal. Under ideal conditions,
the matched output is a vector of all ones, and after the inverse Fourier transform, non-ideal
factors induced by the signal itself are eliminated, significantly improving the SCR for
target detection. This capability makes RpF particularly valuable for UAV detection, where
enhancing SCR is critical to revealing weak UAV signals obscured by clutter. In some cases,
it can even bypass the clutter suppression stage and directly track the target.

However, similar to ECA-C, its performance deteriorates when the orthogonality of
the subcarriers is compromised, particularly as the ambiguity floor increases, though ghost
peaks do not occur. Under extreme conditions, where the clutter exhibits large Doppler
frequencies and delays far exceeding the cyclic prefix, the use of RpF may instead result in a
reduction in the SCR. This occurs because the energy of the sidelobes is dispersed onto the
ambiguity floor. In addition, the use of segmentation in RF results in an SNR drop in the
high Doppler region of the RD map, and discarding the cyclic prefix further reduces the SNR.
As a mismatched filter, it still causes a drop in the SNR [74]. To address this issue, multi-
symbol segmentation is employed along with supervised RpF, as demonstrated in [75,76],
avoiding SNR degradation caused by inverting very low-amplitude subcarriers. This
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improvement enables a better balance between SCR and SNR, enhancing the robustness of
UAV detection in cluttered environments.

In addition, to enhance the resolution of targets in the RD map, the multi-carrier
feature of OFDM is employed, enabling the application of well-established traditional
methods such as the Multiple Signal Classification (MUSIC) algorithm [77,78], Estimation of
Signal Parameters via Rotational Invariant Technique (ESPRIT) [79], Maximum Likelihood
(ML)-based methods [80], and Compressive Sensing (CS) techniques for achieving high-
resolution RD maps. Furthermore, for multi-antenna systems, these methods can also
achieve super-resolution in the angular domain [81,82], although there is still limited
research combining distance, velocity, and angle for joint estimation. Integrating such joint
estimation methods could provide significant benefits for UAV detection, enabling a more
comprehensive understanding of UAV motion and position in three-dimensional space.

4.3. Signal Processing for UAV Detection Using Passive Radar

In the scenario of using passive radar to detect UAVs, the majority of the clutter in the
environment is stationary and is therefore typically concentrated at the 0-Doppler position
on the RD map, with a slight outward extension caused by factors such as wind-induced
movement of leaves in the environment. In the simplest case, where only the direct path
signal is present, the classical ECA combined with oversampling can effectively suppress
the clutter. In most cases, different static scatterers are distributed along the delay axis,
and their side lobes, including that of the direct path, overlap along the delay axis. This
overlap makes it challenging to distinguish between them on the RD map. The application
of the ECA algorithm in such scenarios is often ineffective due to the excessively large clutter
space. The ECA-B or ECA-S algorithm, commonly used for this purpose, reduces the clutter
space’s dimensionality by creating a larger suppression notch. Therefore, the commonly
used ECA-S algorithm alleviates the dimensionality of the clutter space by creating a
broader notch for suppression, as demonstrated in [83]. Since the suppression notch
extends along the Doppler dimension, multiple integer delay coordinates starting from
zero delay at zero Doppler frequency are typically selected as the RD parameters for the
clutter matrix on the RD map. However, its frequency-domain dual algorithm, GSC, has
been scarcely applied in this context. The suppression notch in GSC extends along the delay
dimension, making it more suitable for suppressing clutter distributed along the delay axis.
For UAV detection scenarios using OFDM signals as IO, both ECA-C and ECA-CD can
effectively meet the requirements of the scenario. Although clutter with delays exceeding
the cyclic prefix cannot be completely removed, the suppression of the primary clutter
significantly reduces the ambiguous floor, allowing the target to be discernible.

In near-range UAV detection with passive radar, improving the SCR is more critical
than enhancing the SNR. Additionally, with the exception of the MF, these filters have
relatively low computational burdens, making them suitable for real-time processing
applications. Especially in OFDM-based systems, RpF and its improved versions can be
used to generate RD maps. The distribution of clutter in such scenarios is particularly well
suited for RpF, allowing effective SCR enhancement under conditions with limited SNR
loss. Under low clutter interference, targets can sometimes be revealed without requiring
clutter suppression. In summary, the combined use of clutter suppression algorithms and
filters can significantly improve the SCR of targets.

