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Abstract: One-to-one within-visual-range air combat of unmanned combat aerial vehicles 

(UCAVs) requires fast, continuous, and accurate decision-making to achieve air combat 

victory. In order to solve the current problems of insufficient real-time performance of 

traditional intelligent optimization algorithms for solving decision-making problems and 

the mismatch between the planning trajectory and the actual flight trajectory caused by 

the difference between the decision-making model and the actual aircraft model, this pa-

per proposes a hierarchical on-line air combat maneuvering decision-making and control 

framework. Considering the real-time constraints, the maneuver decision problem is 

transformed into an expensive optimization problem at the decision planning layer. The 

surrogate-assisted differential evolution algorithm is proposed on the basis of the original 

differential evolution algorithm, and the planning trajectory is obtained through the 5 de-

grees of freedom (DOF) model. In the control execution layer, the planning trajectory is 

tracked through the nonlinear dynamic inverse tracking control method to realize the 

high-precision control of the 6DOF model. The simulation is carried out under four dif-

ferent initial situation scenarios, including head-on neutral, dominant, parallel neutral, 

and disadvantaged situations. The Monte Carlo simulation results show that the Surro-

gate-assisted differential evolution algorithm (SADE) can achieve a win rate of over 53% in all 

four initial scenarios. The proposed maneuver decision and control framework in this ar-

ticle achieves smooth flight trajectories and stable aircraft control, with each decision av-

erage taking 0.08 s, effectively solving the real-time problem of intelligent optimization 

algorithms in maneuver decision problems. 

Keywords: air combat; unmanned combat aerial vehicles; surrogate; differential evolu-

tionary algorithm; trajectory tracking 

 

1. Introduction 

With the development of modern warfare towards unmanned and intelligent com-

bat, unmanned combat aerial vehicles (UCAVs) have gradually become an important 

combat force on the battlefield. UCAVs are characterized by high performance, low cost 

ratio, and low risk, and are therefore widely used in battlefield reconnaissance [1], risk 

assessment [2], and aerial refueling [3]. With the rapid improvement in sensor technology 

Academic Editor: Oleg Yakimenko 

Received: 2 January 2025 

Revised: 28 January 2025 

Accepted: 29 January 2025 

Published: 31 January 2025 

Citation: Tan, M.; Sun, H.; Ding, D.; 

Zhou, H.; Han, T.; Luo, Y.  

Hierarchical Online Air Combat  

Maneuver Decision Making and 

Control Based on Surrogate-Assisted 

Differential Evolution Algorithm. 

Drones 2025, 9, 106. https://doi.org/ 

10.3390/drones9020106 

Copyright: © 2025 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Drones 2025, 9, 106 2 of 30 
 

and computing capacity, the autonomous decision-making capability of air combat sys-

tems has been gradually improved [4], and some projects and studies are already under-

way, although fully autonomous air combat systems have not yet been realized. 

As the core of autonomous air combat system, maneuver decision-making is a chal-

lenging task, and many scholars are currently trying to solve this problem by using tradi-

tional methods or new intelligent methods. There are three main current autonomous air 

combat maneuver decision-making methods, including game theory-based methods [5,6], 

self-learning-based methods [7–11], and optimization theory-based methods [12–15]. 

Game theory has been widely used in military confrontation and is also an effective 

method for solving air combat game problems. The methods based on game theory 

mainly include differential game methods and influence diagram methods. Lee et al. [5] 

discretizes the continuous air combat game problem and constructs the payment matrices 

of the two sides of the game at each time step for evaluating the decisions; then it solves 

the equilibrium decisions in the decision sets of the two sides by using the principle of 

great and small values. The method is mainly limited by the number of maneuvers and 

the lack of continuity due to the discrete decision variables. Virtanen et al. [6] proposes a 

multilevel influence diagram game model, which uses the moving horizon control 

method to solve the influence diagram game and obtains the optimal control sequences of 

the pilots with respect to their preference models, but the method is subject to a large 

subjective influence. 

Self-learning based methods mainly include Bayesian inference methods, approxi-

mate dynamic programming methods, neural network methods, and deep reinforcement 

learning methods. Huang et al. [7] regards air combat confrontation as a Markov process. 

By constructing a dynamic Bayesian network using Bayesian optimization methods, it 

adaptively adjusts the weights of the maneuver decision factors to make the objective 

function more reasonable and ensure the superior posture of the unmanned aircraft. The 

method proposed by C.Q. Huang mainly considers the prior knowledge of domain ex-

perts and pilots, and the performance of its model is greatly affected by subjective factors. 

Moreover, in more complex aerial combat scenarios, the Bayesian inference based maneu-

ver decision model is likely to has insufficient adaptability. J.B. Crumpacker et al. [8] con-

structs a neural network-based approximate dynamic planning (ADP) algorithm to gen-

erate high-quality UCAV maneuvering strategies. The experimental results show that the 

maneuvering strategy obtained by solving based on the ADP method outperforms the 

baseline strategy that only considers the position and the baseline strategy that considers 

both the position and energy, as the ADP method is more efficient in managing the kinetic 

and potential energy of the AUCAV. However, the neural network used in this method is 

not deep enough, and the maneuver decision model is less generalizable. When facing 

confrontation scenarios that are different from the model training phase, the optimal ac-

tion strategy obtained by solving the maneuver decision model tends to perform poorly 

in the confrontation effect. Zhang and Huang [9] proposed a deep learning method for air 

combat maneuver decision-making. The fatal problem with the deep learning method is 

that relying solely on deep learning cannot encourage agents to explore new strategies 

and respond in unfamiliar situations. Agents can only respond to the following situations 

in training samples or similar events [16]. In addition, due to the huge state space for both 

aircraft during air combat, which reached 25 dimensions in the reference [17], it is difficult 

to obtain samples that cover the full states. Deep reinforcement learning-based maneuver 

decision-making methods have been widely studied in recent years. Li et al. [10] proposes 

to use the MS-DDQN algorithm for air combat maneuver decision-making and designs 

the controller of a 6DOF vehicle at the bottom layer for tracking the commands derived 

from the decision-making, but the action space of the method is not continuous and the 

flight trajectory obtained is obviously not smooth enough. In order to solve the problem 
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of neural network plasticity loss in traditional course learning, a Motivated Course Learn-

ing Distributed Proximal Policy Optimization (MCLDPPO) algorithm is proposed in [11], 

by which the trained intelligences can significantly outperform the predictive game tree 

and mainstream reinforcement learning methods. However, the feasibility of the designed 

maneuver types under different state conditions was not considered in the paper. The 

H3E hierarchical maneuver decision framework was proposed in [18], and simulation re-

sults show that agents using control surface deflection as the action space without con-

trollers have difficulty obtaining game strategies when learning maneuver actions, result-

ing in few effective strategies being learned. In [19], it is pointed out that the algorithm 

directly outputs the control surface deflection, which makes it difficult to control the 

smooth flight of the aircraft and is not conducive to the training of intelligent agents. It is 

also difficult for intelligent agents to learn effective air combat strategies. Overall, the de-

cision output of deep reinforcement learning methods often cannot directly use the con-

trol surface deflection as the action space (this is because agents need to learn flight control 

while learning air combat confrontation), but, rather, the basic maneuvers are used as the 

action space for deep reinforcement learning through hierarchization. However, whether 

the basic maneuvers can be effectively executed under the current flight state is not taken 

into account, and since the deep reinforcement learning method is a black-box with non-

interpretability, the decision reliability needs to be further considered. 

