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Abstract: Motion planning is critical for ensuring precise and efficient operations of un-
manned aerial vehicles (UAVs). While polynomial parameterization has been the prevailing
approach, its limitations in handling complex trajectory requirements have motivated the
exploration of alternative methods. This paper introduces a finite Fourier series (FFS)-based
trajectory parameterization for UAV motion planning, highlighting its unique capability to
produce piecewise infinitely differentiable trajectories. The proposed approach addresses
the challenges of fixed-time minimum-snap trajectory optimization by formulating the
problem as a quadratic programming (QP) problem, with an analytical solution derived
for unconstrained cases. Additionally, we compare the FFS-based parameterization with
the polynomial-based minimum-snap algorithm, demonstrating comparable performance
across several representative trajectories while uncovering key differences in higher-order
derivatives. Experimental validation of the FFS-based parameterization using an in-house
quadrotor confirms the practical applicability of the FFS-based minimum-snap trajectories.
The results indicate that the proposed FFS-based parameterization offers new possibilities
for motion planning, especially for scenarios requiring smooth and higher-order derivative
continuity at the expense of minor increase in computational cost.

Keywords: UAV; trajectory; optimization; guidance; minimum-snap; finite-Fourier series;
polynomial; quadrotor; quadratic programs; motion planning

1. Introduction
In the modern world of rapidly evolving and growing use of small unmanned aerial

vehicles (UAVs) [1–4], path- and motion-planning algorithms serve as an integral element
of any mission or product design related to the field of robotics and applications related to
aerospace vehicles [5,6]. Path planning generally encompasses the functions of the overall
system coordination. It establishes an interface between the machine and a human operator,
who generally defines a global task for the vehicle or its purpose. The commands and
interactions are then followed automatically to relay the information downstream to all
the vehicle’s subsystems, each executing a well-defined task. For this exact reason, path
planning is generally regarded as the highest level of control that enables autonomy [7].

It is traditional to separate front-end path planning (i.e., generation of waypoints)
and back-end motion planning or trajectory optimization that takes into account dynamic
feasibility [8]. From a mission-designer perspective, it is convenient to think of path plan-
ning as an approach to defining a set of tasks for the vehicle to execute. For example, one
can consider a map of local terrain features, such as varying elevation, structures, trees,
or other factors [7]. A set of tasks can be defined (e.g., payload delivery [9–12], building
inspection [13], remote sensing [14], firefighting [15], and even cell network extension [16]).
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All the aforementioned tasks can be summarized by a set of requirements to traverse from
an initial waypoint to a target destination.

Path planning (or front-end) focuses on finding a feasible path irrespective of vehicle
dynamics and time, defined as a discrete set of waypoints between the initial and final
points (or a collection of points of interest). Conversely, motion planning (or the back-
end) builds upon these discrete waypoints, incorporating dynamic feasibility to perform
end-to-end trajectory optimization. There are a wide variety of path-planning methods,
ranging from sampling-based to search-based [17] algorithms. One popular sampling-based
algorithm is Randomly-Exploring Random Tree (RRT) [18]. The fundamental principles of
this algorithm are based on exploring randomly generated trees of possible intersections
and junctions, seeking to connect the point of origin or initialization with the target or
destination [19,20]. However, sampling-based methods suffer greatly from their random
nature and cannot guarantee convergence for real-time applications and are often replaced
or complemented by rapid geometry-based re-planing routines [21].

Recently, learning-based approaches [22,23], which bypass reliance on mathematical
models, have shown promise for tackling real-time applications in unstructured environ-
ments. This shift in approach provides flexibility for handling unknown system dynamics
or disturbances, complementing traditional model-based methods [24].

Trajectory optimization [25] for quadrotors relies heavily on the concept of differential
flatness [26,27]. Mellinger and Kumar [28] established a connection between the states of
an underactuated quadrotor system and four flat outputs. Differential flatness simplifies
the trajectory optimization problem, reducing it to optimizing only translational position
coordinates (x, y, z), the heading (yaw) angle ψ, and their higher-order derivatives [29].
By minimizing the fourth time derivative squared of position coordinates and ensuring that
the path and its derivatives are continuous up to the fourth order, it is possible to obtain a
continuous trajectory using piece-wise polynomials [30].

The resulting minimum-snap optimization problem can be solved by formulating
the original cost function as a QP problem [31], where the solution yields a set of optimal
polynomial coefficients that are valid along their respective intervals. The resulting QP
problems can be further augmented by incorporating linear equality and inequality con-
straints to represent along-the-path and boundary limitations on the trajectory, and the
resulting QP problems can be solved using standard QP solvers.

Among some of the common practical applications of path-planning blended with
trajectory optimization is on-board trajectory generation in a cluttered environment [32–34].
For example, Hong et al. [35] have combined the A∗ path-planning algorithm with a
polynomial-based, minimum-snap trajectory optimization routine and demonstrated how
such a fusion of algorithms can be used for real-time collision avoidance when flying
through the forest. For path-planning purposes, they have used a 3D LiDAR system for
generating point clouds and used an onboard companion computer (NVIDIA TX2) to com-
pute the high-level reference command to the control system. An equivalent combination
of a 3D LiDAR sensor and an on-board companion computer was used by Zhou et al.
in [36] to compute collision-free trajectories on the fly, but now indoors, and flying a smaller
quadrotor. Similar applications are proposed and demonstrated for path-planning tasks of
multi-agent systems [37] and exploration of indoor environments [38].

Instead of treating the optimal set of polynomial coefficients as unknown deci-
sion variables, polynomial coefficients can be indirectly incorporated into the solution.
Ritcher et al. [39] showed that minimum-snap trajectories can be obtained by reformulat-
ing the QP problem as an unconstrained QP problem. However, this time, a direct analytical
solution can be obtained without the need to resort to iterative numerical solvers. They
have shown that, by leveraging the differential flatness property, a guaranteed feasible
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solution can be obtained analytically, as long as the involved derivatives are sufficiently
bounded or enough time is available for the execution of the maneuver. Their solution
strategy has shown excellent numerical stability and computational speed for long-range
trajectories that consist of many segments. The differential flatness property combined
with the fact that the so-called flat outputs consist of three important configuration space
parameters (i.e., quadrotor position) provides a convenient and powerful tool for rapid
design of collision-free, time-optimal trajectories even in dense indoor environments [40].
The appealing form of the polynomial-based parameterization [41] provides a simple
interface for expressing a path of varied complexity and degrees of freedom, as well as
allowing for an intuitive implementation of optimization algorithms [42]. Although several
optimization methods have been developed for quadrotors, as shown by Kreciglowa et al.
in [43], minimum-snap optimization leads to the most power-efficient solution for quadro-
tor flights (when compared with minimum-acceleration and minimum-jerk solutions).
The path-planning and trajectory optimization tasks for quadrotors, which consist of many
segments and with real-time considerations, is an ongoing research topic [44–48].

Recent advancements in trajectory planning and optimization have significantly
improved safety, efficiency, and feasibility in dynamic and cluttered environments.
Shi et al. [49] introduced a multi-waypoint trajectory planning framework utilizing uniform
B-spline curves combined with bidirectional A∗ search to generate safe and kinodynami-
cally feasible trajectories. Their approach further optimizes waypoint sequences through
fast marching and ant colony optimization techniques, making it highly effective for nav-
igation through complex environments. While this framework emphasizes safety and
waypoint optimization, it lacks a focus on trajectory smoothness and energy efficiency,
which are central to the minimum-snap formulations in this work.

Penicka et al. [50] proposed a hierarchical, sampling-based approach for planning
minimum-time trajectories, particularly for drone racing and search-and-rescue applica-
tions. By combining topological pathfinding with kinodynamic planning, their method
excels in generating collision-free trajectories optimized for high-speed flight. However,
their focus on minimum-time trajectories diverges from this work’s emphasis on minimiz-
ing higher-order derivatives, which directly impacts control effort and power consumption.
Furthermore, their approach targets specific high-speed use cases, while the methods
presented here are broadly applicable to diverse scenarios requiring smooth and energy-
efficient quadrotor maneuvers.

Foehn et al. [51] established a benchmark in time-optimal quadrotor flight, demon-
strating trajectories that outperform professional human pilots. While their work achieves
exceptional speed performance, the trajectory smoothness and energy efficiency considera-
tions—critical for prolonged autonomous operations—are not the primary focus. By contrast,
the minimum-snap optimization method presented here prioritizes smooth reference trajectories,
making it more suitable for tasks where control effort and energy conservation are essential.

Liu et al. [52] introduced a three-body cooperative active defense guidance law,
leveraging Zero-Effort-Miss and Zero-Effort-Velocity notions to minimize errors in time
estimates for interception scenarios. While their work is highly innovative in addressing
cooperative guidance and energy efficiency within the defense context, its applicability to
quadrotor trajectory planning is limited, as it focuses on dynamic interactions among mul-
tiple agents rather than optimizing single-agent trajectories through waypoints. This study,
in contrast, addresses the challenges of waypoint-based trajectory generation by combining
minimum-snap optimization with time-allocation techniques, offering a practical balance
between computational efficiency and trajectory dynamic feasibility.

This paper is inspired by some previous research, with the original work demon-
strating the application of the FFS method for generating continuous-thrust spacecraft
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trajectories by Taheri et al. [53,54]. The FFS method was further improved in [55] by refor-
mulating the FFS relations in a compact matrix representation, making the FFS method
suitable for programming purposes. In Ref. [56], it is shown that control (maximum thrust
magnitude) path constraints can also be handled using the FFS method. Benefiting from
its high computational efficiency and flexibility in incorporating various constraints, the
FFS method was adopted for shaping spacecraft trajectories with various coordinate rep-
resentations and propulsion systems [57–60]. The most recent applications of the FFS
method are for solving spacecraft multiple gravity-assist low-thrust trajectory optimiza-
tion problems [61] and feasibility demonstration for quadrotor motion planning [62]. The
preliminary version of this work has been published as a master’s thesis [63] and also
used for online trajectory re-planning demonstrated in [64]. The method is also suitable for
trajectory tracking using a data-driven H∞ controller [65].

In this work, we discuss the advantages and disadvantages of selecting FFS-based pa-
rameterization for minimum-snap motion planning of quadrotors. The inherent properties
of the FFS method, such as piecewise infinite differentiability, offer significant potential
for addressing scenarios requiring higher-order derivative constraints. For instance, some
classes of flight vehicles, including conventional fixed-wing aircraft, demand the satisfac-
tion of derivatives beyond snap. The fifth derivative of position, for example, is critical
for accurately expressing all the states and control outputs of such systems, as outlined in
Chp. 14.0.4.1 of [66]. The flexibility and smoothness inherent in FFS-based parameterization
make it a strong candidate for these complex motion-planning tasks, particularly when
smooth transitions across trajectory segments are essential.

One of the primary objectives of this study is to provide a detailed comparison of
the FFS- and polynomial-based parameterizations for motion planning of quadrotors.
For fixed-time, minimum-snap, motion-planning problems, we demonstrate that the FFS-
based parameterization enables the formulation of trajectory optimization problems as QP
problems. Furthermore, we derive an analytic solution for the unconstrained QP problem,
showcasing the computational advantages of the FFS approach in scenarios where efficiency
and accuracy are paramount.

A significant contribution of this work lies in the exploration of time allocation strate-
gies within the context of FFS-based parameterization. We leverage the analytic solution to
formulate and solve time-allocated, minimum-snap, multi-segment trajectories, introducing
a unique property of the method: the ability to adjust total flight time as a post-processing
step without recomputing the trajectory. This capability ensures computational efficiency
while preserving optimality, a feature that is not commonly addressed in the existing
literature on motion planning.

