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Abstract: A wide variety of coating methods and materials are available for different coating
applications with a common purpose of protecting a part or structure exposed to mechanical or
chemical damage. A benefit of this protective function is to decrease manufacturing cost since
fabrication of new parts is not needed. Available coating materials include hard and stiff metallic
alloys, ceramics, bio-glasses, polymers, and engineered plastic materials, giving designers a variety
freedom of choices for durable protection. To date, numerous processes such as physical/chemical
vapor deposition, micro-arc oxidation, sol–gel, thermal spraying, and electrodeposition processes
have been introduced and investigated. Although each of these processes provides advantages, there
are always drawbacks limiting their application. However, there are many solutions to overcome
deficiencies of coating techniques by using the benefits of each process in a multi-method coating.
In this article, these coating methods are categorized, and compared. By developing more advanced
coating techniques and materials it is possible to enhance the qualities of protection in the future.
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1. Introduction

Mechanical parts and structures are designed for specific applications. Prior to fabricating these
parts, some extensive material selection constraints have to be met. These constraints include body
materials, mechanical properties (e.g., tension, compression, yield, torsion, fatigue, bending, and creep),
desired functionality (e.g., friction properties, hydrophobicity, wear resistance), thermal properties
(e.g., thermal expansion and conductivity to transfer heat flux), electrical conductivity, dynamic load
bearing (e.g., vibrations, high-speed rotation), and corrosion resistance. In addition, other parameters
such as availability, cost of materials, safety, and toxicity of these materials must be considered.
The latter category plays an important role in finalizing the material selection processes in advance to
manufacturing mechanical parts and structures. For instance, silver is known to offer high electrical
conductivity values, but fabricating a huge bulk of silver for electrical conductivity applications is too
costly [1]. NiTi alloys are well-known for showing the shape memory effect (SME) and superelasticity
(SE), which are useful in designing new actuators. Moreover, these alloys provide high biocompatibility
as they are used as bone implants that could be combined with SME, SE, or both, to develop new
biomedical devices for micro-surgeries inside the human body. However, the corrosion process of NiTi
in physiological environments releases Ni ions as byproducts, which are a toxic and harmful category
of materials for living organs [2]. Copper is a material with high thermal and electrical conductivity
with many applications such as brazing advanced materials; however, it suffers from low stiffness
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and wear resistance. In the case of copper rotary cooling fins, the durability of the mechanical parts
decreases significantly due to the high susceptibility of copper to wear mechanism [3]. To overcome
these issues and to enhance material properties for specific applications, there have been different
methods offered, such as heat treatment, alloying processes, and coatings. Among these solutions,
coating processes have the highest portion of material enhancement since coating layers can reduce
the cost and neglect scarcity of materials as the thickness of coating layers rarely pass micrometers.
This means less material is needed to form coating layers on a bulk of substrate materials. Coatings
can offer different properties such as corrosion/wear resistance, enhanced surface hardness, modified
surface texture, thermal/electrical insulation, enhanced wettability, hydrophobicity, etc. [4].

Coating methods are available in a wide variety due to the enormous diversity of applications
and needs in different fields. These processes consist of many different on-line/off-line parameters
while giving way to many different outcomes in the form of material microstructure, effectiveness,
suitability, and durability. However, coating methods are useful in specific applications according
to the desired functionality among which corrosion and wear protection are the most important [5].
Mechanical properties of the materials decrease by corrosion process whereas the corrosion products
are released in different forms that may cause a more extreme corrosive environment or harmful
side effects in different applications [6]. Coating materials have deferent deposition mechanisms
that needs to be investigated for the revelation of their pros and cons for the desired application.
There are many processes available, but only a few are among the most effective and applicable,
including physical vapor deposition (PVD), chemical vapor deposition (CVD), micro-arc oxidation
(MAO), sol–gel, thermal spray, and polymer coatings. Each of these methods is suitable for different
applications as they offer different deposition methods, different materials, second phases, different
thicknesses, and densities. As a result, mechanical stability, corrosion properties, biocompatibility (for
biomedical applications), and enhancement of material behavior for a specific type of coating have to
be considered carefully [7]. Although coating processes are applied to provide the abovementioned
benefits, they suffer from disadvantages that degrade their reliability. Of these adverse effects, negative
thermal effects (e.g., distortion, crack, delamination, etc.), destructive effects of loose atmospheric
protection (e.g., penetration of inclusions and contaminations into the substrate) and coating materials
properties (e.g., melting point, availability in different forms of foils/powders/rods, biocompatibility,
etc.,) are the most crucial ones to be considered.