Intelligent optimization-based methods mainly use intelligent optimization algo-

rithms for air combat maneuver decision-making. Duan et al. [12] uses the game hybrid 

strategy to design the objective function and obtains the optimal hybrid strategy using an 

improved pigeon-inspired optimization algorithm, which has been proven to be superior 

to the min–max search algorithm and the remaining several classical optimization algo-

rithms in simulations. Ernest et al. [13] proposed a GA-based fuzzy inference system 

known as ALPHA. In the air combat simulation, ALPHA successfully defeated two jet 

fighters operated by retired fighter pilots. However, the rules established for specific mis-

sions cannot be transplanted into new task, and the trees optimized using genetic algo-

rithms (GA) cannot be reconstructed with the combat result and recorded data, which 

hinders enrichment of expert knowledge [16]. Duan et al. [14] proposes a game theory 

approach based on predator–prey particle swarm optimization, where each side in every 

decision-making step seeks the optimal solution with the aim of maximizing its own ob-

jective function, but it requires significant computational resources, making it time-con-

suming and difficult to achieve real-time decision-making [20]. Ruan et al. [15] calculates 

the air combat posture assessment function based on angle and distance threats and com-

poses the game matrix. Then, it designs the objective function to be optimized using the 

game mixing strategy and obtains the optimal mixing strategy through TLPIO. The main 

drawback of intelligent optimization-based approaches is their difficulty in meeting the 

real-time demands of air combat decision-making. 

Most of the above work has been performed using a 3DOF model simplified from 

6DOF models, which are far from the actual 6DOF vehicle models with complex aerody-

namic forces, and thus lack practical feasibility. In papers that used a 6DOF vehicle model 

[10,12,15,21], they designed controllers to convert 3DOF control variables to a 6DOF 

model, but the control systems were all relatively simple. References [12,15] do not have 

control over the thrust. Reference [15] scales the normal overload obtained from the deci-

sion to an angle of attack control variable as an input, which is likely to cause the control-

ler’s inputs to oscillate and cause tracking errors. Therefore, it is not capable of tracking 

the paths that were planned using 3DOF models. There is no mention in [12] of how to 

translate the overload obtained from the decision into the angle of attack in the control 

commands. The controller designed in the literature [10] tracks flight path azimuth angle, 

roll angle, and velocity, but the simulation does not manage to track all three variables at 
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the same time. Reference [21] uses the change variables of speed, flight path slope angle, 

and flight path azimuth angle as decision variables, and then the dynamics equations are 

inverted to solve the variables of angle of attack, roll angle, and thrust. However, the in-

verse solution uses a system of equations that does not take into account the effect of lift. 

In fact, the inverse solution of the F-16 with a complex nonlinear aerodynamic model is 

difficult, which leads to the fact that the variations in the states obtained directly using 

deep reinforcement learning cannot guarantee a solution. 

However, directly using the 6DOF model for decision-making first brings huge deci-

sion space, making it difficult to achieve good flight control effects. Secondly, it is difficult 

to meet real-time requirements due to the complexity of differential equations. Therefore, 

the 5DOF model is used in the decision planning layer and 6DOF model is used in the 

control execution layer in this paper. Compared to the 3DOF model, the 5DOF model uses 

the throttle, angle of attack, and roll angle as the control variables to solve the lift and drag 

force in real-time so as to generate a high-fidelity planned trajectory. The nonlinear dy-

namic inverse control method is used in the control execution layer to track the planned 

trajectory dynamically, solving the problem of the 6DOF model tracking the planned tra-

jectory of the 5DOF model, which satisfies the high-fidelity and real-time requirements of 

the model at the same time. 

In order to solve the problem with the intelligent optimization-based methods men-

tioned above, that they find it difficult to meet the real-time requirements of air combat 

decision-making and high-fidelity aircraft model control, this paper proposes a hierar-

chical online air combat maneuver decision-making and control framework. In this paper, 

the maneuver decision problem is transformed into an optimization problem at the deci-

sion planning layer, the optimal trajectory is planned using surrogate-assisted differential 

evolutionary algorithm under the real-time constraints, and the maneuver generator in-

verse solution is used at the control execution layer using nonlinear dynamic inverse con-

trol for tracking the planned trajectory. The main contributions of this paper are shown 

below: 

(1) In the aircraft control layer, a 6DOF flight dynamics model of the F-16 aircraft is 

constructed using aerodynamic data, and a nonlinear dynamic inverse control algorithm 

is constructed using the MATLAB2023B/Simulink simulation platform. Aiming at the 

problem of high-precision tracking control of trajectories obtained by planning, the con-

trol commands are obtained using the maneuver generator inverse solution algorithm, 

and the comparison simulation with the PID control verifies the superiority of the nonlin-

ear dynamic inverse algorithm in tracking the large overload maneuver. 

(2) In order to solve the problem that ordinary intelligent optimization algorithms 

have insufficient real-time performance and cannot meet the decision-making needs, the 

surrogate-assisted differential evolution (SADE) algorithm is proposed on the basis of the 

original differential evolution algorithm. The algorithm quickly derives decision quanti-

ties within an extremely limited number of real fitness evaluations by using a radial basis 

function as the objective function approximation. SADE is compared with other recent 

variants of surrogate-assisted optimization algorithms and differential evolution algo-

rithms on a test suite consisting of five classical benchmark problems, and the results show 

that the surrogate-assisted differential evolution algorithm significantly outperforms the 

other algorithms. 

(3) In the decision planning layer, in order to obtain a high-quality planning trajec-

tory within the aerodynamic constraints, combined with the prediction of the adversary 

aircraft trajectory, an objective function and a planning trajectory generator are proposed 

to transform the maneuver decision problem into an optimization problem. Meanwhile, 

in order to overcome the problem of trajectory tracking control error accumulation, adap-

tive tracking error correction is proposed. The SADE algorithm is confronted with other 
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algorithms in head-on neutral, dominant, parallel neutral, and disadvantaged postures, 

and the results show that the SADE algorithm can all effectively drive the UCAV to obtain 

the air combat victory and can effectively improve the air combat victory rate compared 

to the traditional min–max search algorithm and random search algorithm. 

The rest of this paper is organized as follows. The architecture of the autonomous 

maneuvering decision system is presented in Section 2. Section 3 provides a detailed de-

scription of the nonlinear dynamic inverse tracking control method in the control execu-

tive layer. Then the nonlinear dynamic inversion (NDI) method and the traditional PID 

tracking control method are compared in a simulation. Section 4 provides a detailed de-

scription of the surrogate-assisted differential evolutionary algorithms and planning tra-

jectory generator used in the decision planning layer. Section 5 shows the simulation re-

sults of this paper’s SADE algorithm and several other excellent algorithms in four differ-

ent initial situation scenarios. Section 6 concludes the findings of this paper. 

2. Architecture of the Autonomous Maneuvering Decision System 

In this paper, a hierarchical one-to-one air combat system consisting of a decision 

planning layer and a control execution layer is designed using an F-16 aircraft as the con-

trol object, as shown in Figure 1. 

 

Figure 1. Flowchart of autonomous maneuvering decision system. 

The control execution layer includes a maneuver generator inverse solution and state 

variable tracking for tracking the planning trajectories. This module is used to generate 

real pilot control commands (elevator, rudder, aileron, and throttle commands), and the 

input is the planning trajectory output from the decision planning layer. This module uses 

the maneuver generator inverse solution to obtain commands such as angle of attack and 

roll angle, and then generates angular velocity commands through the outer loop and 

control surface deflection commands through the inner loop so as to ultimately realize the 

trajectory tracking control. 