In addition to theoretical contributions, we present a fair one-to-one comparison of
FFS- and polynomial-based formulations across five classes of trajectories. This includes
computational results and experimental validation using a custom-built quadrotor, ensur-
ing the practical relevance of our findings. To facilitate reproducibility, detailed position
and heading angle boundary conditions, as well as time of flight data for the fixed-time
cases, are provided in Appendix A. By addressing both theoretical and practical aspects,
this work aims to bridge the gap between analytical trajectory optimization methods and
real-world applications.

This paper is organized as follows. In Section 2, the trajectory generation algorithm is
broken down into two parts. First, a solution to an unconstrained QP problem with a fixed-
time allocation is derived in Section 2.1. Next, the problem formulation is augmented with a
time-allocation algorithm derived in Section 2.2. Section 2 is concluded by providing some
details about testing the two algorithms, hardware implementation, and details regarding
the implementation process in Section 2.3. Computational results for a set of fixed-time
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problems (Section 3.1) and time-allocation problems (Section 3.2), that benchmark the two
parameterization methods against each other, are presented in Section 3. Finally, the results
of the experimental validation are presented in Section 4. Section 5 concludes the paper by
summarizing the most important results and key findings.

2. Methods
2.1. Formulation of Fixed-Time, Minimum-Snap Trajectory Optimization Problems

By leveraging the concept of differential flatness for quadrotors [28], it is possible to
perform motion planning along each axis (i.e., x, y, and z) of the motion independently.
Additionally, the heading angle, ψ, can be considered as a separate fourth dimension.
Let P(t, p) represent an expression for each of the flat outputs, such that it is differentiable
with respect to time up to ndt times, where p is a vector of design variables. The general
approach is to minimize the square of the ndt-th derivative of P(t, p) over the entire interval
and for each of the axes of motion. While motion planning of robotic joints, limbs, and
manipulators [67,68] require minimization of the third derivative squared (or minimum-jerk
optimization with ndt = 3), motion planning for multirotor must consider minimization of
the fourth derivative of the position squared. The Lagrange form cost functional for these
classes of problems (for one segment) can be written as follows:

minimize
p

J =
∫ tf

ti

[
dndt

dtndt
P(t, p)

]2
dt, (1)

in which t ∈ [ti, tf]. The same cost functional is used along each dimension (i.e., x, y, z, and
heading angle) and the total cost required to be minimized is the summation of the costs for
each axis of motion. The problem defined in Equation (1) is a standard variational problem
and the calculus of variations techniques can be used to find an extremal solution.

A more general approach would be considering linear equality and inequality con-
straints, which can then be reformulated as a constrained QP problem. The authors have
explored such a solution strategy in [62]. While this method offers flexibility such as directly
incorporating corridor and path constraints, the main limitation is the computational cost
and number of iterations required to achieve a fixed-time solution. Instead, we consider
only linear equality constraints to simplify the process and obtain a fixed-time solution
analytically. In this work, we consider the quadrotor motion-planning problem. First intro-
duced in [28], a quadrotor is a differently flat system. In other words, the quadrotor states
(position, velocity, acceleration, attitude, and body frame angular rates) can all be expressed
in terms of a set of flat output variables (i.e., spatial position and heading angle) and their
derivatives. More importantly, the control output (that is, the required thrust and torque
values) is a function of the flat output variables and their derivatives. A detailed derivation
has been presented in [27], but the key takeaway is that the motor speed required to execute
a certain trajectory is a direct function of position, heading angle, and their higher-order
time derivatives (i.e., fourth derivative of position and second derivative of the heading
angle). In Ref. [30], it is also shown that the minimum-jerk quadrotor cost functional has an
interpretation as an upper bound of the product of the inputs (i.e., thrust produced by the
propellers and the quadrotor angular rates). Therefore, to minimize power consumption
on the i-th segment, we select ndt = 4 in Equation (1), and write it as,

minimize
pi

J =
∫ tf=Ti

t0=0

[
d4

dt4 P(t, pi)

]2

dt = p⊤
i Qi pi,

s.t., Ai pi = di, for i ∈ {1, . . . , nint},

(2)
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where the matrix Ai maps the vector of design variables, pi, to the constraint vector, di.
The matrix Qi maps the vector of design variables pi to the integral of P(t, Ti, pi), and Ti is
the time allocated for the i-th segment (in a multisegment trajectory) such that 0 ≤ t ≤ Ti.
Note that Ti is assumed to be fixed and known. If more than one segment is used, external
time is allocated for each interval with a total of nint (number of intervals) such that a
time allocation vector can be formed as T = [T1, . . . , Tnint ]

⊤. Figure 1 shows a schematic
summary of the definitions used throughout the paper. Each segment is represented by its
own set of design variables, independent of other segments. In other words, everything,
including the constraints, is applied to each axis of motion independently (there are no
norm constraints). When multiple segments are present, the individual cost function and
constraints for each segment, i ∈ {1, · · · , nint} are used and added to express the relations
in a block-diagonal manner as follows:

minimize
p

J =


p1
...

pnint


⊤

Q1 [0] [0]

[0]
. . . [0]

[0] [0] Qnint




p1
...

pnint

,

s.t.,


A1 [0] [0]

[0]
. . . [0]

[0] [0] Anint




p1
...

pnint

 =


d1
...

dnint

,

(3)

where p⊤ = [p⊤
1 , · · · , p⊤

nint
] and Qi and Ai correspond to the i-th segment and are specific to

the parameterization of P(t, pi). The constraint vector, d⊤ = [d⊤
1 , · · · , d⊤

nint
], consists of fixed

and free boundary conditions, some of which are assumed to be specified (e.g., position at
each waypoint, initial and final velocity, acceleration, etc.), but the rest are free (e.g., velocity,
acceleration, and higher-order derivatives at each intermediate waypoint) and will have to
be solved for. The solution steps are outlined in Section 2.1.3, but first, we have to present
trajectory parameterization methods. First, we review the polynomial parameterization
and compare the relations to the FFS-based parameterization.

Figure 1. Definition of a representative multi-segment/interval trajectory. “interval” and “segment”
are used interchangeably.

2.1.1. Generalization of the Polynomial and FFS Parameterizations

The number of boundary constraints defines the minimum number of parameters for
either method. For a single-interval, single-axis, minimum-snap trajectory, there are always
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ten constraints to be satisfied, including: initial and final position, velocity, acceleration,
jerk, and snap values. Therefore, there must be, at least, ten parameters in the general form
of the P(t, pi) (i.e., pi ∈ Rn≥10). Equality constraints on derivatives allow for enforcing
continuity up to snap when multiple segments are considered. However, an additional
pair of equality constraints on the fifth derivative can be considered to ensure that the snap
is both continuous and smooth. This would set the minimum number of parameters to
twelve per axis of motion per interval. However, in this work, we are primarily focusing on
standard minimum-snap optimization with constraints applied only up to snap; therefore,
only ten parameters are required for each interval on a single dimension. In other words,
it is sufficient [28] to ensure trajectory is smooth up to snap of position, but snap itself
does not need to be smooth, only continuous (the fifth derivative can be and usually is
discontinuous, since no continuity constraints are enforced above snap). If smoothness is
enforced on the level of snap, the trajectories may be overly conservative, since it would be
equivalent to enforcing continuity of the rate of change of motor speed [27]; therefore, it is
not considered for quadrotor trajectory optimization.

The procedure to calculate the required mapping matrices is identical for both the
polynomial and FFS parameterizations. The constraint matrix Ai is simply the Jacobian
of the path P(t, pi) and its derivatives with regard to the design vector, pi, which is then
evaluated at the initial time t0 = 0 and final time tf = Ti. The quadratic mapping matrix,
Qi, is one-half of the Hessian of the cost function (Equation (2)). Throughout this work, we
can assume pi ∈ R10×1, Ai ∈ R10×10 and Qi ∈ R10×10 for both parameterizations. These
dimensions correspond to the i-th segment of a multi-segment trajectory.

Polynomial Parameterization

The most common parameterization for solving these classes of QP problems is a
minimum-order polynomial function, which can be written as follows:

P(t, Ti, pi) = a0 + a1
t
Ti

+ a2

(
t
Ti

)2
+ a3

(
t
Ti

)3
+ · · ·+ an

(
t
Ti

)n
,

where pi = [a0, a1, a2, a3, . . . , an]
⊤,

(4)

where time t is scaled by the segment time Ti allocated for the i-th segment and polynomial
order is n = 9 for constraint derivative order of four (ndt = 4). Mapping matrices for this
formulation are derived in the following manner. The time-dependent constraint matrix,
Ai(t, Ti), can be derived by taking the gradient (with regard to pi) of the vector consisting
of polynomial representation of the path and its derivatives (ninth-order polynomial,
fourth-order derivative) as follows:

Ai(t, Ti) = ∇pi


P(t, Ti, pi)

d
dt P(t, Ti, pi)

...
dndt
dtndt P(t, Ti, pi)

 =



1 t
Ti

t2

T2
i

t3

T3
i

t4

T4
i

t5

T5
i

t6

T6
i

t7

T7
i

t8

T8
i

t9

T9
i

0 1
Ti

2 t
T2

i

3 t2

T3
i

4 t3

T4
i

5 t4

T5
i

6 t5

T6
i

7 t6

T7
i

8 t7

T8
i

9 t8

T9
i

0 0 2
T2

i

6 t
T3

i

12 t2

T4
i

20 t3

T5
i

30 t4

T6
i

42 t5

T7
i

56 t6

T8
i

72 t7

T9
i

0 0 0 6
T3

i

24 t
T4

i

60 t2

T5
i

120 t3

T6
i

210 t4

T7
i

336 t5

T8
i

504 t6

T9
i

0 0 0 0 24
T4

i

120 t
T5

i

360 t2

T6
i

840 t3

T7
i

1680 t4

T8
i

3024 t5

T9
i


. (5)
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Since we are only considering the boundary conditions, we can directly evaluate
Equation (5) at the boundaries and calculate the constraint mapping matrix Ai(Ti) that only
depends on the total time (which is fixed) as follows:

Ai(Ti) =

[
Ai(t = 0, Ti)

Ai(t = Ti, Ti)

]
=



1 0 0 0 0 0 0 0 0 0
0 1

Ti
0 0 0 0 0 0 0 0

0 0 2
T2

i
0 0 0 0 0 0 0

0 0 0 6
T3

i
0 0 0 0 0 0

0 0 0 0 24
T4

i
0 0 0 0 0

1 1 1 1 1 1 1 1 1 1
0 1

Ti
2
Ti

3
Ti

4
Ti

5
Ti

6
Ti

7
Ti

8
Ti

9
Ti

0 0 2
T2

i

6
T2

i

12
T2

i

20
T2

i

30
T2

i

42
T2

i

56
T2

i

72
T2

i

0 0 0 6
T3

i

24
T3

i

60
T3

i

120
T3

i

210
T3

i

336
T3

i

504
T3

i

0 0 0 0 24
T4

i

120
T4

i

360
T4

i

840
T4

i

1680
T4

i

3024
T4

i



. (6)

The quadratic mapping matrix Qi(Ti) is computed by taking the Hessian of the cost
function given in Equation (2) with respect to the design vector, pi, and by applying a factor
of 1

2 , which can be written as follows:

Qi(Ti) =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 576

T7
i

1440
T7

i

2880
T7

i

5040
T7

i

8064
T7

i

12096
T7

i

0 0 0 0 1440
T7

i

4800
T7

i

10800
T7

i

20160
T7

i

33600
T7

i

51840
T7

i

0 0 0 0 2880
T7

i

10800
T7

i

25920
T7

i

50400
T7

i

86400
T7

i

136080
T7

i

0 0 0 0 5040
T7

i

20160
T7

i

50400
T7

i

100800
T7

i

176400
T7

i

282240
T7

i

0 0 0 0 8064
T7

i

33600
T7

i

86400
T7

i

176400
T7

i

313600
T7

i

508032
T7

i

0 0 0 0 12096
T7

i

51840
T7

i

136080
T7

i

282240
T7

i

508032
T7

i

9144576
11 T7

i



. (7)

Both the linear constraint mapping matrix, Ai(Ti), and quadratic mapping matrix,
Qi(Ti), are valid for cases where only one interval and one axis of motion are considered.
For more complex trajectories, corresponding A(T) and Q(p) matrices can be obtained
as given in Equation (3). This standard parameterization method is used as a basis of
comparison against the FFS-based parameterization.