Figures 3–5 present the RD map in the signal process workflow of a classic scenario
for near-range UAV detection using passive radar simulation, with OFDM signals as the
input signal. The magnitude in the Range–Doppler response (heat map) represents the
absolute value of the autocorrelation, providing a visual representation of target and clutter
characteristics. Figure 3 shows the RD map generated using MF, where the direct wave
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and stationary multi-path clutter at zero Doppler are the primary sources of interference,
causing a high ambiguity floor that completely obscures the simulated target. The strong
and weak targets we set are both invisible on the RD map. Additionally, there is a “ghost
peak” caused by the pilot tone and cyclic prefix. Figure 4 displays the RD map generated
using RpF, which effectively reduces the ambiguity floor and reveals a strong simulated
target with RD parameters of (−100, 75). Notably, the “ghost peak” is eliminated, and the
ambiguity floor resembling white noise is constructed. However, for weaker targets,
further improvement in SCR is still required. Figure 5 shows the RD map after applying
the ECA-B algorithm to suppress the main clutter, plotted using RpF. The main clutter
is suppressed, and the ambiguity floor is significantly reduced, revealing a weak target
with RD parameters of (100, 150). However, a non-ideal structure is still visible outside the
suppression range, which is residual energy caused by the ECA-B algorithm’s suppression.

Figure 3. The RD map of the classic scenario for near-range UAV detection using passive radar
simulation with MF, showing a high ambiguity floor and cyclically distributed “ghost peaks”.

Figure 4. The RD map redrawn with RpF from Figure 3, effectively reducing the ambiguity floor and
eliminating the “ghost peaks”, revealing a strong target.
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Figure 5. The RD map after applying the ECA-B Algorithm with RpF, effectively suppressing the
ambiguity floor and revealing a weak target but showing a non-ideal structure in the RD map.

5. Special Advance for UAVs Detection
This section summarizes the special research advancements in the detection of UAVs

using passive radar, covering various IOs, technologies, and application scenarios.
In the study by [61], DVB-T signals were utilized as the IO, and a parallel processing

framework was implemented to simultaneously track UAVs near an airport, as well as
civil air traffic within a radius of several hundred kilometers. The clutter suppression
process incorporated both the ECA and ECA-S algorithms, with results demonstrating that
the detection range increased by 20% when ECA-S was employed. The system integrates
multiple frequency bands to enhance detection performance and utilizes a non-uniform
linear antenna array to reduce angular estimation ambiguity. This enabled the detection
of a quadcopter UAV from a range of 1.6 km to 5 km. The ability to simultaneously
detect targets across different operational scenarios provides a significant advantage for
this system. In a scenario similar to that of [61], ref. [84] employed a long CPI. Initially,
ECA-S was applied for the suppression of primary clutter, followed by an algorithm similar
to the CLEAN algorithm to progressively eliminate the signal contributions from strong
targets, allowing weak target signals to emerge. Experimental results demonstrate that
this approach successfully removed strong target signals, thereby enabling the detection of
weaker targets.

In [85], DVB-T2 signals were utilized as the IO not only for detecting UAVs but also
for investigating the impact of different rotor materials on UAV detection. For UAVs
equipped with carbon fiber blades, which exhibit higher reflectivity, clear micro-Doppler
features caused by the blades were observed in the RD map. These features enabled the
calculation of the rotor’s rotational speed. Such features are beneficial for distinguishing
UAVs from other objects, such as birds or fixed-wing aircraft. In [86], DVB-T signals were
similarly employed, yielding comparable findings. The experiments demonstrated that
medium-sized UAVs made from graphite materials could be detected and classified based
on the Doppler characteristics of their rotating blades. Although plastic UAVs produced
weaker signals, they were still detectable.

In [87], a digital television-based passive radar system was utilized with multiple
single-antenna receivers located at different positions. Figure 6 illustrates the application
scenario described in this study. The system simultaneously receives reference signals and
selects the one with the highest quality, based on the signal constellation, to improve the
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target signal detection capability and enhance resistance to multi-path interference. More-
over, multi-station collaboration allows for more accurate target localization and tracking.
This technology is particularly suitable for monitoring and classifying low-altitude targets,
such as UAVs and birds, and provides technical support for the optimization of distributed
passive radar networks. The distributed receiver setup enables flexible deployment, al-
lowing for either concentrated monitoring of a single area or dispersed monitoring of
multiple regions, making it highly meaningful for applications requiring scalable coverage
and adaptability.