At the decision planning layer, to plan high-quality maneuver trajectories, a 5DOF 

(in [8] called 5DOF model) vehicle model was used to construct a planning trajectory gen-

erator instead of a 3DOF [22] vehicle model. The decision dimension is reduced using 
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fitting and sampling methods, and the maneuver decision problem is transformed into an 

optimization problem, so the mapping from decision quantities to trajectories is estab-

lished. Then the situation access function is used as the objective function, the optimiza-

tion problem is approximated as an expensive optimization problem in order to satisfy 

the real-time decision-making, and the decision variables are optimized using surrogate-

assisted evolutionary algorithms to generate the planning trajectory in cases where the 

number of real fitness evaluations is very small. 

Errors inevitably occur in the process of tracking and planning trajectories. In order 

to adapt to the tracking error, an adaptive tracking error correction method is introduced, 

which can automatically correct the tracking error. In addition, between the planning tra-

jectory of the previous section and the planning trajectory of the next section, the planning 

trajectory needs to be spliced so as to make the tracker more stable. 

3. Trajectory Tracking Control Method Based on Nonlinear Dynamic 

Inverse (Control Executive Layer) 

In this section, the 6DOF aircraft is first modeled. Then the control system architec-

ture based on the nonlinear dynamic inverse tracking control method is presented. In or-

der to solve the planning trajectory tracking problem, the inverse solution maneuver gen-

erator is discussed in detail. Finally, the method of this paper is compared to the tracking 

control methods in other papers on a complex planning trajectory. 

3.1. Six Degree of Freedom Aircraft Model 

A 6DOF model of the airplane is used in the control layer, containing kinematics and 

dynamics equations [23]: 
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where , ,V     are the velocity, angle of attack, and angle of sideslip, respectively. 

, ,    are the roll, pitch, and yaw angles in the body coordinate system, respectively. 

, ,p q r  are the angular velocity along the three axes. , ,u v w  are the velocity components 

under the airplane body axis system, respectively. , ,x y z  is the aircraft position in the 

ground coordinate system. The controls are [ , , , ]e a r Tu    =  , which are elevator, ai-

leron, rudder, and throttle. The three angles, flight path slope angle, flight path azimuth 

angle, and flight path roll angle, can be defined under the trajectory coordinate system as 

, ,   , where ( / 2, / 2], ( , ], ( , ]         −  −  − . 

In the trajectory coordinate system, the dynamical equations can be written as follows 

[24]: 

cos cos sin sin

(cos sin sin cos sin ) cos sin cos cos

cos (sin sin cos cos sin ) sin cos cos

mV T D Y mg

mV T L Y mg

mV T L Y

   

         

         

= − + −

= + + − −

= − + +

 (6) 

where D is drag, L is lift, and T is engine thrust. 

3.2. Control System Architecture 

For the 6DOF vehicle model with control surface deflection as the control variable, 

the trajectory roll angle and overload obtained from the three-degree-of-freedom decision 

are simply scaled as the angle of attack and roll angle signals for the 6DOF tracking in the 

literature [15], so the trajectory obtained from the actual flight may be highly different 

from the desired trajectory. Based on the flight path azimuth angle  , roll angle  , and 

velocity V obtained in the decision-making process, [10] designed a PID controller to ob-

tain the surface deflection control variables. The three desired commands were simulated 

separately, and the results show that the desired states can be reached, but the method is 

not described for the simultaneous control to reach the three desired states. Reference [12] 

designed a lateral and longitudinal autopilot based on the PID controller to track the de-

cided angle of attack and roll angle. 

There is actually a problem in all of the above papers with how the 6DOF model of 

the aircraft follows the flight trajectory found using the 3DOF model. It is possible that a 

high-quality flight path generated using the 3DOF point mass model is actually a low-

quality path for the 6DOF model or that the 6DOF model cannot reasonably follow the 

planned flight path due to the characteristics of the 6DOF model that are not represented 

at lower fidelity in 3DOF (e.g., limitations on control surface rate, aerodynamics). Indeed, 

depending on the difference between the chosen trajectory rate limit and the trajectory 

rate of a particular aircraft, the 6DOF rigid body simulation may not accurately follow the 

prescribed trajectory. Therefore, a high-quality flight path planning algorithm and an 

adaptive 6DOF aircraft trajectory tracking control algorithm are solutions to this problem. 

Compared to the traditional gain scheduling method, the control law of the nonlinear 

dynamic inverse is more accurate, the overshoot is smaller, and the required surface de-

flection control is smaller, which is especially obvious at large angles of attack, and avoids 

the complicated and tedious process of selecting state points and scheduling variables in 

the gain scheduling method. In order to ensure that the 6DOF model can track the planned 

trajectory, this paper adopts the nonlinear dynamic inverse algorithm as the control algo-

rithm. The block diagram of the system is shown in Figure 2. 
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Figure 2. Diagram of control system structure. 

According to the timescale separation results, the aircraft state variables are grouped 

together and a dynamic inverse controller with cascade structure is used. According to 

the singular regression theory, the state variables are divided into two levels according to 

their speed of change. In Figure 2, [ , , ]T

fx p q r=   represents fast variables and 

[ , , ]T

sx   =  represents slow variables. 

The fast and slow loops of the control system are the same as in [25], and will not be 

repeated here. 

3.3. Reverse Solution of Maneuvering Generator 

In trajectory planning, the dynamics equation used is Equation (6), but the angle of 

attack, thrust, and roll angle obtained from planning are not directly used as inputs to the 

control layer. The reason for this is that the calculation of lift L and drag D in the 5DOF 

model is different from that of the 6DOF. The values of angular velocities p, q, and r and 

rudder surface deflections δe, δa, and δr do not exist in the 5DOF model, so the calculated 

lift L and drag D are different, which leads to the fact that the direct use of the planned 

control variables as inputs to the tracking variables leads to large errors in the trajectory. 

Therefore, the maneuver generator inverse solution needs to be used to obtain the 

angle of attack and roll angle, as well as the throttle to be tracked by inverting the flight 

path slope angle, flight path azimuth angle, and velocity obtained from the planning. 

To simplify the calculations, the lateral force Y  is assumed to be zero; this assump-

tion holds in general, and can be approximated by keeping the side-slip angle around zero 

so that the input side slip angle   of the slow loop is zero. With both the side-slip angle 

  and the lateral force Y  assumed to be zero, the differential Equation (5) can be sim-

plified to the following: 
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By solving the above Equations (8)–(10), cT , c , and c  can be obtained. Firstly, by 

using Equations (9) and (10), c  can be calculated as follows: 

cos
atan2( )

cos

d
c

d

V

V g




 
=

+
 

(11) 

Then, by substituting c  as a known variable into Equation (10), the following for-

mula can be obtained: 
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where, from [23], 
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In this paper, the aerodynamic formulation is introduced in [26] using nonlinear pol-

ynomial fitting: 

2 2 3
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where e  is the elevator at the current moment, a known value, and   defaults to 0. 

Substituting Equations (14) and (15) into Equation (12) yields a transcendental equation, 

since Equation (12) contains both polynomial and trigonometric functions. The final pol-

ynomial equation with the highest power of 7 can be obtained by expanding tan c  , 

sin c , and cos c  Taylor, which is then solved using Newton’s iterative method. 

However, Equation (12) is likely to have no solution for this equation at 
2

c


=  , so 

substituting Equation (8) into Equation (11) yields Equation (9): 
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By solving Equation (16), c  can be obtained, then cT  can be calculated by substi-

tuting c  into Equation (8): 
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3.4. Simulation Experiments and Analysis 

In this paper, the superiority of nonlinear dynamic inverse tracking control is demon-

strated by comparing nonlinear dynamic inverse tracking control with PID control. 