FFS Parameterization

Similarly, we can use FFS to parameterize each dimension of motion as follows:

if ndt is odd:

P(t, Ti, pi) =
a0

2
+

nr

∑
k=1

{
ak cos

(
1
2

kπ
t
Ti

)

+ bk−1 sin
(

1
2

kπ
t
Ti

)}
+ bnr cos

(
1
2

nrπ
t
Ti

)
,

(8)
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if ndt is even:

P(t, Ti, pi) =
a0

2
+

nr

∑
k=1

{
ak cos

(
1
2

kπ
t
Ti

)

+ bk−1 sin
(

1
2

kπ
t
Ti

)}
+ bnr sin

(
1
2

nrπ
t
Ti

)
,

(9)

where the design vector is pi = [a0, . . . , anr , b0, . . . , bnr ] with an abuse of notation. Since
we have chosen to enforce constraints up to the fourth derivative (ndt = 4 and nr = 4),
we only need Equation (9). However, Equation (8) can be used for the cases when order
of constants and/or cost function is odd (from example, for minimum-jerk or minimum-
crackle optimization). The two mapping matrices are derived in the same manner as for the
polynomial parameterization. The constraint mapping matrix Ai(t, Ti) is found by taking
the gradient of the vector of derivatives with respect to the vector of design variables pi.
A constant mapping matrix Ai(Ti) is found by evaluating Ai(t, Ti) at the boundaries and
staking the results vertically. The constant constraint mapping matrix corresponding to
Equation (9) is

Ai(Ti) =

[
Ai(t = 0, Ti)

Ai(t = Ti, Ti)

]
=

1
2 1 1 1 1 0 0 0 0 0
0 0 0 0 0 π

2 Ti
π
Ti

3 π
2 Ti

2 π
Ti

5 π
2 Ti

0 − π2

4 T2
i

−π2

T2
i

− 9 π2

4 T2
i

− 4 π2

T2
i

0 0 0 0 0

0 0 0 0 0 − π3

8 T3
i

−π3

T3
i

− 27 π3

8 T3
i

− 8 π3

T3
i

− 125 π3

8 T3
i

0 π4

16 T4
i

π4

T4
i

81 π4

16 T4
i

16 π4

T4
i

0 0 0 0 0
1
2 0 −1 0 1 1 0 −1 0 1
0 − π

2 Ti
0 3 π

2 Ti
0 0 − π

Ti
0 2 π

Ti
0

0 0 π2

T2
i

0 − 4 π2

T2
i

− π2

4 T2
i

0 9 π2

4 T2
i

0 − 25 π2

4 T2
i

0 π3

8 T3
i

0 − 27 π3

8 T3
i

0 0 π3

T3
i

0 − 8 π3

T3
i

0

0 0 −π4

T4
i

0 16 π4

T4
i

π4

16 T4
i

0 − 81 π4

16 T4
i

0 625 π4

16 T4
i



. (10)

The quadratic mapping matrix, Qi, is found using the exact same process as the one
for the polynomial representation, with the final expression written as follows:

Qi(Ti) =

0 0 0 0 0 0 0 0 0 0
0 π8

512 T7
i

π7

24 T7
i

0 − 2 π7

15 T7
i

π7

256 T7
i

π7

12 T7
i

81 π7

256 T7
i

8 π7

15 T7
i

625 π7

768 T7
i

0 π7

24 T7
i

π8

2 T7
i

243 π7

40 T7
i

0 − π7

24 T7
i

0 243 π7

40 T7
i

64 π7

3 T7
i

3125 π7

168 T7
i

0 0 243 π7

40 T7
i

6561 π8

512 T7
i

486 π7

7 T7
i

− 81 π7

256 T7
i

− 81 π7

20 T7
i

2187 π7

256 T7
i

648 π7

7 T7
i

50625 π7

256 T7
i

0 − 2 π7

15 T7
i

0 486 π7

7 T7
i

128 π8

T7
i

− 2 π7

15 T7
i

− 32 π7

3 T7
i

− 486 π7

7 T7
i

0 6250 π7

9 T7
i

0 π7

256 T7
i

− π7

24 T7
i

− 81 π7

256 T7
i

− 2 π7

15 T7
i

π8

512 T7
i

π7

12 T7
i

0 − 8 π7

15 T7
i

0

0 π7

12 T7
i

0 − 81 π7

20 T7
i

− 32 π7

3 T7
i

π7

12 T7
i

π8

2 T7
i

81 π7

20 T7
i

0 − 625 π7

84 T7
i

0 81 π7

256 T7
i

243 π7

40 T7
i

2187 π7

256 T7
i

− 486 π7

7 T7
i

0 81 π7

20 T7
i

6561 π8

512 T7
i

648 π7

7 T7
i

0

0 8 π7

15 T7
i

64 π7

3 T7
i

648 π7

7 T7
i

0 − 8 π7

15 T7
i

0 648 π7

7 T7
i

128 π8

T7
i

5000 π7

9 T7
i

0 625 π7

768 T7
i

3125 π7

168 T7
i

50625 π7

256 T7
i

6250 π7

9 T7
i

0 − 625 π7

84 T7
i

0 5000 π7

9 T7
i

390625 π8

512 T7
i



.
(11)
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A few key features of the mapping matrices for the two parameterizations
are noteworthy.

2.1.2. Key Differences Between Polynomial and FFS Parameterizations

If the time allocated for each segment of the trajectory is known and fixed, a minimizer
for the quadratic cost function given in Equation (3) can be computed analytically by
following the steps outlined in Section 2.1.3. This implies that, for a fixed set of boundary
conditions and a fixed global time, there exists a unique solution. By adjusting the allocation
of total time across segments while keeping the global time and boundary conditions con-
stant, a family of solutions can be computed for a set of position waypoints. This approach
has been explored in [39] and is reviewed further in Section 2.2.

Both parameterizations—polynomial and FFS—utilize fixed-size mapping matrices,
as defined in Equations (6) and (7) for polynomials and Equations (10) and (11) for
FFS. The elements of these matrices depend only on the segment time, Ti. Using the
matrix decomposition:

Q̃i(Ti) = A−⊤
i (Ti)Qi(Ti)A−1

i (Ti), (12)

the quadratic cost for either parameterization can be computed efficiently. This decomposi-
tion, derived in Section 2.1.3, applies equivalently to both parameterizations, with their
differences fully encoded in the mapping matrices Ai(Ti) and Qi(Ti).

Although the mapping matrices for both parameterizations have distinct sparsity
patterns, the application of Equation (12) results in a fully dense matrix Q̃i(Ti) ∈ R10×10.
This means that the computational cost of evaluating the quadratic cost function is similar
for both. However, differences in sparsity patterns become more evident in the constraint
mapping matrices Ai(Ti), where 45% of elements are non-zero for polynomials compared to
47% for FFS. When these matrices are inverted, the density increases to 55% for polynomials
but reaches 100% for FFS. This increased density in the inverse mapping matrix makes the
FFS-based parameterization computationally more demanding, requiring approximately
twice the effort compared to the polynomial parameterization, as shown in Table 1. The
higher computational cost also limits the scalability of the FFS-based parameterization.

Table 1. Summary of the fixed-time solutions.

Name Method ndt ndim nint ncoefs T (s) Tsolve (ms) J P (W)

Simple Polys 4 1 1 10 3 0.37 301.68 425.60
FFS 4 1 1 10 3 0.62 400.04 426.36

3 Blocks Polys 4 3 4 120 9 0.85 90.07 1269.97
FFS 4 3 4 120 9 1.25 93.85 1270.27

Square Polys 4 2 8 160 10 0.91 1174.49 1417.68
FFS 4 2 8 160 10 1.26 1287.14 1418.52

Circle Polys 4 2 7 140 10 0.85 1840.02 1435.62
FFS 4 2 7 140 10 1.22 2004.76 1437.65

Eight Polys 4 4 9 360 30 1.38 1.05 4200.38
FFS 4 4 9 360 30 2.48 1.15 4200.42

The parameter ndt (the order of derivative considered) introduces additional distinc-
tions between the two parameterizations. For both polynomial and FFS parameterizations,
increasing ndt expands the size of the mapping matrices, thereby increasing the computa-
tional burden and numerical instability. However, polynomial parameterization retains
numerical stability due to the compact structure of its basis functions. In contrast, the FFS
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parameterization experiences amplified numerical instability as ndt increases. This instabil-
ity arises from the growth of coefficients in the trigonometric terms of Equations (8) and (9),
which makes the inversion of the mapping matrix less stable. For ndt ≥ 5, these issues can
lead to inaccuracies in the computed solutions, particularly for problems requiring precise
continuity of higher-order derivatives. This limitation constrains the practical applica-
tion of the FFS parameterization in scenarios demanding high-order derivative continuity.
Nevertheless, in this work, we assume the minimum order required for minimum-snap
optimization and do not introduce additional terms for either polynomial or FFS parame-
terization. This approach aligns with standard practices in the literature.

Despite these challenges, the FFS-based parameterization offers some theoretical
benefits, particularly its inherent “infinite differentiability”. This feature ensures smooth
trajectories and high-order derivative continuity, making FFS-based parameterization
advantageous for applications where such smoothness is critical. However, as noted in
Section 2.2, the computational burden and numerical sensitivity must be carefully managed,
especially when solving for complex trajectories or applying stringent time constraints.

In summary, the polynomial-based parameterization is computationally more efficient
and numerically robust, particularly for higher-order derivatives or large-scale problems. It
is well-suited for scenarios requiring fast computations or practical robustness. Conversely,
the FFS-based parameterization provides smoother trajectories due to its infinite differ-
entiability, making it advantageous for precision-demanding applications. However, its
higher computational cost and numerical instability, especially for higher-order derivatives,
necessitate careful consideration and management in real-world applications.

2.1.3. Deriving Analytic Solution for Fixed-Time Problem

The goal of this section is to minimize the quadratic cost function in Equation (2),
subject to a set of linear equality constraints represented by the vector d. These constraints
define various boundary conditions for the trajectory, including position p, velocity v,
acceleration a, jerk j, and snap s. The method is flexible, allowing any subset of these
boundary conditions to be specified while leaving the remaining conditions unspecified.
This adaptability makes the approach suitable for diverse application scenarios.

In this work, we focus on rest-to-rest maneuvers, where all derivatives (p, v, a, j,
s) are set to zero at the start and end waypoints. While this assumption simplifies the
optimization process and aligns with many prior studies, it is not a limitation of the method.
Alternative scenarios, such as non-zero initial or final velocities or accelerations, can be
accommodated by specifying the corresponding constraints.