Materials selection is the key parameter in having a successful coating as they provide all
protection purposes. Many different materials, including metals, ceramics, and polymers, can be
used to form a protective layer [8]. However, the diversity of coating processes and material properties
may cause difficulties in choosing the best composition of the deposited layer. To overcome this issue,
the most popular candidates such as Al, Ti, Hf, Zr, Ni, Co, Pt, MgO, ZrO2, Al2O3, Y2O3, BeO, PEEK,
and PTFE must be considered while any probable new candidates should not be neglected. Although
each of the feedstock materials offer corrosion or wear resistance properties, they possess different
melting points, mechanical behavior, and chemical properties. Combined with their availability in
different forms of powders, rods, plates, and wires for specific uses, these parameters keep the material
selection in a narrower range. This review briefly covers common coating methods, materials, and
their surface modification quality whereas there are plenty of other protection processes such as heat
treatment, mechanical treatment, mechanical/chemical finishing, and polishing, which have not been
covered in this review.

2. Reliable Coating Methods

Coating processes provide protection to a specific part or area of a structure exposed to harsh and
corrosive environments in different fields ranging from aerospace and the automotive industry to tiny
biomedical devices and implants inside the human body.
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2.1. Physical Vapor Deposition (PVD) Coating

PVD process is famous for offering corrosion and wear resistance and thin protective films on the
surface of the materials that are exposed to corrosive media, and its applications range from decorative
objects to industrial parts [9]. The advantage of this method is that the mechanical, corrosion, and
aesthetic properties of the coating layers could be adjusted on demand. In general, PVD is a process
that takes place in a high vacuum and the solid/liquid materials transfer to a vapor phase followed by
a metal vapor condensation, which creates a solid and dense film. The most known types of PVD are
sputtering and evaporation. Since the coating layers created by PVD are thin in nature, there is always
a need for multilayered coatings while the materials selection should be considered carefully. Apart
from its decorative applications, many PVD-coated parts serve as components that undergo a high rate
of wear that causes abrasion on the surface and removes the coating layer. This phenomenon reduces
corrosion resistance properties of the parts and makes them more susceptible to a corrosive media.
Figure 1 represents a schematic view of different types of electron beam PVD machines. In this method,
the coating growth is dominated by a physical evaporation process. The thermal energy needed for
evaporation may be supplied by different supply units, such as electron beam, heating wire, laser
beam, molecular beam, etc. [10]. This thermal energy heats the atoms of the source material, which
can be in the form of solid or liquid, to its evaporation point. The vaporized atoms travel a distance
through the vacuum and deposit onto the substrate.
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Figure 1. Schematic view of a physical vapor deposition (PVD) machine using electron beam as the
heat source.

In different studies, the material composition of PVD coatings was investigated and they claimed
that the base material of the coating significantly affected corrosion properties of the coated parts.
As an example, Mathew et al. [11] investigated the corrosion properties of two different compositions
of single-layered Ti-based (TiCxOy) and Zr-based (ZrCxOy) coating layers. They claimed that the
Ti-based group provides better corrosion resistance compared to the Zr-based, one and in the Ti-based
group, the highest corrosion enhancement was provided by samples with 0.55–0.79 fractions of oxygen
in the coating composition. In other research related to the food industry by Damborenea et al. [10],
the effect of the acidic environment of artificial casings in an acidic range of 1–3 pH was investigated.
They reported that the PVD coating of TiN on the surface of stainless-steel equipment increased
corrosion resistance and protected the equipment from corrosion failure for a significantly longer time.
In addition to material selection for PVD coating compositions, many researchers investigated the
effect of coating quality, porosity, and adhesion on different substrates such as stainless steel, Ti-based
alloys, and ceramics [12–15]. In summary, PVD coating can be utilized in many applications such
as aerospace, automotive, biomedical instruments, optics, and firearms. It provides the advantage
of flexibility in using any organic and inorganic material as a deposition layer while the coating
layer offers high hardness and corrosion resistance [16]. The PVD process for polymeric materials
is challenging since the deposition leads to degradation of the polymer that reduces the molecular
weight of the film. PVD has been used for polyethylene (PE), polyvinylidene fluoride (PVDF), and



J. Manuf. Mater. Process. 2019, 3, 28 4 of 22

conductive π-conjugated polymers such as poly(2,5-thienylene) (PTh), and poly(pyridine-2-5-diyl)
(PPy) [17,18].