The tracking control method in the literature [10] is named PID1 in this paper. Its 

control surface deflections are calculated as follows: 

( ) ( )
e nz g q

g g g

( )

di

K nz nz K q

nz K K t 



   

= − +


= − +  −

 (18) 

( )a g p

r r

K K p

K r K





  

 

 = − +


= −

 (19) 

In PID1, the nz instruction is obtained through the calculation of the flight path azi-

muth angle error, while the elevator is used to track the flight path azimuth angle by 

tracking the normal overload, the aileron rudder control surface deflection is used to track 

the roll angle, and the rudder is used to inhibit the side-slip angle. 
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In this paper, the tracking control method of [12] is named as PID2. Its control surface 

deflections are calculated as follows: 

com ref( ) ( )

1
.

e q

P I D

k k q q

k K K K s
s



 

  = − + −

  

= + + 
 

 (20) 

com( )a p

r r

K K p

K r K





  

 

= − +


= −
 (21) 

In PID2, the elevator command is obtained through the angle of attack error, thus 

tracking the angle of attack commands, and the rest of the method is consistent with PID1. 

This method directly tracks the angle of attack command under planning, which can lead 

to tracking error due to the existence of different lift and drag calculations between the 

planning model and the actual model. 

The flight path azimuth angle can be tracked properly using PID1, but in a case where 

the error of the flight path azimuth angle is not large and the error of the flight path slope 

angle is large, it is obvious that the nz command obtained cannot track the flight path 

slope angle, so the revised nz is calculated as follows: 

( ) ( ) ( ) ( )g g g g gd di inz K K K t K t        = − + − +  − +  −  (22) 

The improved method in this paper is named PID3. 

The nonlinear dynamic inverse method of this paper is compared with PID1 and 

PID2 and the improved PID3 tracking control method. A trajectory is generated by sim-

plifying the 5DOF model with an input reference trajectory step of 0.02s and a controller 

step of 0.001s. The difference in the tracking effectiveness of these methods is demon-

strated by tracking this trajectory. 

Figure 3 shows the simulation results of trajectory tracking control, and Figure 3a 

shows the 3D trajectory figure. The referenced trajectory in Figure 3a is a complex maneu-

vering trajectory, the vehicle firstly turns right and then turns left to hover and descend, 

and then climbs after finally changing to level; the whole maneuvering process has a large 

overload so that the effect of the trajectory tracking algorithm can be examined. From Fig-

ure 3a, it can be seen that the NDI algorithm can track the reference trajectory very well 

with very few errors. The flight trajectory of the PID1 algorithm can only be described as 

a shape approximation compared with the reference trajectory, and obviously the error is 

larger in both vertical and horizontal directions. The flight trajectory of the PID2 algorithm 

has a larger error in the vertical direction compared to the reference trajectory. The trajec-

tory of the PID3 algorithm is more similar to the reference trajectory, but obviously the 

error is larger at the turn or climb. 
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(a) 3D trajectory of tracking. (b) Tracking error. 

  
(c) Flight path slope angle tracking. (d) Flight path azimuth angle tracking. 

Figure 3. Comparative simulation of trajectory tracking control. 

Figure 3b shows the 3D trajectory error curve, where the NDI error is the smallest 

with a maximum error of 106m, PID1 has a maximum error of 1394m, PID2 has a maxi-

mum error of 1185m, and PID3 has a maximum error of 441m. The trajectory errors in 

Figure 3b are all in a continuous upward trend, which is due to the fact that the trajectory 

tracks the velocity, flight path slope angle, and flight path azimuth angle. The position 

changes in the kinematic equations are calculated from these three variables, so the track-

ing errors of velocity, flight path slope angle, and flight path azimuth angle lead to the 

accumulation of 3D trajectory position errors. 

Figure 3c shows the tracking curve of the flight path slope angle, from which it can 

be seen that the NDI method can track the reference flight path slope angle curve well. 

The PID1 method has a certain overall error. The PID2 method obviously does not track 

the flight path slope angle, and the PID3 method tracks better most of the time, but there 

will be a certain error in the case of large overload. 

Figure 3d shows the tracking curve of flight path azimuth angle, from which it can 

be seen that the NDI method can track the reference flight path azimuth angle curve well. 

The PID1 method tracks well in the middle part of the tracking curve, but the initial and 

final errors are larger. The PID2 method tracks with larger error in the last 10s. The PID3 

method shows some delay and error. 

From the above analysis, it can be concluded that the NDI method significantly out-

performs other tracking control methods in the literature in terms of tracking trajectory 

effectiveness, which is due to the accurate inverse solution for the angle of attack, roll 

angle, and thrust. PID2 has a significantly higher error due to the direct use of a referenced 
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angle of attack. The overload calculation in PID1 is questionable, and, after modification, 

the tracking effect is better, but there is still some error at large overloads. The three-di-

mensional trajectory errors of the above methods all increase cumulatively with time. 

4. Fast Trajectory Planning Based on Surrogate-Assisted Differential 

Evolutionary Algorithms (Decision Planning Layer) 

In Section 3, due to the need to plan high-quality flight paths, it is clear that the use 

of a 3DOF model of overload and roll angle as a planning model is not feasible, since flight 

aerodynamic forces are not taken into account in the model and it could theoretically ac-

celerate continuously. The use of the 3DOF model leads to an inaccurate representation of 

the aircraft energy concept. For example, energy maneuver theory suggests that an aircraft 

can only increase its energy state when its thrust is greater than its drag. The 3DOF model 

does not include any forces and therefore does not accurately capture this limitation. In 

the 3DOF model, the pilot can control the maximum speed with a positive flight path 

angle and climb forever, increasing its potential energy indefinitely—a major misunder-

standing of aircraft dynamics. 

To solve the problem, the flight dynamics equations in the trajectory coordinate sys-

tem, assuming the side-slip angle and lateral force to be 0, are used for trajectory planning. 

The 5DOF model uses throttle, angle of attack, and roll angle as control variables to solve 

for lift and drag in real-time, thus planning trajectories with high fidelity. 

It is generally accepted in the current literature that the real-time performance of ma-

neuvering decisions using optimization algorithms is poor. Unlike the 3DOF model, the 

5DOF model exacerbates the problem of real-time decision-making due to the need for 

real-time aerodynamic computation. The solution in this paper is to improve real-time 

decision planning by reducing the number of real fitness evaluations of the algorithms, 

using faster converging algorithms for maneuvering decisions, and using sampling and 

fitting to reduce the decision dimension. 

In this section, in order to generate high-quality planning trajectories, a planning tra-

jectory generator is first constructed using a 5DOF aircraft model, through which the ma-

neuver decision problem is transformed into a decision variable optimization problem. 

And then the situation function is established as the objective function. In order to solve 

the problem of insufficient real-time performance of traditional intelligent optimization 

algorithms, a surrogate-assisted differential evolutionary algorithm is proposed on the 

basis of the original differential evolutionary algorithm and is compared with several 

other state-of-the-art algorithms in terms of the test function component as well as the 

maneuver decision problem. 

4.1. Planning Trajectory Generator 

Using Formula (7) in Section 3 as the dynamic model, combined with the kinematic 

model in the trajectory coordinate system, a 5DOF model can be obtained: 

max

max

max
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sin
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( sin )cos
cos
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where maxT  is the maximum engine thrust. The control variables T[ , , ]Tu   =  denotes 

angle of attack, roll angle, and throttle setting, respectively. 