Figure 6. The drone detection experiment trial in [87] uses three single-antenna receivers at different
positions. Their combined coverage detects the UAV, and the highest quality reference signal is
shared for signal processing, followed by trajectory fusion.

An airborne passive radar system based on software-defined radio was proposed
in [88], which utilizes DVB-T signals as the IO and integrates visual data from the UAV
itself for real-time detection and tracking of unauthorized drones. The system employs an
embedded processing unit and utilizes the ECA-S for effective clutter suppression. Experi-
mental results demonstrate that the system is capable of efficiently detecting and tracking
targets in complex environments, with a positioning error of less than 10 m. The system
is characterized by its low cost, high flexibility, and ease of deployment. Notably, when
integrated into a UAV, it provides a foundation for future operations aimed at countering
unauthorized drones. LTE signals were employed in [89], where the passive radar system
was placed on a UAV, achieving optimal performance during high-altitude hovering. This
setup enables effective monitoring of large no-fly zones, with the key advantage being easy
deployment in any region and improved line-of-sight at higher altitudes. It is particularly
well suited for monitoring public events and security-sensitive areas.

For WiFi signals, a reference-free method based on amplitude for passive detection
was proposed in [90,91]. This method utilizes the “Interference Doppler Processing (IDP)”
technique, which analyzes the superposition pattern of the WiFi access point (AP) signal
and the target’s reflected signal to extract Doppler characteristics, thereby determining the
target’s presence and its motion characteristics. The IDP method deviates from traditional
passive radar systems by dispensing with the need for reference signals. Instead, it relies
on incoherent signal processing, which does not require complex time, frequency, or phase
synchronization. As a result, this approach substantially reduces both the hardware com-
plexity of the sensor and the associated deployment costs, making it a cost-effective solution
for passive radar applications. In practical testing, the method demonstrated excellent
performance in drone detection and human motion monitoring in complex environments.
As shown in Figure 7, by optimizing background suppression strategies, the method
significantly enhanced the ability to detect targets in high-density background noise, partic-
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ularly achieving efficient recognition of small targets. This method represents a significant
advancement in simplifying passive radar systems by eliminating the dependency on
reference signals, thereby enhancing flexibility and reducing deployment constraints. Its
ability to effectively detect small targets, such as UAVs, in high-noise environments demon-
strates its potential for real-world applications, particularly in scenarios requiring low-cost,
scalable solutions for dynamic target monitoring.

Figure 7. The results of using WiFi signal-based passive detection of UAVs without reference signals,
as presented in [91], are shown in the figure. (a) The initial detection scenario with high background
noise, (b) The application of traditional suppression algorithms using a reconstructed reference signal,
and (c) The results achieved using the reference-free detection algorithm.

In [83], WiFi signals are utilized as the illumination source for passive radar, while
simultaneously employing Passive Source Location, which uses RF transmissions from
the target to passively localize it. As previously discussed, the clutter in the scene is pre-
dominantly stationary and concentrated around the zero Doppler region on the RD map.
However, if the UAV remains stationary relative to the radar and uses low-reflectivity
blades to eliminate its micro-Doppler characteristics, its signal becomes indistinguish-
able from the clutter generated by stationary objects. In this case, applying suppression
algorithms may inadvertently remove the UAV’s signal along with the clutter, leading
to a failure in passive radar detection. However, certain targets of interest may carry
devices capable of receiving WiFi signals, enabling the possibility of joint passive radar
detection. An Interacting Multiple Model (IMM) approach that integrates the results of
passive radar and RF detection was proposed in [83]. Through both simulation and field
experiments, the fusion strategy was shown to significantly enhance positioning accuracy,
target motion recognition, and tracking continuity. Figure 8 presents the experimental
scenario and results in [83]. Figure 8a depicts the experimental setup, where the dashed
lines represent the detection ranges of different antennas, and the red line shows the UAV’s
trajectory. Figure 8b illustrates the trajectories obtained in the x–y plane using different
methods. For stationary and sharp-turn points, individual methods performed poorly,
while the fusion method overcame these challenges. The research results indicate that this
fusion method is well suited for short-range monitoring, particularly for targets with a
“move-stop-move” behavior, such as humans and UAVs. This fusion approach effectively
combines the strengths of passive radar and RF detection, compensating for the limitations
of each method when used independently. By leveraging their complementary capabilities,
it enhances detection accuracy, motion recognition, and tracking continuity, particularly for
complex target behaviors such as “move-stop-move”. This makes it a robust and versatile
solution for critical short-range monitoring scenarios, such as airports and industrial zones.