For a single interval along one axis of motion, the vector d represents the boundary
conditions, organized as pairs of initial and final values for each derivative. For the k-th
interval, the boundary condition vector is as follows:

dk = [pk, vk, ak, jk, sk, pk+1, vk+1, ak+1, jk+1, sk+1]
⊤, (13)

where subscripts k and k + 1 denote the initial and final waypoints of the interval. For
multi-segment trajectories, intermediate waypoints typically enforce only positional con-
tinuity, leaving higher-order derivatives unspecified. These intermediate conditions are
incorporated into the constraint vector d as needed.

To efficiently solve this problem, constraints are divided into two categories: fixed
(dF) and free (dP). Fixed constraints include specified boundary conditions and continuity
requirements for multi-segment trajectories (nint > 1). In this study, rest-to-rest conditions
fix all derivatives at the start and end waypoints, while intermediate waypoints typically
contribute only positional constraints for smooth segment transitions.
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To reorganize these constraints, a mapping matrix M is introduced. This matrix serves
two purposes, including, (1) it reorders constraints into fixed and free categories; (2) it
ensures continuity of derivatives at intermediate waypoints for multi-segment trajectories.
The matrix M is defined as follows:

M = McMr, (14)

where Mr ∈ Rnc×nc is a reordering matrix and Mc is a continuity matrix. The reordering
matrix Mr places fixed constraints dF first, followed by free constraints dP. The continuity
matrix Mc enforces consistency of derivatives across shared waypoints for smooth transi-
tions. For a single-interval trajectory, Mc reduces to an identity matrix. For multi-segment
trajectories, Mc introduces additional rows to duplicate constraints at shared waypoints.

The reorganized constraints can be expressed as follows:

d = M
[
d⊤

F d⊤
P

]⊤
. (15)

Using the reorganized constraints, the design variable vector p (the trajectory coeffi-
cients) is given by

p = A−1d = A−1M
[
d⊤

F d⊤
P

]⊤
. (16)

Substituting Equation (16) into the quadratic cost function reformulates it as,

J = p⊤Qp =

[
dF

dP

]⊤
M⊤A−⊤QA−1M︸ ︷︷ ︸

R

[
dF

dP

]
, (17)

where R is partitioned into four sub-blocks:

J =

[
dF

dP

]⊤[
RFF RFP

RPF RPP

][
dF

dP

]
. (18)

Finally, by minimizing the cost function with respect to the free constraints dP, the opti-
mal set of coefficients p∗ is determined. This procedure applies equally to both polynomial-
and FFS-based parameterizations, with differences encoded in the matrices A and Q, which
depend on the parameterization method and time allocation. To accomplish this, we
expand Equation (18) to obtain the following expression:

J = d⊤
F RFFdF + d⊤

F RFPdP + d⊤
P RPFdF + d⊤

P RPPdP. (19)

We can then find the minimum of the cost function as ∂J/∂dP = d⊤
F RFP + RPFdF +

2RPPdP = 2RPFdF + 2RPPdP = 0, where both RPF and RFP are assumed to be transposes of
each other (RPF = R⊤

FP). The vector of free derivatives can be written as,

d∗
P = −R−1

PP RPFdF = −R−1
PP R⊤

FPdF. (20)

The optimal set of design parameters can be obtained by substituting the result back
into Equation (16):

p∗ = A−1M
[
d⊤

F , d∗⊤
P

]⊤
. (21)
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At this point, we have found an optimal solution to a fixed-time unconstrained prob-
lem without any iterations. The exact same procedure is applied to both polynomial- and
FFS-based parameterizations. In fact, the only differences between the two parameteriza-
tions are reflected in the values of the mapping matrix, A. Recall that both the quadratic
mapping matrix, Q, and linear mapping matrix, A, are only functions of the total time
allocated for each segment. In fact, there exists a simple decoupling for both. Consider a
single-interval, single-axis case for simplicity. Matrices Q and A can be re-written as the
following products: Q = QsQ̄Qs and A = AsĀ, where Qs is a square positive diagonal
time-scaling matrix and Q̄ is a constant square matrix. Similarly, As is a square symmetric
time-scaling matrix (not diagonal) for constant square matrix Ā. In fact, Q̄ and Ā are only
defined by the cost function and the parameterization method and are invariant to con-
straints or time allocation and are never changed unless the order of derivatives considered
is altered. The cost function given in Equation (18) can be rewritten as follows:

J =

[
dF

dP

]⊤
M⊤A−⊤QA−1M

[
dF

dP

]
=

[
dF

dP

]⊤
M⊤

S︷ ︸︸ ︷
AsQs Ā−1Q̄Ā−⊤︸ ︷︷ ︸

Q

S︷ ︸︸ ︷
AsQs M

[
dF

dP

]

=

[
dF

dP

]⊤
M⊤SQSM

[
dF

dP

]
.

(22)

What is intriguing is that the scaling pattern given by S(T) = As(T)Qs(T) is indepen-
dent of the parameterization method used and is only defined by the cost function, or the
order of the derivative considered (minimum jerk, minimum snap, etc.). This indicates that
a major part of the problem, Q, remains completely invariant to time and, with additional
manipulations, can lead to the following time-scaled form:

min J̄ = p̄⊤Qp̄ =

[
dF

dP

]⊤
M⊤QM

[
dF

dP

]
, where p̄ = S−1 p = Q−1

s Ā−1M
[

dF

dP

]
. (23)

The problem given in Equation (23) can be solved without time factored into the
solution for p̄ and the time-dependent coefficients can be recovered using S(T). How-
ever, this approach does not appear to offer any advantages over directly solving for the
coefficients with time factored in. Although it may appear simpler, the original problem
must still be solved to account for the new free constraints, so it presents no computational
advantage. Since both As and Qs contain elements with time raised to large and low powers
simultaneously, the combined contribution of those elements (after solving for the free
constraints) amplify the numerical error and final trajectory (in time domain) may have
visible discontinuities at some of the points. This effect is demonstrated with the fixed-time
solutions and their time-optimal counterparts in the subsequent sections.

Please note that the solutions to the minimum-snap optimization problems are sta-
tionary/extremal solutions, since first-order necessary conditions are used to obtain the
functional form of the solution [28]. The solutions of the resulting QPs are, however, global
solutions, as QPs are convex optimization problems, and any local solution to a convex
optimization problem is the unique global solution. In this paper, extremal and optimal are
used interchangeably.

The time-decoupled formulation derived in Equation (23) provides important insights:
(1) the only time-dependent terms are the boundary conditions, specifically the derivatives;
(2) a unique globally optimal solution exists for a given set of boundary conditions; and
(3) when specific segment times are not enforced by fixed velocity, acceleration, or higher-
derivative constraints along the trajectory, a globally optimal solution valid across different
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total flight times can still be determined. This is contingent upon maintaining a constant
ratio of time allocated per segment. Notably, scaling fixed-time problems by a time factor
of 10 enables stable solutions that were previously unattainable with the unscaled FFS-
based parameterization. This scaling approach is equally applicable to the FFS- and
polynomial-based parameterizations, but is crucial for ensuring the robustness of the FFS
parameterization to be on par with polynomial methods.

The FFS-based parameterization offers unique advantages, such as piecewise infinite
differentiability, but it also poses challenges, including a susceptibility to overfitting and
higher computational complexity. To mitigate overfitting, the number of Fourier coefficients
is limited to the minimum necessary to ensure trajectory smoothness, avoiding over-fitting
that could degrade performance. Computational complexity is addressed by leveraging ma-
trix sparsity during optimization, significantly reducing the impact of dense computations
inherent to the FFS-based parameterization. This ensures the FFS-based parameterization
remains both computationally feasible and robust for practical applications.

2.2. Time-Allocation Problem

In the previous section, it was assumed that the total time allocated for each interval
is constant. If the allocation is performed correctly, an optimal trajectory can be directly
obtained for that sequence of time segments. However, in practice, the trajectory designer
may not know the exact timing for every waypoint of interest. More importantly, the global
time for the entire trajectory often serves as a more critical design variable than the specific
time allocation for each individual interval.

Consider the same setup as the fixed-time problem discussed earlier, where a sequence
of waypoints is given, and intermediate boundary conditions (if any) are specified. In this
case, there is no explicit time allocated for each interval, and the algorithm must determine
the optimal time allocation. This approach allows for greater flexibility and adaptability in
realistic scenarios where precise timing information is unavailable.

To address this, the quadratic cost function in Equation (2) is augmented with a
linear term weighted by a constant kT, which penalizes the total time allocation vector
T = [T1, . . . , Tnint ]

⊤:

JT = p⊤Qp + kT

nint

∑
i=1

Ti, s.t. Ti > 0, (24)

where T = ∑nint
i=1 Ti represents the global time for the entire trajectory, and Ti denotes the

time of flight between waypoints i and i + 1. The time penalty gain kT can be adjusted
by the user to increase or decrease the total flight time. Notably, the same value of kT

may yield different results for the two parameterizations (polynomial and FFS) despite
identical solution schemes and inputs. This discrepancy arises because the FFS-based
parameterization incurs a higher cost due to its denser mapping matrices. Consequently, a
larger kT gain is typically required for the FFS-based parameterization to match the global
time of a polynomial-based solution.

The problem defined in Equation (24) is solved using quasi-Newton gradient-based
NLP solvers such as MATLAB’s fmincon. Linear inequality constraints are imposed on
the time allocated to each segment, and the gradient is computed numerically by solving
the fixed-time problem iteratively. This formulation retains the unconstrained nature of the
boundary conditions, ensuring computational efficiency, and enables flexible time allocation.

Proper time allocation is critical to achieving trajectory optimality, as it minimizes
control effort and, consequently, power consumption (minimum-snap). For example, uncon-
strained optimization allows even the most demanding maneuvers to become significantly
less resource-intensive by intelligently redistributing time along the trajectory. The result-
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ing trajectories are an order of magnitude less demanding than equivalent maneuvers
performed manually, demonstrating the method’s practical applicability.

An alternative formulation can be used to avoid introducing the kT gain, where the
time allocation is expressed in scaled units with a fixed constraint on total flight time, T, as,

J̄T = p̄⊤Qp̄, s.t. T̄i > 0 and
nint

∑
i=1

T̄i = 10, (25)

where the problem is internally mapped into scaled time units, and the actual trajectory
segment time t is recovered during polynomial or FFS evaluation through rescaling by the
desired time of flight T. As previously mentioned, maintaining the ratio of per-segment
time to total flight time

( Ti
T = T̄i

10
)

ensures that any solution can be re-evaluated for
longer or shorter trajectories without additional optimization. This formulation improves
convergence robustness in complex scenarios requiring very large or small total flight times.
Even without this modification, the formulation in Equation (24) allows for total flight
time to be updated as a post-processing step via rescaling. In other words, the following
property holds true:

Ti
T

= Ci, where Ci is constant, (26)

for a fixed set of boundary conditions for any time of flight. The continuity constraints
for free boundaries are also respected on the entire trajectory if properly rescaled, without
any loss of optimality or additional optimization. An exact same result can be obtained
by resolving the scaled problem for a desired time of flight. However, for this study,
Equation (24) was chosen to align with the cost function implemented in the MATLAB
toolbox, ensuring reproducibility and validation by readers.

We tested the performance of this algorithm with hand-picked waypoints and inte-
grated it with a higher-level randomized path-planning algorithm, RRT∗. A virtual 3D grid
was constructed to emulate the flying arena in our laboratory. Both simulation and exper-
imental results are presented in Section 3. Additionally, this method can be extended to
enforce realistic constraints, such as obstacle avoidance or corridor constraints, by augment-
ing the optimization with inequality conditions at the waypoints. With a sufficient number
of waypoints, such constraints can be enforced during time allocation, redistributing time
as needed to satisfy these requirements.