The dynamics model is the maneuver generator model, with which high-quality con-

tinuous aircraft trajectories can be generated. Since lift and drag calculations are used, the 

aircraft aerodynamic constraints are also taken into account so that the trajectories gener-

ated are of high quality and within the aerodynamic constraints of the aircraft. 

In this paper, a 5DOF model is used for trajectory planning instead of a 6DOF model. 

The reason is that, in the process of generating the planned trajectory using the intelligent 

algorithm, several iterations of the kinematics and dynamics equations are required. The 

time consumption using the 6DOF model is much higher than using the 5DOF model. 

Using angle of attack, throttle, and roll angle as control variables, and an iteration 

step of 0.02 s, a high-quality trajectory can be generated with a time length of 2 s. This 

trajectory requires 100 iteration cycles and, therefore, 100 control variable cycle inputs. In 

traditional maneuver action libraries or maneuver decision-making methods, the method 

of constant control variables in 1s is often used, so the planning trajectory can be obtained 

quickly. However, this method is very different from the reality of continuous change in 

the control quantity, thus leading to the low quality of the decision trajectory and a large 

gap between the planning trajectory and the actual flight trajectory. 

However, adopting each iteration cycle control variables as decision variables will 

lead to 100×3 decision dimensions, which will cause the optimization algorithm to be dif-

ficult to converge. To solve the problem, this paper adopts a compromise approach by 

adopting 0.5 s, 1 s, 1.5 s, and 2s control variables as decision variables and using quadratic 

function fitting and interpolation to obtain the intermediate control variables. The flow 

chart is shown below. 

The decision planning problem is transformed into a decision variable optimization 

problem by constructing a mapping from decision variables to trajectories through the 

method shown in Figure 4. 

 

Figure 4. Planning trajectory generator flowchart. 

4.2. Objective Function Construction 

In close air combat, the UCAV can only maintain the next moment situation ad-

vantage if only the next moment situation is considered. Without long-term consideration 

of the situation, the UCAV is easily deceived by adversary aircraft tactics. In this paper, 

the situation function after 2s is taken as the objective function (where the adversary po-

sition is obtained using a trajectory prediction). The state information of the adversary 
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aircraft after 2s is obtained using a polynomial fitting prediction, and the method is not 

detailed here in view of the length of this paper. 

4.2.1. Situation Assessment 

In air combat geometry, angle and distance are usually considered to be the main 

factors constituting the air combat situation. Therefore, this paper establishes the angle 

situation function and the distance situation function and obtains the situation value by 

weighting. 

4.2.2. Angular Situation Function 

As shown in Figure 5, A  is the bearing angle of UCAV and T  is the aspect angle 

of adversary aircraft. The smaller A  is, the more UCAV’s nose is pointing toward the 

adversary, and the smaller T  is, the more UCAV is behind the adversary’s tail. Accord-

ingly, the angular situation function is constructed as follows: 

1 1
1 cos (

2 2
)A A TS  

  
= + +  

  
 (24) 

 

Figure 5. Red and blue aircraft relative geometry. 

4.2.3. Distance Situation Function 

The value of the distance situation function is only related to the distance between 

the enemy and the UCAV, not to the angle [12,15]. In fact, when the UCAV is in an angular 

advantage, the purpose of the UCAV is to close the distance in order to constitute a missile 

launching condition, whereas when the adversary aircraft is in an angular advantage, the 

purpose of UCAV is to move away from the adversary in order to avoid the adversary 

from constituting a missile launching condition. Accordingly, the distance situation func-

tion and the angular situation function are coupled to obtain the calculation method of 

the distance situation function, as shown below: 

0
0

0
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0
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4.3. Surrogate-Assisted and Original Differential Evolutionary Algorithm 

By analyzing the decision-making system constructed in this paper, in the updating 

of the discrete differential equation, it needs to be updated 100 times with a step size of 

0.02s to achieve the aircraft state after 2 s, and, in these 100 iterations, the values of the 

aircraft thrust and lift, as well as the drag force, need to be updated, which results in a 

large amount of computation and a long time-consumption time to speculate the flight 

state after 2 s. Therefore, the use of conventional trial maneuvering methods leads to a 

significant increase in decision time. For such optimization problems with few function 

evaluations, they can be regarded as expensive optimization problems, and the conver-

gence efficiency of the intelligent optimization algorithm can be improved by establishing 

surrogate-assisted models. 

4.3.1. Original Differential Evolution Algorithm 

At the beginning of the optimization problem, DE stochastically generates popula-

tions in the search space. The individuals in the population create the next generation in 

an evolutionary manner. When the individual explores a new location with a better fitness 

value, the individual moves to that location. There are four main operators in DE, i.e., 

initialization, mutation, crossover, and selection operations [27]. Due to the limitation of 

space, the algorithm steps of the original DE algorithm will not be discussed in detail in 

this paper. 

4.3.2. Surrogate-Assisted Differential Evolution Algorithm 

Evolutionary algorithms are effective in overcoming the difficulties of multimodality, 

discontinuity, and non-differentiability that exist in many practical problems. Since the 

solution space of many problems is often uncertain or infinite, it is not feasible to rely on 

traversing the solution space to find a solution space. The evolution algorithm (EA) ap-

proximates the optimal solution gradually through exploration. However, most algo-

rithms typically require multiple fitness function evaluations to obtain a feasible solution, 

which severely limits their ability to solve expensive engineering problems. For the ma-

neuvering decision problem in this paper, the number of fitness function evaluations is 

limited due to real-time constraints, so surrogate-assisted differential evolutionary algo-

rithms are used in this paper to solve this problem. Currently, surrogate-assisted evolu-

tionary algorithms are flourishing and are widely used for expensive optimization prob-

lems and high-dimensional optimization problems. In most of these surrogate-assisted 

models, classification, regression, and interpolation techniques are used to approximate 

expensive objectives, such as Support Vector Machines (SVMs) [28], Gaussian Processes 

(GPs) [29], Radial Basis Functions (RBFs) [30,31], and Polynomial Regressions [32], among 

others. 

The differences between the surrogate-assisted differential evolution algorithm pro-

posed in this paper and the original differential evolution algorithm are as follows. (a) For 

the problem of the slow convergence of the original differential evolution algorithm, the 

“DE/current-to-best-w/r” strategy of the LSHADE-RSP [33] algorithm is introduced to im-

prove the convergence efficiency of the algorithm. (b) For the selection operation of the 

original differential evolution algorithm, the selection operation is canceled because the 

offspring is evaluated by the surrogate model, not the real fitness evaluation, and, there-

fore, the selection operation constrains the evolution of the offspring. (c) The selection of 

the next real to-be-evaluated individual is crucial for the surrogate-assisted evolutionary 

algorithm, so the optimal offspring individual obtained from the surrogate model search 

is likely to fall into a local optimum. In this paper, the opposition-based learning strategy 

is used for the generation of real to-be-evaluated individuals, which gives the algorithm 
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a certain chance of jumping out of the local optimum and improves the algorithm’s global 

exploration ability. 

(a) Radial basis functions 

The RBF model was originally developed for discrete multivariate data interpolation 

[34]. It uses a weighted sum of basis functions to approximate a complex landscape [35]. 