2.2. Chemical Vapor Deposition (CVD) Coating

Another type of vapor deposition is called CVD. This process undergoes a high vacuum and
is widely used in the semiconductors industry providing a solid, high quality, and a high resistance
coating layer on any substrate [19–22]. CVD can be used for mechanical parts in constant contact,
which need protection against corrosion and wear. In this process, the substrate, known as a wafer,
would be exposed to a set of volatile material precursors where a chemical reaction creates a deposition
layer on the surface of the material. However, some byproducts of these chemical reactions, which are
removed by constant airflow of the vacuum pump, can remain in the chamber. A schematic of the
CVD setup is shown in Figure 2. The vaporized CVD materials are pumped from the right side and
the heaters keep the temperature high enough to facilitate the chemical reaction between the substrate
and vaporized materials.
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CVD technique provides a wide selection of materials in different compositions and forms
such as carbides, nitrides, oxynitrides, a composition of Si with O and Ge, carbon in forms of
fluorocarbons, diamond, polymers, graphene, fibers/nanofibers/nanotubes, Ti, and W. In addition,
these materials could be provided in different microstructures such as monocrystalline, polycrystalline,
and amorphous [24,25]. Moreover, CVD of polymers has been shown to be a reliable process in
applications such as biomedical device implants, circuit boards, and durable lubricious coatings [26].
CVD process performs in three different categories of atmospheric pressure CVD, low-pressure CVD,
and ultra-high vacuum CVD, and the last two methods are the most common ones [27]. There are
many other classifications related to the CVD process based on substrate heating, material properties,
and types of plasma utilized in vaporizing the materials. These second-hand categories often include
aerosol-assisted CVD, direct liquid injection CVD, plasma-enhanced CVD, microwave-plasma-assisted
CVD, hybrid physical-chemical CVD, and photo-assisted CVD [28,29]. There are arguments on the
advantages and disadvantages of CVD over PVD based on the applications. In the CVD process,
the substrate is heated up to 900 °C, which cannot be used for temperature-sensitive materials. PVD
provides a solution for materials of this kind. On the other hand, CVD has the advantage of less
waste of materials since only the heated area can be coated. In order to enhance this capability,
computer-controlled lasers could be utilized to selectively heat the preferred areas [30,31].

2.3. Micro-Arc Oxidation (MAO) Coating

MAO process is known as a flexible process of coating regarding the composition of coating
layers. The schematic of the process is illustrated in Figure 3. In general, MAO utilizes a high voltage
difference between anode and cathode to generate micro-arcs as plasma channels. When these arcs hit
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the substrate, they melt a portion of the surface, depending on the intensity of the micro-arcs. At the
same time, plasma channels release their pressure, which assists the deposition of coating materials in
the working electrolyte on the substrate surface. The existing oxygen inside the electrolyte causes a
chemical reaction of oxidation and provides oxides deposited on the surface of the substrate materials.
The versatility of this process lies in the flexibility of combining desired elements and compounds
as a solute in the working electrolyte. To date, the materials most commonly coated with MAO are
Al, Mg, Ti, and their alloys [32]. High corrosion resistance is the most important characteristic of
a MAO-treated layer. In addition, being a porous structure, this coating layer provides high bone
ingrowth while formed on biomedical implants and fixations [33].
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Advantages of MAO can be a coating surface with high hardness and adherence properties while
it has different scales of porosity throughout its structure. This type of multi-structural nature comes
from the coating itself. Figure 4 illustrates a MAO-treated surface under different frequencies resulting
in porous structures with different porosities. At the first steps of coating, a solid layer of metallic oxides
covers the substrate called barrier inner layer. The porous structure is created on top of this layer during
the next steps of coating with a reported thickness of up to 100 µm [34]. This porous structure is the
reason for increased surface adhesion in bio applications. The parameters affecting the coating quality
are voltage, current density, electrolyte type, process time, pulsate current, and current type, i.e., AC
or DC [35,36]. However, many researchers utilized different process parameter ranges and it has been
claimed that in all the studies, corrosion properties of the coated samples improved while metallic ion
release decreased significantly [37–39]. The only disadvantage of the MAO process might be its limitation
in substrate materials that are mostly valve metals such as Al, Mg, Ti, Zr, Nb, and Ta [35].
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2.4. Electrodeposition Coating