2.3. Simulation and Experimental Setup

For theoretical validation of the two methods, we have developed a 6DoF quadrotor
simulation with its parameters given in [62]. System dynamics, control system model, and
implementation details are identical to those in [63]. In summary, the simulation considers
standard 6DoF rigid body dynamics of a quadrotor, with all four motors producing thrust
perpendicular to the x − y in a north–east–down body frame. The actuator dynamics is
considered to be ideal (no actuator delay). Also, no disturbances such as wind, sensor noise,
etc., are considered. To give some physical meaning to the numerical results presented
later in the paper, we have extracted the power consumption from the simulated quadrotor
flight and included it with the rest of the numerical results. Although the minimum-snap
cost given in Equation (3) is directly representative of the power consumed by an ideal
quadrotor, we have defined (with an abuse of notation) the power consumed as follows:

P =
∫ tf

t0

4

∑
i=1

kω3
i dt, k = 3.0 × 10−9 N m/RPM2, (27)
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where ωi is the motor speed in revolutions per minute (RPM). The quadrotor system
dynamics with the control system described in [62] was simulated in order to obtain this
theoretical power consumption. This work does not consider aerodynamic effects and
does not account for propeller–blade interactions, which can be significant for multirotor
vehicles at high speeds.

All the motion-planing algorithms and simulations were developed in MATLAB
and Simulink. All experiments were performed using the facilities of the Aero-Astro
Computational and Experimental (ACE) laboratory at Auburn University. For validating
the motion-planning algorithms, a full-sized quadrotor was assembled and flown in the
ACE laboratory (Figure 2). All trajectories presented in Section 3 were computed off-board
using MATLAB environment. The laptop used for generating all the trajectories runs an
Intel® i7-10750H 2.60 GHz CPU. Once optimizations were complete, all trajectories were
uploaded to the quadrotor as text files and executed using a remote keyboard input from
the ground computer to initiate the maneuver.

Figure 2. Hardware data flow schematics.

We used our own quadrotor firmware (ACE-pilot) written in C and C++. The onboard
Linux computer, BeagleBone® Blue, was only used to run the flight control system and its
peripherals. The communications with the ground station were handled by a pair of Xbee
Pro radio modules, with a custom data-packet format. The position and heading of the
quadrotor were not estimated on-board but sent from the ground station using an OptiTrack
motion capture system. The trajectories were pre-computed offboard, checked for errors,
prior to be loaded in a point-by-point format to the onboard firmware and used to assign
in-flight position setpoints. No feedforward control was used for this work. To simplify the
trajectory generation process, all controls were assumed to be performed in a local, initial
position corrected, coordinate frame, which makes all trajectories (internally) start from zero
(position and heading). The quadrotor was to log the initial state in the inertial frame when
a new trajectory was to be executed and used the incoming trajectory references as offsets
to the initial position. The same strategy was applied for continuous heading reference
setpoints. This way, the same trajectory can be executed at any point (independently of
the inertial position coordinate and heading angle). A simple path-following strategy was
adopted. The reference position to the flight control system, Pref(t), was interpolated from
a pre-computed optimal trajectory based on time-since-epoch, t, or the start of the trajectory.
The deviation, ∆, from the intended path was defined as follows:
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∆Pk(t) = Pref(t)− Pk(t), for, k ∈ {x, y, z, ψ}, (28)

where the state of the vehicle is estimated using BeagleBone® Blue’s built-in inertial-
measurement unit and the motion capture system. Although there can be several en-
hancements made to the path-following strategy (e.g., considering perpendicular distance
from the intended path to compensate for the time-lag), development of an advanced
path-following strategy is considered to be out of the scope of this work, since it will only
improve the overall tracking performance. The exact same inputs for trajectory generation,
path-following strategy, control system, hardware, and overall setup have been maintained
for all experimental flight test. The only difference is due to the parameterization method
used to generate an optimal trajectory, which is converted into a set of reference position
and heading reference points to the control system.

3. Numerical Results
3.1. Fixed-Time Solutions

We start by examining fixed-time solutions with an evenly-distributed time allocation.
For the sake of simplicity, all trajectories discussed in this section are summarized in Table 1
and they are characterized in terms of the following parameters: (a) ndt, which denotes
the order of derivative considered for boundary conditions. Since we aim to compute
minimum-snap trajectories, ndt = 4 for both the cost function and the boundary conditions.
This also sets the number of coefficients per interval to be ten; (b) ndim, which denotes the
number of dimensions for which motion-planning is performed. This number defines how
many active degrees of freedom are used for optimization. Even though we are primarily
interested in 3D motion, some trajectories consider constant altitude or only planar XY
motion. Any set of waypoints that is zero or constant for a degree of freedom can be
considered to always lead to a trivial solution and is removed from the optimization to
reduce the computational time; (c) nint, which denotes the number of intervals/segments
between two waypoints for a single dimension. It is assumed that all dimensions have the
same waypoint discretization and no optimization is performed to determine the optimal
number of waypoints or intervals; (d) T, which denotes the total time allocated for the
trajectory. Not to be mistaken for the vector of individual time segments T allocated for
each interval. This defines the total time it physically takes to execute or fly the trajectory.
For fixed-time problems, this quantity is decided by the trajectory designer and is fixed;
(e) Tsolve, which denotes the time it takes to compute a solution. This quantity defines how
long it took to solve a complete minimum-snap motion-planning problem. This number
does not account for initial user-input setup, solution evaluation or plotting; (f) J, which
denotes the final value of the minimum-snap cost function. Trajectory design requirements
are generally different and depend on the application, even for vehicles of the same class.

3.1.1. “Simple” Trajectory

This trajectory considers motion along a single axis and only between two waypoints.
It serves as a baseline for computational speed comparison and control system performance
for the different parameterizations. This is considered the simplest case because we directly
solve the problem derived in Section 2.1.3 with mapping matrices being A(T) = A1(T)
and Q(T) = Q1(T), where there is only one segment, so the time allocation vector is a
scalar with only one element T = T = T1. The mapping matrix M is simply the diagonal
matrix, since no reordering or duplication of intermediate constraints is needed. The input
waypoints are the start and end points at one and three meters, respectively. All other axes
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are held constant at their initialization values, which, in the case of the simulation, are all
zeros. Trajectory optimization is performed on the X axis. First, the trajectory is solved
outside the simulator and the required position, velocity, acceleration, jerk, and snap are
evaluated using the optimal coefficients.

As can be seen in Figures 3a and 4a, the path and its derivatives are identical. The
boundary-value problem is actually almost trivial in nature due to the assumptions made
earlier such that the derivatives at the start and end points of the trajectory are all zeros and
only the initial and final positions, in this case, are non-zero. The solution process is simple
enough to be checked by hand and such a one-dimensional, single-interval example is quite
common to be applied in practice, where a simple connecting arc between just two points
is required; for example, for takeoff or landing. Although it is more common to use a cubic
polynomial, the ninth-degree polynomial and similar complexity FFS solutions lead to
almost identical solutions. The difference is that the cubic polynomial is not continuous up
to the snap level. Sharp changes in motor speed are expected at the beginning and end of
the cubic-polynomial solution. The resulting motor RPM profiles serve as the final arbiter
for the performance of the control system and the trajectory generation algorithm.

For this reason, control system signal plots are omitted, but all four motor RPM
profiles, labeled with different colors, are shown in Figures 3b and 4b. The sense of
rotation of the propellers is given in Figure 1. Motor RPM profiles are identical for the
two parameterizations and lead to the almost equivalent power consumption of 425.6 W
for polynomial and 426.36 W for FFS. The values of the minimum-snap cost functions are
301.68 and 400.04 for polynomial and FFS parameterizations. Figures 3b and 4b contain the
global plot in the background, where motor profiles are plotted with colored lines on the
same scale as their maximum values (dashed red line). Since almost all trajectories do not
show significant deviation of the motor RPM profile along the trajectory, a zoomed-in view
of the same motor profiles is included on each of the plots. The vertical and horizontal
axes are identical for both the background graph and a zoomed-in view. Due to the simple
nature of this one-dimensional (1D) trajectory, the four motor RPM profiles are not fully
distinguishable from each other, and only overlaid pairs are visible.
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Figure 3. Simulated results for the “Simple” trajectory with the polynomial parameterization.
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Figure 4. Simulated results for the “Simple” trajectory with the FFS parameterization.

3.1.2. “3 Blocks” Trajectory

This trajectory was designed as an extension of the previous simple 1D case, where
an open-contour set of points between the start and end goal is required to be joined by
a feasible trajectory. First, a 3D grid with a resolution of one decimeter is constructed
to reproduce the flyable laboratory space in a virtual environment. The objective was
to guide the quadrotor from one corner of the lab to the other. To complicate the path-
planning task, three static rectangular obstacles were placed between the starting point
and the destination. Next, the random-search algorithm RRT∗ of MATLAB was used to
generate a feasible path connecting the start and end points in straight lines. Since there
was no collision-free straight line path between the start and goal pose, the algorithm
had to introduce intermediate waypoints in between to avoid any collision. The resulting
set of waypoints was then used to compute the optimal trajectory using the algorithm
derived earlier. This time, the motion was in 3D space with variable waypoints in X, Y,
and Z axes. The heading angle was not considered for this problem, so it was assumed
to be held constant. The input waypoints are marked with red dots on 3D plots shown
in Figures 5a and 6a. Note that, for visualization purposes, the trajectory generated in
NED coordinate frame with its Z axis pointing down was flipped to represent altitude or
Alt = −Z.

(a) 3D view with obstacles.
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Figure 5. Simulated results for the “3 Blocks” trajectory with the polynomial parameterization.
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(a) 3D view with obstacles.
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Figure 6. Simulated results for the “3 Blocks” trajectory with the FFS parameterization.

The resulting trajectories for the polynomial-based (Figure 5a) and FFS-based
(Figure 6a) parameterizations are identical within the numerical precision. The shape
does not look distorted for FFS parameterization and fully follows the polynomial solution.
A very small, almost unnoticeable difference is present at the snap level between the two
solutions (Figures 5b and 6b). The total power consumption is 1269.97 W and 1270.27 W for
the polynomial and FFS parameterizations, respectively. The minimum-snap cost values are
90.07 for polynomial and 93.85 for the FFS method, which highlights that the cost function
values do not directly translate to power consumption. The only general trend is that the
cost value and total power consumption, both, are higher for the FFS parameterization,
which is expected since, according to the principles of calculus of variations, the family of
extremal solutions is represented by polynomials. Nevertheless, our objective is to present
an alternative smooth trajectory generation method. Even though this trajectory requires
the quadrotor to take off, fly over the obstacle, and dodge the other two, plenty of time has
been given for the maneuver. This results in a very conservative change in motor profiles,
as can be seen in Figures 5c and 6c. A zoomed-in view of the same figures shows a slight
variation in all four motor RPM profiles. Although almost identical, motor RPM profiles
corresponding to the polynomial solution have a very minor twitch at approximately 2.2 s,
which is not present in the FFS solution. The two solutions are smooth and FFS again
closely matches with the solution of the polynomial parameterization.

3.1.3. “Square” Trajectory

Next, we consider a somewhat more standard trajectory. The waypoints for this
trajectory define the four corners of a square. Additional waypoints are placed midway
between each of the corners to constrain the shape and enforce a motion close to straight
lines. This square path is completely in the horizontal X − Y plane, with time being
evenly discretized between all the waypoints. Altitude and heading are assumed to remain
constant. This trajectory aims to decouple the motion along the X and Y axes and forces
the optimal solution to approximate straight lines and corners. For this closed trajectory,
the start and end waypoints are at the same location, X = 1.0 m and Y = 1.0 m, which also
defines the first corner of a 2 × 2 meter square. The motion is counterclockwise.