For a dataset consisting of input variable values and response values from N training 

points, the true function ˆ( )y x can be approximated as follows: 

1

)ˆ( ) ( ) (
N

i i
i

y x x c p x
=

=  − +  (26) 

where λ is the coefficient computed by solving the linear equation. ci is the ith center of 

the basis function. p is either a polynomial model or a constant value; in this paper, linear 

polynomials are used [36].   is a basis function. Due to the uncertainty of (26), further 

orthogonality conditions are imposed on the coefficients: 
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where m is the number of terms of ( )p x  and Matrix N NΦ  R   with element

( ),( 1,2,..., ),( 1,2,..., )jiij x x i N j N − == =Φ . 1 2( , ,..., )T N

N R   α =  denotes a vector 

of weight coefficients. N mP R   is a basis function matrix of linear polynomial ( )p x  on 

the interpolating points, 1 2( , , , ) m

m

Tc c c R=  c  is the vector of coefficients for the linear 

polynomial ( )p x , and 1 2( ( ), ( ), , ( ))T N

NF f x f x f x R=   . Note that the coefficient ma-

trix in Equation (28) is nonsingular as long as the interpolating points are all affinely in-

dependent [37]. 

(b) “DE/current-to-best-w/r” strategy 

( ) 1iRank k N i=  − +  (29) 

1 2/ ( ... )i i Npr Rank Rank Rank Rank= + + +  (30) 

, , , , 1, 2,( ) ( ) p

i g i g i best g i g i r g r gF F= + − + −v x x x x x  (31) 

where 
1,r gx  denotes the individual selected from the current population P by the rank-

based pressure selection strategy, and 
2,r gx  is the individual selected from the current 

population P by the rank-based pressure selection strategy or randomly selected from the 

external archive A by the rank-based pressure selection strategy. The core idea of the rank-

based pressure selection strategy is that the better the search individuals are, the higher 

the probability that they will be selected for the mutation strategy, thus increasing the 

convergence rate of the algorithm. 

(c) Opposition-based search strategies 

In general, the surrogate-assisted algorithm selects the optimal individual bestP  for 

RBF evaluation in pop(t + NP), but bestP  is easy to fall into the local optimum because of 

the multiple iterations of NG times. In this paper, the individual FEP  generated by the 

opposition learning search strategy has a certain probability as the real evaluation indi-

vidual, thus improving the ability of the algorithm to jump out of the local optimum. 

Opposition-based learning search helps to improve the performance of the algorithm 

in exploring the global optimal solution. This strategy inversely maps the visited solutions 
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in the search region to the unknown region. Reference [38] demonstrated that opposition-

based learning search can help optimization algorithms to more closely match the global 

optimal candidate solutions. Equation (32) gives the manner in which the PFE is generated 

when the algorithm performs an opposition-based search: 

2( )FE best max bestP P P r P= +  −  (32) 

where the poorest solution Pmax and the current optimal solution Pbest denote the upper 

bound and lower bound of the population. r2 is a random number ranging from 0 to 1. 

The pseudo-code of the Algorithm 1 is represented below. 

Algorithm 1: SADE 

Input: the number of initial sample points (K); the number of maximum FEs (maxNFE);  

predefined generation budget NG; swarm size (Np). 

Output: The solution with the best fitness value: gbest and fbest 

1: 

Database initialization: Employ Latin Hypercube Design (LHD) to generate a uni-

formly distributed dataset, and archive it with exact fitness values into the database, 

NFEs = K 

2: While NFEs < maxNFE do 

3:     Use all the samples to establish an RBF model 

4: 
    Population initialization/re-initialization: Select Np top-ranking data from the 

database to form the initial population pop(g),set g = 0 ; 

5: 
    RBF modeling/updating: Construct/update a global RBF model using all of the 

database samples; 

6:         While g≤ NG do 

7: 
            Adopt “DE/current-to-best-w/r” and crossover to generate a new pop-

ulation pop(g + 1); 

8: 
         Fitness estimation: Compute the fitness value of each individual in pop(t 

+1) using the RBF model, set g = g + 1. 

9:         End while 

10: 
    Exact evaluation: Perform exact evaluation on the individual bestP  or FEP , and 

archive it into the database; NFES = NFEs + 1 

11: End while 

4.3.3. Algorithm Performance Validation 

To examine the performance of SADE, SADE is implemented on a test suite consist-

ing of five classical benchmark problems. SADE is compared with several state-of-the-art 

algorithms on selected benchmark problems. All compared algorithms were implemented 

in MATLAB R2016b and run on an Intel(R) Core(TM) i7-6500U CPU @ 2.50 GHz laptop, 

and each algorithm was executed for 30 independent runs for statistical analysis, respec-

tively. 

To evaluate the performance of the proposed algorithm, SADE is compared with al-

gorithms such as GORS-SSLPSO [39], FSAPSO [40], LSHADE [41] and MPA [42]. Since 

the dimensionality of the decision variables of the motorized decision problem con-

structed in this paper is relatively small, it is tested only on a 10-dimensional benchmark 

problem. The GORS-SSLPSO and FSAPSO algorithms are advanced surrogate-assisted 

variations in particle swarm algorithms proposed in recent years. LSHADE is the winning 

algorithm of the CEC2014 competition, and MPA is an excellent population evolution-

based intelligent algorithm proposed in 2021. 

For a fair comparison, each competing algorithm is allocated a computational budget 

of 11×D real fitness evaluations, and Figure 6 shows the results of SADE and the compet-

ing algorithms on the benchmark after 11D real fitness evaluations. 
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(a) Ellipsoid. (b) Rosenbrock. 

  
(c) Ackley. (d) Griewank. 

 

(e) Rastrigin. 

Figure 6. Comparison of test function simulation results. 

As can be seen from the iteration curves in Figure 6, the surrogate-assisted evolution-

ary algorithms have significantly better performance compared to other algorithms. SADE 

significantly outperforms the GORS-SSLPAO and FSAPSO algorithms on Ellipsoid, Ros-

enbrock, and Ackley, and is comparable to the GORS-SSLPSO and FSAPSO algorithms on 

Griewank and Rastrigin. The simulation results show that the introduction of the “DE/cur-

rent-to-best-w/r” strategy of the SADE algorithm brings an improvement in the conver-

gence efficiency, and, from the shape of the curves, the decrease in the SADE algorithm is 
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more dramatic, which is related to the ability to break through the local optimum brought 

by the opposition-based search strategy. 

4.3.4. Surrogate-Assisted Differential Evolutionary Algorithms for Autonomous Maneu-

vering Decisions 

The SADE algorithm is used for the maneuver decision problem by using the situa-

tion function established above as the objective function. The UCAV and the adversary 

are in the same initial conditions, and one decision-making process is repeated 30 times 

as a comparison of the algorithms. The decision variables are used as inputs to the plan-

ning trajectory generator. The main time-consuming part of the algorithm is the planning 

trajectory generator, so the number of real fitness evaluation of the function is set to 50. 

comparing the SADE algorithm with the GORS-SSLPSO, FSAPSO, LSHADE, and MPA 

algorithms, the iterative curves can be obtained as shown below. 

From Figure 7, it can be obtained that the situation value obtained using the SADE 

algorithm is superior to other comparative algorithms such as GORS-SSLPSO, FSAPSO, 

LSHADE and MPA. Under the condition of the same number of real fitness evaluations, 

SADE can obtain better situation values. The SADE algorithm average takes about 0.08s 

for decision-making, the LSHADE algorithm and the MPA algorithm average take about 

0.06s because they do not use surrogate model, and the FSAPSO and GORS-SSLPAO al-

gorithms take about the same time as the SADE algorithm. It is worth mentioning that the 

matrix game method average takes 0.2s due to the use of the min-max search method [43], 

which is equivalent to the number of fitness evaluations of 7 × 7 × 7 times, and the obtained 

situation value is 0.49578, which is smaller than that of the SADE algorithm. The SADE 

algorithm is characterized by a short time-consumption time and strong optimization abil-

ity for the maneuvering decision problem. 