Electrodeposition of materials is considered a type of protection utilizing the deposition of metallic
ions on a substrate. In this process, a difference in potential between anode and cathode poles causes
an ion transfer in the unit cell. After a while, a coating layer forms on the submerged sample by
receiving ions from the other electrode. Extensive studies have been done on popular electrodeposition
materials. The common group of metals that have been intensively studied includes, but is not limited
to, Ni-P, Ni-P/Sn, Ni-P-W, Ag/Pd, Cu/Ag, Cu/Ni, Co/Ag, and Co/Pt [41–43]. According to these
studies, the electrodeposited coatings significantly enhance the corrosion properties of the substrate.
Moreover, this technique has been shown to be promising in producing superhydrophobic polymeric
coatings such as polythiophene [44]. In general, electrodeposition is categorized into two processes
known as electrolytic deposition (ELD) and electrophoretic deposition (EPD), which are discussed
more in the following sections.

2.4.1. Electrolytic Deposition (ELD) Coating

ELD is an electrochemical process employed to form a dense metallic coating with a uniform
thickness distribution on conductive substrates. Substrate and deposition materials are selected as
cathode and anode while placed inside an electrochemical unit cell. Figure 5 illustrates a general
overview of the process. By applying a potential difference between anode and cathode poles,
metallic ions move toward working electrolyte and from there toward the substrate. The deposition
phase requires super-saturation of electrolyte, which occurs due to charging current in the circuit.
In this technique, the concentration of metallic ions of electrolyte remains constant during the coating
process [45]. Although this method is mostly used for decorative and low-corrosion/wear applications,
there have been reports of development of other applications such as optics, electronics, biomedical,
high-temperature, and solid-oxide fuel cells [46,47]. By further increasing the potential difference
in electrolytic unit cells, ceramic materials can be deposited on metallic substrates that is more
similar to the MAO process. Tian et al. [48] deposited Ni-Co-Al2O3 on steel pipes and reported
a notable enhancement of corrosion of substrate exposed to oil sand slurry. Yang et al. [49] deposited
Ni-Co-SiC on carbon steel pipes exposed to oil sand slurry and reported significant corrosion and
erosion-enhanced corrosion resistance. The same results were reported by Fayomi et al. [50] on
a Zn-Ni-Al2O3-coated mild steel substrate. In addition, Redondo et al. [51] deposited a corrosion
resistant polypyrrole (PPy) coating on a copper substrate from a dihydrogen phosphate solution.
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2.4.2. Electrophoretic Deposition (EPD) Coating

EPD is another form of electrodeposition that provides thicker coating layers with a colloidal
nature. Using an electric field in a unit cell, similar to that of ELD, thin films form on substrates by
coagulation of colloidal particles. EPD is a multi-phase technique, in which:
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1. External electric field forces suspended particles in electrolyte toward one electrode
called electrophoresis.

2. The moving particles gather in one electrode and form a larger coagulated particle.
3. The larger particles deposit on the surface of the electrode, which is a to-be-coated substrate.

Finally, a thick coating layer will be created on the substrate having a powder-shaped structure.
Figure 6 represents a schematic of the working mechanism of the EPD process. Densification processes
(e.g., furnace curing, light curing, sintering, etc.,) are recommended to increase the quality of the
protective layer. Up to now, numerous applications have been introduced for EPD that include
coating, selective deposition, graded material deposition, porous structure deposition, and biomedical
applications [53,54]. The materials used in EPD are commonly borides, carbides, oxides, phosphates,
and metals [53,55]. Castro et al. [56] reported fabricating corrosion resistant coatings by sol–gel and
EPD on stainless-steel AISI 304 and reported two and four times increases in corrosion resistance for
each of these processes, respectively. In another study by Gebhart et al. [57], an AISI 316 L stainless
steel was coated with chitosan for biomedical applications. They reported positive effects of this
coating on corrosion behavior of the substrate. They also asserted that the applied electric field in
EPD is the key factor in controlling coating features, such as hydrophobicity, thickness, and structure.
TC4 Ti-alloy orthopedic implants were coated by graphene by Chen et al. [58]. They reported that the
graphene-coated artificial joint implants show a considerable increase in life span. They found that
the reason any corrosion on substrates occurred was micro-cracks in coating surfaces. Fei et al. [59]
studied the wear resistance of EPD coatings and successfully deposited SiC particles on paper-based
friction materials and achieved an excellent wear enhancement of this material. Table 1 summarizes
ELD and EPD processes regarding their characteristics and components.
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Table 1. Characteristics of electrodeposition techniques [61].