Reference [92] discusses a novel WiFi-based passive radar system designed to reduce
complexity and enhance its applicability in short-range civilian applications. The potential
use of WiFi signals with a hybrid modulation of OFDM and Direct Sequence Spread
Spectrum (DSSS), along with their wideband characteristics, makes traditional signal
processing methods computationally complex and costly. The system employs RpF in place



Drones 2025, 9, 76 16 of 22

of traditional MF to handle the distance compression phase of WiFi signals. As previously
mentioned, RpF was originally designed for OFDM systems, but the article demonstrates
how its modulation-independent characteristics allow it to process hybrid modulation
signals uniformly. This approach effectively consolidates the elimination of complex multi-
path interference and distance compression into a more efficient and unified process. Even
in scenarios involving hybrid modulation (80% OFDM, 20% DSSS), the RpF maintains
effective target detection capabilities, successfully detecting both UAVs and human targets.
While the SNR of RpF is slightly lower than that of the MF, its advantages in terms of
interference resistance and computational complexity outweigh this drawback.

(a) Experimental scenario. (b) Localization and tracking results.

Figure 8. Experimental scenario and results for passive radar and RF joint detection in [83]. The left
subfigure shows the experimental scenario setup, while the right subfigure presents the localization
and tracking results of the drone on the x–y plane using sensor fusion.

6. Outlook and Challenge
In addition to the previously discussed passive radar IOs, there are several other signal

sources that are well suited for passive radar applications. With the rapid development
of 5G communication networks and the gradual emergence of 6G signals, these wireless
communication technologies can be widely utilized in various radar detection systems.
Furthermore, signals from platforms such as Starlink satellite internet [45,48], which offer
global coverage, effectively address the limitation of low ground power density associated
with traditional satellite signals. These signals can serve as effective external radiation
sources for radar systems. It is important to note that these signals are ubiquitous and
offer broad applicability across various scenarios, providing radar detection capabilities
in a range of environments. Specifically, 5G and 6G cellular signals, with their favorable
propagation characteristics, show particular promise in UAV detection. Indeed, these
cellular networks can be leveraged for radar functionality in their receivers, beyond their
traditional communication roles. However, a key challenge remains in effectively allocat-
ing resources and preventing interference between communication and radar functions
during integration.

Integrating passive radar systems onto mobile platforms, particularly UAVs, has sig-
nificant potential for UAV detection, aligning closely with the primary focus of this research.
By leveraging the mobility of UAV platforms, passive radar can achieve enhanced flexibility
in monitoring and detecting other UAVs, even in dynamic environments. This integration
enables applications such as real-time tracking of UAVs, cooperative surveillance, and imag-
ing via synthetic aperture radar, expanding the scope of passive radar systems. However,
deploying passive radar on mobile platforms introduces specific challenges, especially for
UAV detection. The relative motion of the platform causes previously stationary clutter
signals to undergo Doppler frequency shifts, leading to an expansion of clutter in the RD
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map. This significantly affects the ability to detect slow-moving or low-speed UAVs, as their
signals may be masked by the expanded clutter. Addressing these challenges requires
advanced algorithms capable of suppressing wide-range clutter efficiently and designing
filters to mitigate the ambiguous floor in dynamic environments. Despite these difficulties,
ongoing research efforts are developing promising solutions, making the application of
passive radar on mobile platforms a viable and practical direction for UAV detection.