 

Figure 7. Comparison of situation function optimization. 

4.4. Adaptive Tracking Error Correction and Planning Trajectory Splicing 

It can be obtained through the controller comparison simulation that the tracking 

error will inevitably occur during the trajectory tracking process. As this paper tracks the 

values of the flight path slope angle and flight path azimuth angle and speed, so, similar 

to the next layer of the differential equation, the three-dimensional coordinate error will 

increase with time and the error will slowly accumulate, so it is necessary to correct the 

tracking error. As shown in Figure 8, the three-dimensional coordinate error is corrected 

at the planning starting point. When the three-dimensional coordinate error is larger than 
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the threshold value, the actual three-dimensional coordinates are used as the planning 

starting point, and when the flight path slope angle and flight path azimuth angle errors 

are larger than the threshold value, the flight path slope angle and flight path azimuth 

angle are corrected. Meanwhile, for the former planning trajectory and the latter planning 

trajectory, when the error does not exceed the threshold value, the method of splicing the 

planning trajectory is adopted, which also makes the controller more stable and does not 

have the situation where the error suddenly goes to zero. 

 

Figure 8. Schematic diagram of adaptive tracking error correction and planning trajectory splicing. 

5. Simulation Experiments 

In this section, in order to verify the superiority of the algorithm proposed in this 

paper, the simulation verification of the adversary aircraft and UCAV confrontation takes 

the method of confrontation with the same flight model. Both the adversary aircraft and 

UCAV adopt the 6DOF model of F-16 airplane, which is divided into four initial scenarios, 

namely head-on neutral, dominant, parallel neutral, and disadvantaged, according to the 

different initial situation of the adversary and us. The red side is the UCAV with the SADE 

algorithm, and the blue side is the adversary UCAV with the LSHADE algorithm, the 

original DE algorithm, the min–max search algorithm, and the random search algorithm, 

respectively. 

The initial situation of the setup is shown in Table 1. 

Table 1. Initial scene setting. 

Scenario UCAV x/m y/m z/m V/[m/s] χ/deg 

Case 1 
red 0 0 6000 220 0 

blue 10,000 10,000 6000 220 180 

Case 2 
red 0 0 6000 220 0 

blue 4000 1000 6000 220 0 

Case3 
red 0 0 6000 220 0 

blue 0 1000 6000 220 0 

Case4 
red 0 0 6000 220 0 

blue −2500 2000 7000 220 0 

The number of real fitness evaluations of the algorithm is set to 50, the number of 

populations is set to 60, the unit maneuver time is 2s, and the simulation step size is 0.02s. 

According to the geometry of the air combat, the termination condition of the simulation 

is defined as 400 < R < 2000, and the bearing angle of the UCAV is less than 15 degrees, 

while the aspect angle of the adversary aircraft is less than 105 degrees. Under this condi-

tion, the UCAV is in a tailing situation, and missiles can be launched to hit the adversary 

aircraft, and it is therefore judged to win the air combat. 

5.1. Initial Head-on Neutral Situation 
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In the initial head-on neutral posture, the initial flight path azimuth angles of the 

UCAV and the adversary are 0 and 180 degrees, respectively, with the same initial altitude 

and speed. The UCAV adopts the SADE algorithm and the adversary airplane adopts the 

LSHADE algorithm. The simulation results are shown in Figure 9. The UCAV’s trajectory 

figure is shown in Figure 9a, from which it can be seen that both the adversary aircraft 

and the UCAV take similar maneuvers, which is due to the same situation function, and 

it can be seen that the adversary and the UCAV’s trajectories form the classic single loop 

in the BFM, which demonstrates decision-making ability close to the tactical level of hu-

mans. In the initial phase, the adversary and the UCAV approached head-on. At about 

33s, when the adversary and the UCAV intersected, the adversary had a slight advantage 

in the angular posture due to the larger overload of the UCAV, and then the UCAV re-

duced its turning radius by decreasing its normal overload and keeping its speed lower 

than the adversary’s, which successfully made the adversary aircraft rush forward. At 

about 74.26s, the UCAV and the adversary aircraft formed a trailing situation, reaching 

the termination conditions of the simulation, and the UCAV won the air combat. 

As can be seen in Figure 9b, there are two steep drops in the adversary and UCAV 

situation function values due to the small distance when the adversary and the UCAV 

crossed paths. The adversary aircraft gained some situational advantage around 33s, and 

then the UCAV gained a situational advantage until the end of the simulation. The roll, 

pitch, and yaw rate curves under the body-axis system are shown in Figure 9c, in which q 

stably stays around 10deg/s and p changes more drastically, indicating that the roll 

changes are intense. The speed of the UCAV in Figure 9d is less than that of the adversary 

aircraft, which reduces the turning radius and obtains the situational advantage. The side-

slip angle beta is kept within 0.2 degrees, proving the effectiveness of nonlinear dynamic 

inverse control. In Figure 9e, the normal overload can reach more than 5g, proving the 

intensity of the air combat confrontation of the maneuver decision method. 

  
(a) 3D trajectory of UCAV and adversary aircraft. (b) Change in situation value. 
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(c) Body-axis roll, pitch, and yaw angular rates. (d) Velocity, attack angle, and sideslip angle curves. 

 
(e) Load factor in x-, y-, and z-axis direction. 

Figure 9. Scenario: Initial head-on neutral situation simulation results. 

5.2. Initial Dominant Situation 

In the initial dominant situation, the UCAV is initially behind the tail of the adversary 

aircraft, and the initial flight path azimuth angle is the same. The UCAV adopts the SADE 

algorithm, and the adversary aircraft adopts the original DE algorithm. The simulation 

results are shown in Figure 10, where (a) is the 3D trajectory diagram, and it can be seen 

that the adversary aircraft adopts a right-turn circling maneuver in order to get rid of the 

UCAV, and, at this time, the UCAV adopts a straight-line maneuver to close the distance, 

so the adversary aircraft’s situation increases. Figure 10b shows that the adversary’s situ-

ation reached about 0.45, but then the UCAV also took a right-turn downward circling 

maneuver; at this time, the UCAV regained the situation advantage, and, finally, the 

UCAV formed a tailing situation to achieve the termination conditions of the simulation 

and achieved victory in the air combat. 

The roll, pitch, and yaw rate curves under the body axis system are shown in Figure 

10 (c), and it can be seen that the p change in the UCAV is more intense, while the p change 

in the adversary aircraft is more gentle, which indicates that the UCAV has a drastic 

change in roll while the adversary aircraft is continuously performing a right-handed cir-

cling with a small change in roll. 

In Figure 10d, the initial speed of the UCAV is the same as that of the adversary air-

craft, but the speed of the UCAV increases significantly due to the large drop in altitude. 

In addition, the UCAV initially flies flat, so the angle of attack is small, and then the angle 

of attack increases after the turn. The UCAV side-slip angle is maintained at a size of less 

than 0.2 degrees. 
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In Figure 10e, since the speed of the UCAV increases significantly when it is circling 

downward, it is obvious that the normal overload is larger than that of the adversary air-

craft at a similar angle of attack to the adversary aircraft, which reaches about 10 g. This 

phenomenon is that the aerodynamic lift receives double the effect of speed and angle of 

attack, so the overload increases when the speed increases. 

  
(a) 3D trajectory of UCAV and adversary aircraft. (b) Change in situation value. 

  
(c) Body-axis roll, pitch, and yaw angular rates. (d) Velocity, attack angle, and sideslip angle curves. 

 
(e) Load factor in x-, y-, and z-axis direction. 