Property ELD EPD

Coating elements Ions Solid particles
Surface charge Medium High

Preferred electrolyte Water Organic
Ionic electrolytic strength High Low
Electrolytic conductivity High Low

Approximate rate of deposition 0.1 µm/min 1000 µm/min
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2.5. Sol–gel Coating

Sol–gel coating is one of the most successful coating processes of biomedical devices. The wide
range of investigations on this process and its applications can ease the setup and performance
of experiments while keeping the outcomes reliable [62]. On the other hand, sol–gel is capable of
enhancing previously existing coating layers from corrosion and ion release point of view. Due to its
liquid-permeating nature, sol–gel can easily seal porous coating structures or damaged layers. Calcium
phosphorous (CaP) precursors dissolved in ethanol/distilled water are used to make the solution
called as Sol. In order to make a gel phase out of the solution, the prepared mixture undergoes heating
at different temperatures to facilitate the aqueous portion of the solution and increase the viscosity
to the desired level. This phase, which transforms it from a liquid solution to a gel phase, is where
sol–gel gets its name. After preparation, the parts or devices are dipped in the sol–gel medium at a
constant and controlled speed. This process may be repeated to achieve a multilayered coating or
thicker coating of the same material. In addition, the coated samples can be baked to dry out faster or
to provide intentional dehydrating cracks on the surface of the coating layer for next processing steps.
Figure 7 represents a schematic of an example of a sol–gel coating process.
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Figure 7. Schematic sol–gel coating process from solution preparation to the final solid
structure formation.

Advantages of the sol–gel process include high adhesion of the coating layer, ability to coat
complex geometries, flexibility in the composition of the coating layer, and lower cost than other
similar coating processes. Additionally, there is no need to have a conductive material as a substrate
as there is no extreme heating or vacuum applied to the parts meaning that the substrate will be
virtually untouched during the coating process. Sol–gel coating is done in different forms such
as dip-coating, spraying, and spinning [63,64]. Figure 8 shows a sol–gel deposited coating layer
with a rough and porous microstructure. One disadvantage of this process could be that a constant
speed of dipping and withdrawing is needed to maintain a uniform thickness of coating throughout
the substrate surface. There is also always a possibility of coating failure during heat treatment
on multilayered coating structures. Sol–gel coating for industrial applications is considered a slow
process and is not cost effective in high production rates [65]. All these being said, the sol–gel process
performs well when it comes to protecting a substrate against corrosion and decreasing ion release,
as reported in many scientific studies [66,67]. Moreover, in a study by Faustini, et al. [68], models were
proposed in order to explain and predict sol–gel behavior and the effect of dipping/withdrawing
steps on the final quality of the coating layer. Likewise, many other studies investigated and proposed
continuum-based/numerical models that could be implemented in predicting sol–gel mechanisms
during the process and characteristics of the coating layers [69–73]. Hybrid network materials were
generated using sol–gel process when either organic moieties or polymeric categories chemically
bonded to an inorganic component. The chemical bond between the organic and inorganic network
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can be addressed through introducing functional groups into the polymeric part by silane, silanol,
etc., using pre-introduced functional groups in the polymer, and exploiting alkoxysilanes precursors.
Poly(dimethylsiloxane) (PDMS), poly(ether ketone) (PEK), and polycarbonate are among numerous
polymeric materials that have been used in the sol–gel process [74–77].
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Figure 8. SEM of sol–gel-deposited CaP microstructure in different magnifications of the same area [78].

2.6. Thermal Spray Coating

Thermal spray coating is a general term for a series of processes that utilize a plasma, electric,
or chemical combustion heat source to melt a set of designed materials and spray the melt on the
surface in order to produce a protective layer. These are reliable types of corrosion- and wear-resistant
coatings. In this process, a heat source, which is mostly provided by chemical combustion or plasma
discharge, heats up the materials to a molten or semi-solid phase and sprays them on the substrate
with a high speed of a jet. The thickness achieved in thermal spray coating techniques can range from
20 µm to several millimeters which is significantly higher than the thickness offered by electroplating,
CVD, or PVD processes [79]. In addition, the materials that can be used as feedstock of thermal
spray coatings range from refractory metals and metallic alloys to ceramics, plastics, and composites
and can easily cover a relatively high surface area of a substrate [79]. Thermal spray coatings are
categorized into different types based on their characteristics and process specifications. The most
popular categories are plasma, detonation, warm/cold, high-velocity air fuel (HVAF), high-velocity
oxyfuel (HVOF), flame, and wire arc spraying [80,81].