In addition, the use of a moving platform complicates the recovery of the reference
signal. Especially during high-speed flight, the rapid movement of the platform and the
Doppler effect on the signal may cause traditional methods to fail or even render recovery
impossible. This renders radar systems that rely on reference signals unreliable in such
dynamic environments. Therefore, employing a passive radar scheme that does not require
the recovery of the reference signal may provide a viable solution. In such cases, the radar
system can directly utilize certain special structures within the external radiation source
signal, such as pilot signals or predetermined synchronization markers. These structures
typically possess well-defined characteristics and can serve as the basis for matched filter-
ing without relying on the data information carried by the signal itself. By leveraging pilot
signals or other specific structures, the radar can still perform effective target detection and
tracking without recovering the full reference signal. This approach not only enhances the
robustness of the system on high-speed mobile platforms but also, in some cases, reduces
the demanding requirements on signal processing, making passive radar systems more
flexible and efficient in complex environments.

By combining various types of passive signals, a richer set of options can be provided
for passive radar systems in UAV detection scenarios. Different external radiation sources
have varying impacts on detection performance. For instance, bandwidth determines range
resolution, while higher frequencies enable greater localization accuracy but are limited to
shorter detection ranges and are more susceptible to environmental obstructions. For ex-
ample, DVB-T signals can be utilized for long-range early warning detection, while WiFi
signals can be used for high-precision real-time tracking at shorter distances. By leveraging
different signal source combinations, it is possible to achieve an optimized balance for UAV
detection, enabling comprehensive improvements in performance. The diversification of
these signals allows for flexible adjustments according to different mission requirements,
enhancing the adaptability and detection capabilities of the passive radar system.

Figure 9 illustrates how the combination of passive radar with Passive Source Local-
ization (also referred to as RF-based localization) can be employed for the joint tracking
and localization of humans and UAVs. As previously discussed, this integration enables
each system to compensate for the other’s limitations, thereby enhancing overall system
performance. By leveraging the fusion of passive radar and RF signals, this approach
has demonstrated its effectiveness in object detection, showcasing how the integration of
such technologies can yield more accurate and reliable localization results. This inspires
further exploration into the integration of diverse detection methods, aiming to combine
their strengths for enhanced performance. Looking ahead, in addition to electromagnetic
wave-based signals, the integration of non-electromagnetic signals, such as video and audio
data, is expected to become a key research direction. The combination of microwave detec-
tion with optical and acoustic sensing methods provides unique advantages, especially in
scenarios where multi-modal sensing can enhance system robustness. Effective multi-signal
fusion methods, as well as approaches for information integration and decision-making,
remain open challenges. Notably, simple signal summation is insufficient for effective
fusion, as it does not guarantee improved performance. A critical challenge lies in how
to effectively account for the complementarity, redundancy, and potential interference
between signals during the multi-signal fusion process.
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Figure 9. Sketch of a system setup implementing the PBR and PSL approaches [83].

In the previous discussion, we primarily focused on detecting a single UAV. How-
ever, in practical applications, detecting and effectively tracking multiple UAVs is also a
critical issue that needs to be addressed. In complex environments, the data association
of multiple UAV targets presents significant challenges. Particularly in the presence of
clutter, the interference from clutter may complicate target data association. Moreover,
if a UAV “conceals” itself within the clutter region, it remains uncertain whether existing
association algorithms can still function effectively. Therefore, exploring new approaches to
data association through the fusion of diverse information from external radiation source
signals may be key to solving the problem of multi-UAV detection and tracking.

7. Conclusions
This paper provides a comprehensive summary of the latest advancements in passive

radar signal processing, covering key technologies such as IO selection, clutter suppression
algorithms, and RD map generation, with a particular emphasis on their application in
UAV detection. The paper systematically reviews the technological evolution in the field of
UAV detection and offers insights into future development trends. Current research mainly
focuses on exploring the feasibility of different IO schemes and validating their effectiveness
in practical applications. However, despite some progress, there remain several challenges
in improving detection accuracy, optimizing signal processing algorithms, and integrating
multiple sources of information and detection methods. Specifically, addressing the impact
of complex electromagnetic environments on detection accuracy and efficiently integrating
multi-source information to enhance target recognition capabilities are key areas for future
research. Therefore, further work should focus on enhancing the practicality and robustness
of algorithms to meet the high-precision and real-time demands of practical applications.
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