Figure 10. Scenario: Initial dominant situation simulation results. 
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5.3. Initial Parallel Neutral Situation 

Under the initial parallel neutral situation, the adversary aircraft and the UCAV are 

relatively close to each other and are in the same flight direction. The UCAV adopts the 

SADE algorithm and the adversary aircraft adopts the min–max search algorithm. The 

simulation results are shown in Figure 11, where Figure 11a is the 3D trajectory figure, 

from which it can be seen that the adversary aircraft and the UCAV initially take a similar 

maneuver, producing two crossovers. It is reflected in Figure 11b that there are two steep 

decreases in the situation value, which is due to the close distance, so the value of the 

distance situation suddenly changes to 0. Then the UCAV and the adversary aircraft did 

a descending circle to the right and to the left, respectively; because the UCAV descended 

faster and with a larger speed, it had a larger turning radius and fell into a situation of 

disadvantage. Then the adversary did a right turn and climb maneuver, and the UCAV 

did a combat turn maneuver, thus turning the situation into an advantage. From the tra-

jectory, it can be seen that both the adversary and the UCAV performed complex maneu-

vers, which reflects the strong decision-making ability of both the adversary and the 

UCAV. 

Figure 11c shows the angular rate variation curves. The values of body axis roll 

and yaw rate fluctuate around zero. The adversary and UCAV velocity changes in 

Figure 11d are similar, with the UCAV having a larger velocity due to a larger drop 

in altitude in the middle section. The initial angle of attack is larger for the adversary 

aircraft, so the initial overload is higher for the adversary aircraft, as shown in Figure 

11e. 

  
(a) 3D trajectory of UCAV and adversary aircraft. (b) Change in situation value. 
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(c) Body-axis roll, pitch, and yaw angular rates. (d) Velocity, attack angle, and sideslip angle curves. 

 
(e) Load factor in x-, y-, and z-axis direction. 

Figure 11. Scenario: Initial parallel neutral situation simulation results. 

5.4. Initial Disadvantaged Situation 

Under the initial disadvantaged situation condition, the initial UCAV is in the situa-

tion of being trailed by the adversary aircraft, the UCAV is in the same heading as the 

adversary aircraft, and the UCAV is in the right front of the adversary aircraft. The UCAV 

adopts the SADE algorithm, and the adversary aircraft adopts the random search method. 

The simulation results obtained are shown in Figure 12, where Figure 12a is the 3D trajec-

tory figure. As can be seen from Figure 12a, firstly, the UCAV adopts left turn circling 

descent to get rid of the situation disadvantage, and the adversary aircraft adopts right 

turn firstly in order to close the distance, and then it also adopts left turn circling descent 

maneuver, but then the UCAV quickly adopts right turn maneuver so as to form a single 

loop with the adversary aircraft. In the end, the UCAV, due to its smaller speed and 

smaller turning radius, gained the situation advantage, formed a tail chase, reached the 

termination conditions of the simulation, and won the air battle. 

As can be seen in Figure 12b, the UCAV situation values are steadily increasing. In 

Figure 12c, the body axis system roll rate changes dramatically. In Figure 12d, the initial 

speed of the UCAV is the same as that of the adversary aircraft, but after that, the UCAV 

speed is less than that of the adversary aircraft, so it has a smaller turning radius and gains 

a situation advantage. In the first half of the confrontation, the angle of attack of the UCAV 

is relatively large, which is because the initial UCAV situation is at a disadvantage, and 

the rapid increase in overload can get rid of the disadvantage. In Figure 12e, the maximum 

overload during the confrontation can reach 8g, reflecting the intensity of the confronta-

tion. 
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(a) 3D trajectory of UCAV and adversary aircraft. (b) Change in situation value. 

  
(c) Body-axis roll, pitch, and yaw angular rates. (d) Velocity, attack angle, and sideslip angle curves. 

 
(e) Load factor in x-, y-, and z-axis direction. 

Figure 12. Scenario: Initial disadvantaged situation simulation results. 

5.5. Simulation Statistics 

In order to fairly evaluate the performance of the algorithms, 100 simulations of each 

algorithm were conducted in each initial situation, and the results were categorized as 

win, fail, and neutral. The results are judged as win when the UCAV reaches the termina-

tion condition or the adversary aircraft crashes, fail when the adversary aircraft reaches 

the termination condition or the UCAV crashes, and neutral when the simulation max 

time is reached with no loss on either side. 

In the four initial situations of head-on neutral, dominant, parallel neutral, and dis-

advantaged situations, the blue aircraft used LSHADE, original DE, min–max search, and 
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random search algorithms, respectively, and the red aircraft used the different algorithms 

from the blue aircraft. The win ratio in the figure is calculated from the perspective of the 

red side. The results are shown in Figure 13. 

In Figure 13, the SADE algorithm achieves more than a 53% win rate in all four initial 

situation conditions. Due to the randomness of intelligent optimization algorithms, the 

SADE algorithm cannot achieve victory in every game, but it can significantly improve 

the win rate. The LSHADE algorithm and the original DE algorithm also show a compet-

itive performance, and the min–max search algorithm performs similarly to the LSHADE 

algorithm, but it takes longer. The random search algorithm is inferior to other algorithms 

due to the randomness of the search, and it has a low win rate under initial dominance 

conditions. 

 

Figure 13. Monte Carlo simulation results for four scenarios. 

6. Conclusions 

In this paper, a hierarchical maneuver decision and control framework based on a 

surrogate-assisted differential evolutionary algorithm is proposed which divides the air 

combat maneuver decision process into a decision planning layer and a tracking control 

layer. In the decision planning layer, the maneuver decision problem is transformed into 

an optimization problem, and SADE is used to obtain a high-quality planning trajectory 

under the condition of a limited number of real fitness evaluations. In the tracking control 

layer, a nonlinear dynamic inverse tracking control method is used to track the planning 

trajectory and realize the high-precision control of a 6DOF vehicle. Simulation results 

show that in the tracking control layer, compared to the traditional PID algorithm, the 

nonlinear dynamic inverse control algorithm tracks the planning trajectory with less error 

and higher accuracy. In the decision planning layer, the SADE algorithm has strong search 

capability and decision accuracy and can effectively drive the UCAV to obtain the air 

combat victory in head-on neutral, dominant, parallel neutral, and disadvantaged situa-

tions, which can effectively improve the air combat victory rate compared to the tradi-

tional min–max search algorithm and random search algorithm. 

This paper’s method is applicable to airplanes with different aerodynamic coeffi-

cients, while existing deep reinforcement learning methods need to be retrained for each 

different airplane, which is an advantage of this paper’s method. The main disadvantages 

of this paper’s method are that the algorithm’s decision-making capability is limited by 

the situation function. 

In future work, missiles will be added to participate in the confrontation. The method 

of this paper can be considered as an adversary of reinforcement learning methods for 

training purposes. Eventually, the algorithms of this paper will be applied to real outfield 

aircraft and experiments will be conducted. 
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Nomenclature 

UCAV Unmanned combat aerial vehicle 

DOF Degrees of freedom 

NDI Nonlinear dynamic inversion 

RBF Radial basis functions 

GORS-SSLPSO 
Generation-based optimal restart strategy for surrogate-assisted social learn-

ing particle swarm optimization algorithm 

FSAPSO Fast surrogate-assisted particle swarm optimization algorithm 

MPA Marine predators algorithm 

SADE Surrogate-assisted differential evolution algorithm 

DE Differential evolution algorithm 

LSHADE-RSP LSHADE algorithm with rank-based selective pressure strategy 

LSHADE Large population size reduction SHADE algorithm 
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