2.6.1. High-Velocity Oxy-Fuel Coating (HVOF)

Figure 9a represents an HVOF coating process in a schematic format. A mix of fuel, such as
acetylene, propane, methane, hydrogen, or natural gas, and oxygen in gas or liquid phase undergo
continuous combustion in a designed combustion chamber to provide a high-pressure steam of hot
gas. The combustion chamber releases the combustion products into a nozzle to create a spray with a
speed of more than 1000 m/s [82]. After combustion, coating materials in powder form are injected
inside this hot jet stream to get partially melted accelerated while they are leaving the nozzle tip.
The hot jet pushes the semisolid particles against the substrate and creates a coating layer with varying
thicknesses up to several millimeters. The advantage of this process is that the coating layer has a
high density and adheres to the substrate well, while it is able to utilize coating materials such as
hydroxyapatite (HA), W, Cr, Al, Zr, and their oxides/carbides or polymeric materials such as nylon
11/silica nanocomposites to deposit corrosion- and wear-resistant layers [83,84]. Figure 9b represents
a multilayer coating provided by HVOF. The coating layer could be performed on non-conductive
materials such as polymers and ceramics that are able to undergo high velocity and temperature of
the jet stream and the particle [85]. To date, many researchers have investigated corrosion and wear
resistance of HVOF coatings in various applications and corrosive environments. Based on these
studies, coating layers made by this technique served well and improved corrosion-wear properties of
substrates [86–88]. A summary of these studies is listed in Table 2.
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Figure 9. (a) Schematic setup of a high-velocity oxy-fuel (HVOF) coating system [89] and (b)
cross-section SEM micrograph of HVOF-sprayed multilayer coating on Al7075-T7351 plates [87].

Table 2. Electrochemical corrosion measurements of different coating composition provided by
HVOF [90].

Coating Composition Corrosion Rate (mm/y)

0.1M NaOH 0.1M H2SO4 Sea Water

WC−Cr3C2−Ni 0.38 0.15 −
Cr3C2−NiCr 0.17 0.077 −

WC−Co − − 0.76
WC−Co−Cr − − 0.32

Cr2O3−Al2O3−TiO2 3.2 ×10−5 3.6 ×10−5 −
Cr2O3 7.6 ×10−3 1.5 ×10−3 −

2.6.2. Plasma Spray Coating

Figure 10 illustrates a schematic view of a plasma spray coating setup. This process can be done
under vacuum or atmospheric conditions. In this process, a plasma gun provides a high-temperature
DC/induction plasma (up to 10000 K), which can easily melt refractory metals, ceramics, and polymers.
The materials used in the stabilization of plasma can be gas, water, or a mixture of these two, known
as hybrid plasma. The materials to be deposited are fed into this hot plasma stream and the high
temperature melts the feedstock. Due to the high speed of plasma at the tip of a converging nozzle, the
molten droplets are deposited instantly on the substrate against the coating setup. The flexibility of this
process facilitates the utilization of different types of feedstock such as powder, slurry, suspensions,
and liquids [91]. The resulting coating layer has a high corrosion and wear resistance and it is able
to adhere to the substrate due to surface tension and high temperature. A significant corrosion- and
wear-resistance enhancement was reported in many studies on different materials such as chromium
oxide and NiCr alloys [92,93]. Plasma sprayed coating of polymers, especially PEEK, have been
implemented for corrosion protection of metal substrates (nylon, PVDF), antistick coatings of papers
and rollers, plastic moldings, wear-resistant coatings, moisture protection materials, and electrical
barrier coatings [94]. On the other hand, vacuum plasma spraying is a low-temperature process and is
mostly used for materials that cannot perform reactions in atmospheric pressure to modify the surface
of the substrate. The most popular application of vacuum plasma spraying is the surface modification
of engineering polymers and plastics, rubbers, metals, and fibers [95]. In this process, a material can
go through cross-linking, friction decrease, adherence increase, etc. [95–97].
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Figure 10. Schematic plasma spray coating setup and its parts [98].