Similarly to the test cases shown earlier, the resulting trajectories are identical, within
some numerical error, for the two parameterizations. As can be seen on 2D plots in
Figures 7a and 8a, the differences in the two shapes are indistinguishable. However, some
very minor differences exist between the snap profiles shown in Figures 7b and 8b at
about 1.2 and 8.5 s. Although very similar, the FFS solution might appear to be somewhat
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smoother because it lacks the same small spikes on the snap level of the polynomial solution.
This very minor fluctuation (at 1.2 s) is also reflected in the profiles of the motor RPM
profiles (Figures 7c and 8c). Of course, the effect is minimal and is most likely purely
attributed to the numerical convergence of the two methods. As is shown later, similar
numerical spikes in the snap are also present for some of the FFS solutions. The power
consumption (although negligible) is still in favor of the polynomial solution with a value
of 1417.68 W, while the FFS solution consumes 1418.52 W of power. The minimum-snap
cost values are 1174.49 for polynomial and 1287.14 for FFS methods.
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Figure 7. Simulated results for the “Square” trajectory with the polynomial parameterization.
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Figure 8. Simulated results for the “Square” trajectory with the FFS parameterization.

Note that the method is essentially trying to match all boundary conditions (each
waypoint), defined by position, velocity, acceleration, etc., at a particular point in space (the
red markers in Figure 7a,b and every other similar trajectory plot). For all the problems
presented in this paper, the position of each waypoint has been pre-determined or fixed,
while derivatives (at those specific locations) are all free (except from the very first and
last waypoint). The curves that connect all those waypoints sequentially are, technically,
arbitrary (there are no additional constraints along each interval). It was also assumed that
the vehicle starts from rest and comes to rest at the first and last waypoint, respectively.

The fixed-time solution (Section 2.1.3) assumes that the time has been pre-determined
before solving the fixed-time problem (hence the name) and each waypoint must be reached
at that specified time instance, while minimizing the snap. Obviously, this is very restrictive



Drones 2025, 9, 77 22 of 39

and requires some "smart" way of selecting the time allocation vector. In this case, time has
been simply linearly discretized between 0 and 10 s (to highlight the benefits of the time
allocation solution for this exact problem, see Figures 9 and 10) .
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Figure 9. Simulated results for the time-allocated “Square” trajectory with polynomial parameterization.
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Figure 10. Simulated results for the time-allocated “Square” trajectory with FFS parameterization.

The rationale emphasized above also leads to the initially unexpected shape of the
square trajectory (and presented later “circle” trajectory in Figures 11 and 12). In essence,
the vehicle has to start from hover, speed up, fly thought the intermediate waypoints,
and come to a full stop at the very last waypoint, while respecting the exact flight time
at each of the waypoints along the trajectory. It should be intuitive that accelerating and
decelerating are very power-demanding actions for a quadrotor. Ideally, acceleration and
deceleration should be spread out along the trajectory by allocating more time for the
particularly demanding intervals. The sharp turns (corners) are also suboptimal (especially
if the velocity and other derivatives are not enforced at those corners); therefore, they
should be smoothened if time allows, just like the high-speed racetracks avoid making
exactly 90-degree turns. However, since the time has been evenly allocated, the initial (top)
and final (right) intervals are almost straight, which indicates that there is not enough time
for any deviation. On the other hand, the two intermediate intervals (left and bottom) have
too much time assigned to them; therefore, the trajectory has to deviate from the straight
path significantly.
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Figure 11. Simulated results for the “Circle” trajectory with the polynomial parameterization.
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Figure 12. Simulated results for the “Circle” trajectory with the FFS parameterization.

3.1.4. “Circle” Trajectory

Even though it may not look circular at all from the fixed-time paths shown in
Figures 11a and 12a, the waypoints are tracing a perfect circular shape. This 2D tra-
jectory is very similar to the “Square” one, with time allocated evenly for tf = 10 s. The
intent is again to obtain a simple circular path which, intuitively, should be the optimal
shape for a set of waypoints that already trace a circle of a constant radius.

The results in Figures 11 and 12 show that both solutions are closely matching each
other except for small differences on the snap level. These differences are then further
reflected in the motor RPM profiles shown in Figures 11c and 12c. Minor numerical noise
is visible across the polynomial trajectory but is missing for the FFS. The irregular shape of
the two solutions in Figures 11a and 12a is due to the evenly discretized time, and can be
fixed when the time-allocation problem is solved. The power consumption is in favor of the
polynomial solution that obtained a value of 1435.62 W, while the FFS solution consumes
1437.65 W of power. The minimum-snap cost values are 1840.02 for polynomial and 2004.76
for FFS methods.

3.1.5. “Eight” Trajectory

This trajectory traces an “8”-like figure in an inclined plane. The plane itself is tilted
so that the altitude is not constant. The heading angle is also set to approximately trace
the center of the figure. This way, all four dimensions are engaged during the maneuver
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and require trajectory optimization. This high dimensionality and complex 3D shape is
intended to stress both the trajectory generation methods and the control system. Due
to the inherent symmetry of the trajectory, even discretization (for tf = 30 s) is close to
optimal, and this feature was exploited to verify time allocation.

Even for this relatively complicated motion, the two parameterizations are closely
matching (Figures 13 and 14). The total time allocated for this fixed-time solution was
T = 30 s, which results in almost flat motor RPM profiles for the two solutions. No
noticeable differences are present either in shape, path components, derivatives, or motor
profiles. The power consumption is also in favor of the polynomial solution that obtained a
value of 4200.38 W, while the FFS solution consumes 4200.42 W of power. The minimum-
snap cost values are 1.05 for polynomial and 1.15 for FFS methods.

(a) 3D view of the path.

0 10 20 30

-2

0

2

0 10 20 30

-0.2

0

0.2

0.4

0 10 20 30

-0.2

0

0.2

0 10 20 30

-0.2

0

0.2

0 10 20 30

-0.2

0

0.2

(b) Single axis information.

0 5 10 15 20 25 30

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30

4750

4800

4850

(c) RPM of propellers vs. time for simulated
flight.

Figure 13. Simulated results for the “Eight” trajectory with the polynomial parameterization.

(a) 3D view of the path.

0 10 20 30

-2

0

2

0 10 20 30

-0.2

0

0.2

0.4

0.6

0 10 20 30

-0.2

0

0.2

0 10 20 30

-0.2

0

0.2

0 10 20 30

-0.2

0

0.2

0.4

(b) Single axis information.

0 5 10 15 20 25 30

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30

4760

4780

4800

4820

4840

4860

(c) RPM of propellers vs. time for simulated
flight.

Figure 14. Simulated results for the “Eight” trajectory with the FFS parameterization.

3.1.6. Summary of the Fixed-Time Trajectories

All fixed-time solution metrics are summarized in Table 1. The solutions for the two
different parameterizations are closely following each other and are mostly identical. As
was expected, computational times are on the same order of magnitude, but are slower for
the FFS parameterization. The power consumption is primarily dominated by the total
time of flight, since most trajectories require only minor changes in motor speeds around
the hover thrust. Although the difference is very small, FFS leads to a slightly higher
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power consumption for all the trajectories considered. The minimum-snap cost values are
following the same trends as power consummations, but the relative scale is unrelated.

3.2. Time-Allocated Solutions

This section continues the discussion of the results for the time-allocation formu-
lation presented in Section 2.2. In addition to the parameters introduced earlier, the
solutions are compared based on the time allocation weight coefficient, kT, and a number
of fixed-time iterations, niter, it took to converge to the optimal solution. The results are
summarized in Table 2. All the inputs (trajectory waypoints and constraints) are the same
as for the fixed-time solutions, the time allocation vector with evenly discretized time
is used as an initial guess for the gradient-descent algorithm that attempts to find the
optimal time allocation given trajectory-specific weight kT. This weight is arbitrary and is
determined by trial and error to match the desired global time T(s) for each trajectory and
parameterization combination.

Additional rounds of trajectory generation have been executed to study the effect
of the time allocation weight, kT. The choice of this gain determines the global time for
executing the entire trajectory, but the values of the minimum-snap cost vary between the
two parameterizations. For this reason, the same time weight kT, with all other inputs being
identical, leads to two different solutions. All graphical results included in this section are
using different kT values such that the global time for the two parameterizations match
for each trajectory. Since it may also be interesting to compare the two methods when all
inputs, including kT, are identical, these results have also been included in Table 2.

As it was shown in [39], and explained in Section 2.2, all the time-optimal solutions
for the same set of inputs, other than kT, lead to the same path. By varying time allocation
gain kT, the global time can be adjusted, but the shape of the solution remains identical.
The position components, when plotted with regard to time, pass through the exact same
points for any reasonable kT values. These points only shift in time, occurring either earlier
or later in time. Their derivatives, on the identical plot, not only shift in time but also in
their respective magnitudes. This adjustment, if an optimal solution was found, maintains
the same position along the trajectory, but increases or decreases the respective velocity,
acceleration, jerk, and snap along the path. For this reason, we can expect to always obtain
the same shape of the time-allocation solution while adjusting time allocation gain kT and
keeping all other inputs the same. As we will show later, this property holds between the
two different parameterizations. However, the errors due to numerical rounding, discussed
in Section 2.1.2, can be more severe for one of the two parameterizations, which can lead
to some differences between the two solutions. These differences often increase as the
order of the derivatives grows. In fact, first symptoms usually occur on the level of snap;
then, by constraining the trajectory even more (by increasing the time allocation weight
kT), undesirable large-frequency oscillations propagate to lower derivatives, up until the
solution completely breaks down. The invariance of the trajectories to time allocation is
quite an interesting characteristic and can be exploited. This means that the feasibility of
the trajectories with regard to the collision-avoidance constraint takes precedence over the
time-allocation problem and the first step (in any trajectory optimization) can be focused on
the collision-avoidance step. More specifically, the time-allocation gain, kT, directly affects
the total time allocated for the trajectory and, therefore, directly affects how demanding
the trajectory is to execute. Ref. [42] provides an insightful discussion of the connection
between the calculus of variations in kinematics with the corresponding dynamics of the
physical vehicle.
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Table 2. Summary of the time-allocation solutions.

Name Method ndt ndim nint ncoefs T (s) Tsolve (ms) J P (W) kT niter

Simple
Polys 4 1 1 10 3.00 5.05 300.21 425.59 700 5
FFS 4 1 1 10 3.10 9.09 310.99 439.68 700 6
FFS 4 1 1 10 3.00 13.59 398.75 426.35 930 5

3 Blocks
Polys 4 3 4 120 10.00 305.00 8.79 1403.42 6.15 34
FFS 4 3 4 120 10.10 252.69 8.88 1417.40 6.15 22
FFS 4 3 4 120 10.00 285.33 9.53 1403.52 6.67 23

Square
Polys 4 2 8 160 10.00 423.99 200.02 1411.97 140 35
FFS 4 2 8 160 10.04 609.74 200.87 1417.61 140 32
FFS 4 2 8 160 10.00 563.42 205.89 1412.14 144 29

Circle
Polys 4 2 7 140 10.00 306.61 54.03 1420.25 37.8 30
FFS 4 2 7 140 10.07 528.96 54.38 1430.07 37.8 32
FFS 4 2 7 140 10.00 469.94 56.89 1420.67 39.8 27

Eight
Polys 4 4 9 360 12.00 515.74 85.72 1692.22 50 22
FFS 4 4 9 360 12.05 895.02 86.11 1699.25 50 24
FFS 4 4 9 360 12.00 892.07 88.81 1665.06 51.8 23

3.2.1. “Simple” and “3 Blocks” Trajectories

The time-allocation problem for the “Simple” trajectory is trivial, since there exists
only one interval and the only optimization that occurs is matching the minimum-snap
fixed-time cost with the time weight kT. Since the time factor kT was chosen such that it
closely matches the original global time of three seconds, this solution is identical to the
one presented earlier (fixed-time solution). The time-optimized solution for the “3 Blocks”
trajectory, similar to the “Simple” trajectory, is visibly identical since the number of intervals
is still low and even discretization is a good approximation of the optimal time allocation
for this trajectory. Due to trajectory similarities, only results are summarized in Table 2.