2.6.3. Cold Spray Coating

Cold spray coating is a technique that relies on impact and solid mechanics of particles. Unlike
HVOF and plasma spray coating methods, this process does not utilize a heat source to perform coating
on substrates. The general working mechanism of cold spray coating depends on particle size, the
temperature of the target, material properties of coating particles, and a critical velocity [99]. Powder
materials are fed to a stream of high-velocity mediums (helium and nitrogen) to achieve the desired
kinetic energy. After particle-substrate impacts take place, this energy deforms the particles and bond
them to the substrate. Another mechanism of this process can be penetration of the particles inside the
substrate. Using a high flow rate of accelerated particles, the surface is coated with desired materials.
The most-used powder materials consist of a wide range of plastics, metals, ceramics, composites,
and metallic alloys [100,101]. In addition, the most-studied substrate materials include soft metals
such as Al and Cu, while in literature, the coating of some hard materials such as W and Ti has been
reported [102,103]. In some studies, the temperature of the accelerating medium has been increased in
order to enhance process efficiency [104]. Although this process is simple and cheap compared to the
other thermal spray methods, the operation range is very limited. Figure 11 shows SEM micrographs
of cold spray-treated surfaces and a schematic view of cold spray coating process.
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2.6.4. Warm Spray Coating

Figure 12 (left) shows a schematic representation of the warm spray coating method. As stated
about cold spray coating, low working temperature decreases efficiency and reliability of thermal spray
coating methods. However, high temperatures melt feedstock and introduce new chemical reactions,
which may cause oxidation or change of properties due to extreme heating of particles and substrates.
In order to overcome this problem, a new technique was introduced as a warm spray coating. This is
a modification of HVOF coating that enjoys reduced temperature in the combustion chamber by
introducing nitrogen to the fluid mixture. As a result, this method is categorized somewhere between
cold spray coating and HVOF coating and provides a high efficiency of the coating process [107].
However, as reported in the literature, the achieved coating layer contains many impurities relative to
the other two processes due to low temperature and existence of oxygen in the accelerating stream.
These porosities and oxide phases are illustrated in Figure 12 (right). Advantages of using this
process rise in the coating of materials, which are sensitive to oxidization in high temperatures or
the materials that cannot withstand high working temperatures such as bio-metal-glasses, Ti and its
alloys, engineering plastics, and polymers such as PEEK [108,109]. Cold/warm spray coatings are
not used for extremely harsh environments, however many research studies investigated corrosion
properties of this type of coating on different materials such as Ti, bio-metal-glasses, WC-Co cermet,
etc., under different corrosion conditions and they claimed an enhancement in corrosion resistance of
substrates [110,111].

2.6.5. Arc Wire Spray Coating

Another type of thermal spray coating technique is called arc wire spray coating (Figure 13a).
In this process, two consumable metallic wires, which are charged with a DC supply, generate an
arc between them resulting in a melting process of the feeding wires. The products of this melting
process are then pumped out of a converging nozzle tip toward the target with the supplied pressure
of compressed gas. Although the flexibility of this process allows for the use of many metallic alloys as
coating layers, this process is limited to conductive wires and materials. In order to solve this issue,
a modified version of arc wire plasma was introduced having one consumable wire, which makes an
arc with a non-consumable metallic cathode [112]. The remaining steps of the process are the same
as the original version. This method is well-known for applications of an internal surface coating
such as engine blocks, etc., that offers a lighter metal as the whole block while the internal surfaces
are coated with a wear- and corrosion-resistant metallic alloy. This flexibility can significantly reduce
production cost. Almost all of the conductive materials such as Al, Zn, Mo, Ni, and other metallic
alloys such as Ni and Ti alloys can be used as feedstock in this process [79,113]. In addition, utilization
of cored wires is reported in the literature [114]. Figure 13b represents the microstructure of an arc
wire spray-coated substrate. To this point, many of the popular thermal spray coating techniques have
been introduced. However, there is no doubt that other processes could be investigated regarding their
working mechanisms, coating efficiency, coating quality, speed of process, and ease of applications.
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Figure 12. Left: A schematic of warm spray coating technique and its setup [115]. Right: Cross-section
BSE micrographs of warm spray-deposited Ti-6Al-4V on low-carbon steel substrate processes spray
pressure and nitrogen flow rates of (a) 1 MPa and 0.5 m3/min, (b) 1 MPa and 1 m3/min, (c) 1 MPa
and 1.5 m3/min, (d) 4 MPa and 0.5 m3/min, (e) 4 MPa and 1 m3/min, and (f) 4 MPa and 1.5 m3/min,
respectively [116].
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Figure 13. (a) Schematic arc wire spray coating setup and mechanism of operation [117]. (b) SEM
micrograph of arc wire spray-coated surface by Tafa’s steel (95MXC) cored wire feedstock. The substrate
material is not mentioned in Reference [114].