3.2.2. “Square” Trajectory

For this problem, with fixed and even time allocation, we have been able to obtain only
two straight edges and some irregularly shaped connections that vaguely resembled the
other two edges of a square. Intuitively, it should be fairly obvious that an even distribution
of time is very often not optimal for a quadrotor that starts from rest, performs some
maneuvers, and returns back to a full halt at the end, especially for a fully symmetric
path. A better time allocation should allow more time for the initial and final phases of a
flight, where the vehicle must overcome its own inertia and add (or subtract) some velocity.
If the global time is maintained constant, some time can be removed from the portions
of the trajectory that do not require large changes in the flight path and shifted to more
demanding phases. Fortunately, this task can be completely automated, and the time
allocation algorithm does just what we expect intuitively.

As can be seen in Figures 9a and 10a, the shape of a square became more clear and
regular. Even though the two edges that used to be straight, which corresponded to the
initial and final segments of the trajectory, became more curved, the other two straightened
out. The two parameterizations were able to achieve a close-to-symmetric square shape,
which is also visibly identical for the two. The effects of the time allocation are clearly
visible when comparing the acceleration plots of the fixed-time solutions (Figure 7b or
Figure 8b) with the new optimal time-allocated solutions shown in Figures 9b and 10b.
Large initial and final acceleration spikes that were required for the fixed-time solutions
are distributed throughout the entire trajectory. This has lowered the requirements for the
control system and allowed for smoother motor RPM profiles (Figures 9c and 10c). Even
though the global time was maintained the same, proper time allocation not only restored
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a more appealing shape but also made it possible to reduce the complexity of executing the
maneuver. As a general trend, the differences between solutions obtained using different
parameterizations are very similar. Very minor distinctions exist on the order of snap, and
the FFS solution seems to produce smoother motor RPM profiles.

3.2.3. “Circle” Trajectory

Similar to the “Square” trajectory, the circular path was fully recovered when proper
time allocation was applied (Figures 15a and 16a). As with the square trajectory, the
recovered shapes for both parameterizations are visually identical, and the demands along
the trajectory were reduced compared to the fixed-time solutions (see Figures 11 and 12).

Although the overall performance of the two parameterizations remains similar, key
distinctions between them become more apparent in this trajectory. A comparison of
the snap profiles (Figures 15b and 16b) reveals differing patterns of imperfections. For
the polynomial solution, visible spikes persist at the joints between the first and second
intervals and between the last and one-before-last intervals. In contrast, the FFS solution
largely avoids these spikes or reduces them significantly. However, the FFS begins to
encounter minor oscillations along the intermediate intervals, resembling numerical noise.

These high-frequency oscillations, although minor relative to the global motor profile
scale, are amplified by the control system and are particularly noticeable in the motor RPM
profiles of the FFS solution (Figure 16c). Specifically, these oscillations are concentrated
between 4.5 and 6.5 s, while similar but less pronounced oscillations are observed for
the polynomial solution at approximately 3 and 7.5 s. This behavior is attributed to
slight oscillations in the snap of the reference trajectory, which propagate through the
control system.

It is important to note that this coupling between reference snap oscillations and
control system performance arises from the idealized nature of the simulation. With no
actuator delays or disturbances, the simulation exaggerates the sensitivity to high-order
derivatives. A more robust controller, as required for real-world scenarios, would reject
such oscillations effectively. The controller gains were intentionally selected to be sensitive
in order to highlight that even the highest derivative of position (snap) can influence the
control system’s performance. Additionally, these oscillations become more pronounced
when the time of flight is further reduced, as tighter time constraints effectively compress
the trajectory along the time axis. One potential solution to mitigate these effects is to use
Chebyshev or other non-uniform waypoint distributions, which can help minimize artifacts
resembling the Runge phenomenon.
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(a) 2D view of the path.
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Figure 15. Simulated results for the time-allocated “Circle” trajectory with polynomial parameterization.
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Figure 16. Simulated results for the time-allocated “Circle” trajectory with FFS parameterization.

3.2.4. “Eight” Trajectory

In this case, the shape became more circularized, perfectly tracing the “Eight”
(Figures 17a and 18a). Time factors were also chosen such that the global time for the
flight is decreased by more than half of the original guess. For this reason, all the ranges for
derivatives and motor speeds became somewhat higher than for the fixed-time solution.
However, it should be obvious that, without a proper time allocation, performing the exact
same maneuver, but more than twice as fast, would significantly increase all the require-
ments. No notable or new differences between the two solutions are observed neither on
the level of derivatives (Figures 17b and 18b) nor at the level of control system outputs
(Figures 17c and 18c).

One important point worth mentioning is that, even though we have seen some
minor issues on the snap level for both parameterizations, they do not appear to show a
distinctive pattern or correlation. In summary, it should be clear that the motion planning
of quadrotors can be performed using either of the parameterizations and the FFS shows
close convergence to the polynomial solution even when time allocation is performed.
In addition to the graphical examples discussed earlier in this section, the solutions for
the equivalent time factor kT are summarized in Table 2. Although the shapes of all the
solutions for any kT values remained the same, these results were included to provide a one-
to-one comparison of the two parameterizations when every single input is identical. As it
was shown by the fixed-time solution, the minimum-snap cost of the FFS parameterization
is higher than the polynomial cost. For this reason, the FFS method requires a higher gain
kT to match the same global time. Thus, the total flight time should always be higher for
the FFS solution than for an equivalent polynomial solution.

Although the theoretical assumptions and fixed-time solutions show that FFS-based
parameterization is slower than the polynomial parameterization, the time-allocation
problem may not follow the same trends. In fact, FFS seems to often converge in fewer
iterations than an equivalent polynomial method. This is related to the time factor, kT, but
for the combination of inputs used in this work, some solutions have a low enough number
of iterations such that the total computational time for the time-allocation problem offsets
the longer evaluation times of each of the fixed-time solutions. This is clearly shown for the
“3 Blocks” trajectory in Table 2, where FFS was able to achieve an optimal solution faster
than the equivalent formulation using the polynomial (“3 Blocks” problem). The fact that
the time-allocation problem shows that the FFS parameterization may often converge to
the optimal (with a near-equivalent minimum-snap solution in fewer iterations than an
identical algorithm with a polynomial formulation) is intriguing. Some features, specific



Drones 2025, 9, 77 29 of 39

to the trigonometric functions, allow for controlling the rate of convergence and can be
further explored.

(a) 3D view of the path.
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Figure 17. Simulated results for the time-allocated “Eight” trajectory with polynomial parameterization.

(a) 3D view of the path.
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Figure 18. Simulated results for the time-allocated “Eight” trajectory with FFS parameterization.

3.3. Numerical Results Summary in Practical Context

The numerical results presented in this work demonstrate the exceptional precision
and smoothness achievable using the proposed trajectory optimization methods. Both the
polynomial- and FFS-based parameterizations operate at a level of detail that exceeds the
typical requirements of real-world quadrotor operations.

For instance, simulations show a close-to-hover propeller speed of approximately
4825 RPM for a 450 mm quadrotor, with deviations averaging less than 100 RPM per motor.
This corresponds to less than a 1.3% throttle difference on individual motors, highlighting
the finely tuned nature of the optimized trajectories. Such minimal deviations are unlikely
to have a noticeable impact in real-world scenarios, where factors such as sensor noise,
environmental disturbances, and manual control inputs typically dominate. In practical
applications, these small control efforts would be nearly indistinguishable from background
variability and would not pose a significant challenge to the UAV’s control system.

In more demanding scenarios, such as the yaw-intensive “Eight” trajectory requiring
two revolutions while maintaining translational motion, differential RPM changes of
approximately 400 RPM are observed. These deviations, however, represent synchronized
adjustments between motor pairs to meet specific maneuver requirements and are well
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within the capabilities of standard quadrotor hardware. This particular scenario was
selected for its complexity and successfully validated through experimental testing, further
confirming the robustness of the proposed methods.

It is important to note that the optimized trajectories inherently minimize energy
consumption by design, as the minimum-snap cost function directly correlates with reduced
control effort. Any suboptimalities observed in fixed-time solutions are alleviated when
time-allocation optimization is considered. Even without further optimization, the resulting
trajectories are well within the agility capabilities of modern quadrotors, and the overall
energy expenditure is primarily influenced by hover time rather than maneuvering effort.

In practical terms, the fine differences observed in control effort between the methods
are unlikely to translate into measurable performance gains during real-world deployment.
Sensor noise, environmental disturbances, and the inherent imprecision of real-world
conditions will overshadow these theoretical differences. Additionally, the smoothness
of the reference trajectories generated by the proposed methods is expected to reduce
unnecessary wear and tear on motors and electronic speed controllers (ESCs), potentially
improving hardware longevity under aggressive maneuvers.

In summary, while the numerical results highlight the fine-grained performance of the
optimization methods, the real-world implications affirm that these trajectories are robust,
efficient, and practical for UAV operations. Nitpicking minute differences in theoretical
results is less relevant when the real-world performance is governed by external factors
that dwarf these small variations.

4. Experimental Results
We consider a relatively small flying arena, and we are limited to trajectories confined

to a medium-size room (about 4 × 6 × 3 m tall). Five different trajectories are considered
to compare the usefulness of the trajectories in practice. All time-optimal trajectories
discussed in the previous sections have been successfully flown. Both polynomial and
FFS parameterizations have shown identical performance. Theoretical and computational
results have shown that the differences between the two methods are negligible, even in an
ideal environment. Since there was little to no difference between the two methods, the
results are reported only for the “3 Blocks”, “Square”, and “Eight” trajectories.

The trajectory optimization algorithm presented in this paper does not depend on any
of the vehicle’s parameters and the results of the time allocation have not been modified or
recomputed onboard in any way; therefore, Table 2 also summarizes experimental results.
The only difference would be in the actual power consumed (since the P(W) in Table 2 uses
simulation results). Unfortunately, the current hardware framework does not allow for
accurate in-flight power consumption estimation. But, with an RPM measurement sensor,
it will be possible to have an accurate estimate of the actual power consumption.

4.1. “3 Blocks” Trajectory

Using the optimal solution for the “3 Blocks” trajectory with time allocation, the control
system on the quadrotor had to follow the required position references (red) generated using
the two parameterizations. The resulting 2D path (blue) is shown in Figures 19a and 20a.
Although not as perfect as in the simulator, the two trajectories have been closely tracked
and no significant deviation occurred for any of the two methods.

The performance of the position control tracking is shown on Figures 19b and 20b.
Figures 19c and 20c show attitude control system tracking for the references generated by
the higher-level velocity and position control (details of the flight control system are given
in Ref. [62]). It is worth noting that the quadrotor is relatively heavy and more conservative
control system gains were chosen. For this reason, the quadrotor noticeably lags behind,
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with position-level errors growing in time as the trajectory references move away faster
than the quadrotor is capable of catching up. However, the commanded trajectory is still
followed with acceptable accuracy.

(a) 2D view of the flight path.
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Figure 19. Experimental results for the time-allocated “3 Blocks” trajectory with polynomial parame-
terization.

(a) 2D view of the flight path.
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(b) Tracking of position components.
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(c) Tracking of attitude components.

Figure 20. Experimental flight results for the time-allocated “3 Blocks” trajectory with FFS parameter-
ization.

As a side note, the path does not collide at any point with any of the obstacles; in fact,
there is enough margin for the quadrotor (in any orientation). Figures 19a and 20a show
the same trajectory as in Figures 5a and 6a (but with optimal time allocation, which does
not noticeably change the shape for such a short and simple trajectory). Due to the choice
of the obstacles, 2D view and 3D view have to be combined to visualize the actual path of
the quadrotor.

4.2. “Square” Trajectory

Similarly, taking the optimal solution for the square-shaped trajectory with time
allocation, the quadrotor had to follow position-level setpoints. The resulting path is shown
in Figures 21a and 22a. Again, the 2D view is shown instead of the 3D view because the
motion is completely planar. In fact, the vertical position errors in Figures 21b and 22b
clearly show that the altitude is kept within a few millimeters of the initialization vertical
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setpoint. The performance of the attitude control tracking is shown in Figures 21c and 22c.
Since the implemented control system has a cascaded PID control structure, the references
for each control layer are generated by the control layer above, in a cascaded manner. For
this reason and due to the significant numerical noise of the estimated states, the control
system references for the attitude layer show noticeable bands of noise.

(a) 2D view of the flight path.
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(c) Tracking of attitude components.

Figure 21. Experimental results for the time-allocated “Square” trajectory with polynomial parame-
terization.

(a) 2D view of the flight path.
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(c) Tracking of attitude components.

Figure 22. Experimental flight results for the time-allocated “Square” trajectory with FFS parameteri-
zation.

4.3. Notes on Numerical Convergence

It was previously stated (in Section 2.1.2) that, when higher-order derivatives are con-
sidered, Equation (12) can become numerically unstable and lead to inaccurate solutions.
Our numerical experiments indicate that both polynomial- and FFS-based parameteriza-
tions suffer from this issue; however, the convergence problems arise more quickly for FFS
due to its structure ("Sooner" is defined as the derivative order is increased). The current
remedy is to limit the order of the derivative considered, which is only a concern when
constraints (or cost functions) involve derivatives beyond snap. In the case of minimum-
snap optimization (where the highest derivative is of order 4), the convergence instability
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is minimal and mainly mitigated at the waypoint selection stage, before the algorithm
described in this paper is executed.

The time scaling factor, t/T, used for both parameterizations, can negatively affect
results for trajectories with closely spaced waypoints. Here, "closeness" refers not to the
physical distance but to the ratio of distances between each of the points relative to each
other. For example, Figure 23 demonstrates this effect by purposefully packing more
waypoints than necessary near the end of a spiral trajectory (the start is at the center).

Although the solution may appear feasible in Figure 23a, significant oscillations are
present in the fourth and even third derivatives (Figure 23b). If this reference were used,
the quadrotor would exhibit similar high-frequency oscillations in its motor RPM profiles.
This example highlights the need for pruning or a mesh refinement step when waypoints
are selected automatically (rather than being hand-picked) to avoid such extreme cases. In
this paper, it is assumed that the waypoints have already been appropriately selected.

Moreover, it is important to note that the value of the time allocation weight coefficient,
kT , does not substantially affect the convergence or solution quality. While this may seem
counterintuitive, the value of kT does not alter the time allocation per segment because
the ratio of time per segment to the total flight time remains constant for any converged
solution, assuming only kT is modified. This relationship is explained in Section 2.1.3 and
derived in Equation (23). Hence, kT is not crucial for convergence or solution quality; it is
more of a personal preference in formulation. An alternative explanation has been added
at the end of Section 2.2.

The convergence and solution quality are primarily determined by the number of
waypoints and boundary conditions, as these elements control the time allocation per
segment. As mentioned earlier, both parameterizations experience numerical challenges
when time distribution is uneven. Despite the scaling and mapping techniques discussed,
care must be taken when generating the initial set of waypoints, as improper distribution
can cause numerical issues (see Section 4, “Notes on Numerical Convergence”).
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(a) 2D view with waypoints highlighted in red.
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Figure 23. Trajectory optimization results using FFS method with non-uniformly spaced waypoints.
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4.4. “Eight” Trajectory

The experimental results for the fast and complex “Eight” trajectory are also as ex-
pected (Figures 24 and 25). Although the uncertainties due to the environment allow for
the use of experimental results as a validation, they limit the acquisition of any additional
insight into the solutions. No unexpected behavior was observed, and it is clear that the
two methods generated trajectories that can be followed by a quadrotor in our laboratory.

(a) 3D view of the flight path.
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(b) Tracking of position components.
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Figure 24. Experimental results for the time-allocated “Eight” trajectory with polynomial parameteri-
zation.

(a) 3D view of the flight path.
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(b) Tracking of position components.
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(c) Tracking of attitude components.

Figure 25. Experimental flight results for the time-allocated “Eight” trajectory with FFS parameterization.

5. Conclusions
This work developed a quadrotor motion-planning algorithm based on the finite

Fourier series (FFS) parameterization for minimum-snap trajectory optimization. By lever-
aging the inherent mathematical properties of the FFS method, the trajectory optimization
problem was reformulated as an unconstrained quadratic programming problem, offering
an alternative to the well-established polynomial parameterization.

The comparative analysis demonstrated that the FFS method produces trajectories
comparable to those generated by polynomial parameterization across various scenarios,
including “simple”, “circular”, “square”, “3 Blocks”, and “Eight” trajectories. Experi-
mental results show less than 0.1% relative difference in power consumption between
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the two methods, validating the suitability of FFS parameterization for quadrotor motion
planning. While FFS parameterization occasionally converged faster for the time-allocation
problem under certain conditions, the polynomial parameterization method generally
exhibited better computational performance and robustness, making it preferable for most
minimum-snap trajectory optimization tasks.

One of the significant contributions of this work is the introduction of an alterna-
tive formulation for the time-allocation problem. Our investigation revealed that time
allocation can be expressed as a set of optimal ratios for each trajectory segment, which
remain invariant under different total flight times, provided the boundary conditions are
unchanged. This property allows for post-processing adjustments to the total flight time
without the need to resolve the optimization problem, ensuring flexibility and efficiency
in practical applications. Additionally, the equivalence of the minimum-snap method
to minimum-energy optimization further underscores its utility for power-constrained
missions where minimizing time-of-flight and energy consumption is critical.

The practical considerations explored in this study highlight the method’s applicabil-
ity in real-world scenarios. The hardware experiments validated the proposed approach,
particularly its effectiveness in achieving smooth trajectory tracking. These results demon-
strate the potential for deploying the method in dynamic environments requiring rapid
replanning and obstacle avoidance, as evidenced by real-time applications demonstrated in
our recent work [64]. The method is also suitable for trajectory tracking using a data-driven
H∞ controller [65].

While this study focused on an alternative parametrization for the fixed-time op-
timization framework, future work will explore extending the methodology to address
additional constraints and complex dynamic environments. Incorporating aerodynamic
effects, such as wind disturbances, can enhance the robustness of trajectory planning. These
considerations can be incorporated at the trajectory reconstruction step through differential
flatness, enabling accurate modeling of real-world flight dynamics without altering the
core optimization routine.

Furthermore, addressing limited battery life within the trajectory optimization frame-
work provides another avenue for development. The existing cost function inherently
prioritizes energy efficiency, but integrating explicit constraints on remaining battery life
and recharge cycles could improve its utility for extended missions.

The modularity of the proposed framework also makes it a candidate for extension to
more complex UAV platforms, such as tilt-wing or tilt-rotor aircraft. These systems require
reformulating the dynamic equations and trajectory generation process, and their appli-
cability would depend on proving differential flatness properties for such configurations.
However, the current framework’s reliance on minimal path constraints and fixed-time
formulations enables faster computational performance, a trade-off that may need to be
revisited for systems requiring more complex constraints.

In conclusion, this study demonstrates the practical utility and theoretical soundness
of the proposed FFS-based method for quadrotor motion planning. By combining rigorous
theoretical development with experimental validation, the work provides a robust foun-
dation for future research in energy-efficient, flexible trajectory optimization. Potential
extensions to more complex systems and dynamic environments, coupled with further com-
putational improvements, promise to enhance the method’s scalability and applicability in
diverse UAV missions.
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Appendix A
Waypoints for all the cases are summarized. All dimensions are specified in meters or

radians. Time per segment Ti notation is re-used to indicate a time-stamp of when a specific
point i has to be reached. The exact same set of inputs was used to solve the fixed-time
problems and are use as initial guesses for the time-allocation problems.
“Simple” trajectory:
T1 = 0, X1 = 1, T2 = 3, X2 = 3.

“Eight” trajectory:
T1 = 0, X1 = 0, Y1 = 0, Z1 = 0, ψ1 = 0.79;
T2 = 3.75, X2 = 0.5, Y2 = 1, Z2 = 0.25, ψ2 = 1.57;
T3 = 7.5, X3 = 0, Y3 = 2, Z3 = 0.5, ψ3 = 3.14;
T4 = 11.25, X4 = −0.5, Y4 = 1, Z4 = 0.25, ψ4 = 4.71;
T5 = 15, X5 = 0, Y5 = 0, Z5 = 0, ψ5 = 5.5;
T6 = 18.75, X6 = 0.5, Y6 = −1, Z6 = −0.25, ψ6 = 4.71;
T7 = 22.50, X7 = 0, Y7 = −2, Z7 = −0.50, ψ7 = 3.14;
T8 = 26.25, X8 = −0.5, Y8 = −1, Z8 = −0.25, ψ8 = 1.57;
T9 = 30, X9 = 0, Y9 = 0, Z9 = 0, ψ9 = 0.79.

“Square” trajectory:
T1 = 0, X1 = 1, Y1 = 1;
T2 = 1.25, X2 = 0, Y2 = 1;
T3 = 2.5, X3 = −1, Y3 = 1;
T4 = 3.75, X4 = −1, Y4 = 0;
T5 = 5, X5 = −1, Y5 = −1;
T6 = 6.25, X6 = 0, Y6 = −1;
T7 = 7.5, X7 = 1, Y7 = −1;
T8 = 8.75, X8 = 1, Y8 = 0;
T9 = 10, X9 = 1, Y9 = 1.

“Circle” trajectory:
T1 = 0, X1 = 0, Y0 = 2;
T2 = 1.43, X2 = 1.56, Y2 = 1.25;
T3 = 2.86, X3 = 1.95, Y3 = −0.45;
T4 = 4.29, X4 = 0.87, Y4 = −1.8;
T5 = 5.71, X5 = −0.87, Y5 = −1.8;

https://github.com/YevheniiKovryzhenko/ACEPilot.git
https://github.com/YevheniiKovryzhenko/ACEPilot.git
https://github.com/YevheniiKovryzhenko/ACEPilot.git
https://github.com/StrawsonDesign/rc_pilot
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T6 = 7.14, X6 = −1.95, Y6 = −0.45;
T7 = 8.57, X7 = −1.56, Y7 = 1.25;
T8 = 10, X8 = 0, Y8 = 2.

“3 Blocks” trajectory:
T1 = 0, X1 = 5.4, Y1 = 3, Z1 = −0.4;
T2 = 2.25, X2 = 4.2, Y2 = 1.6, Z2 = −1.4;
T3 = 4.5, X3 = 2.8, Y3 = 1.6, Z3 = −1.4;
T4 = 6.75, X4 = 0.5, Y4 = 1.8, Z4 = −0.9;
T5 = 9, X5 = 0.4, Y5 = 0.8, Z5 = −0.4.
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