3. Summary

In order to have a successful coating deposition on a substrate, there are several affecting
parameters including deposition materials, substrate materials, feedstock form (powder, wire, rods,
precursors, etc.), and deposition methods. However, the deposition processes are the most important
ones as they deal with chemical alteration of materials and alloying of composition elements in the
coating layer. In addition, based on the characteristics of different feedstock and substrate materials,
one can easily choose the best option for deposition. The processes that are the most successful and the
most investigated deposition means are physical/chemical vapor deposition (PVD/CVD), micro-arc
oxidation (MAO), electrodeposition (i.e., electrolytic deposition (ELD) and electrophoretic deposition
(EPD)), sol–gel, and different types of thermal spraying processes (i.e., HVOF, plasma, cold, warm, and
arc wire spraying). The mentioned processes utilize different mechanisms in order to deposit specific
types of materials on substrates making the material selection important in order to have the highest
efficiency of the coating. Some of the processes use thermal sources to change the state of feedstock
to liquids and semisolids in forms of particles, droplets, and clusters. Some others use the difference
between electrochemical charges between poles and some deposit materials without chemical change
of state. Depending on the substrate materials, feedstock, and means of deposition, the coating layers
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are different in thickness, microstructure, and functionality. In addition, some processes are specific to
metallic feedstocks, which are conductive, while the rest can deposit polymers, ceramics, and metallic
alloys regardless of their physical properties.

In summary, the thermal processes, such as various types of thermal spray coating, implement
high temperatures and high speed of plasma jets in order to have a higher material deposition
rate. In these methods, the high temperatures and high-speed jets allow feedstock deposition and
eliminate the adverse effects of high melting point on ceramics and superalloys. The obtained
coating thicknesses, in these cases, are high (up to several hundred microns). However, the coating
microstructure consists of oxide and carbide inclusions and provides porosity, depending on process
parameters. In the vaporization-based processes, the deposited coating layer is a thin film with
high corrosion/wear-resistance mostly used in tool coating and protection of sliding components
of machines. The coating achieved in these types is a thin solid film with low porosity and high
adherence to the substrate. Micro-arc oxidation is a high-voltage version of anodization, which is
mostly implemented on biomaterials for bone implant and biomedical device applications. In addition,
valve metals (Al, Ti, Zr, Hf, V, Nb) have been extensively used as substrates as well. The coating
structured by MAO offers high substrate/coating adhesion with a porous structure that is crucial
for biomaterial coating as the bone ingrowth increases. The porous microstructure also enhances
the corrosion resistance and facilitates the engineering calculations on the lifetime of the implants,
either degrading fast or staying for a longer time. Sol–gel is another type of material deposition that is
significantly flexible in feedstock composition, and as the process utilizes aqueous solutions as particle
carriers, the complexity of geometry does not affect the coating quality. In addition, sol–gel-deposited
layers are a reliable sealant for porous substrates and coatings in order to increase their corrosion
resistance. Although sol–gel offers high flexibility and capability in coating purposes, the process
is relatively slow and increases the production time. Electrochemical processes are another type of
aqueous deposition methods utilizing the difference between electrochemical charges of anode and
cathode poles of a chemical unit cell. The flexibility in the coating composition and a wide variety of
substrates used in this method make it a reliable deposition process. However, this process suffers
from depending on conductivity properties of substrates (poles) for material deposition as the charges
need to move freely in the circuit.

Although these processes are reliable means of material deposition and surface protection, there
are disadvantages to all of them in different applications. Thus, there have been studies on combining
these techniques in order to benefit from an advantageous point of each process and minimize the
negative effect of each method. The most applicable way of deposition modification and protection
enhancement is known to be multilayered coating deposition. The different layers deposited on top
of the previous ones can have different thicknesses, compositions, and physical/chemical properties.
This consideration has more importance while porous structures or thin films are deposited. As an
instance, a PVD-coated substrate has a thin film with notable corrosion/wear resistance, but a higher
layer thickness can increase the functional lifetime of the coated component. As another example,
the porous microstructure of a MAO-treated surface can be sealed with several layers of sol–gel
deposition in order to decrease the corrosive medium penetration to the substrate and increase its
corrosion resistance while maintaining the porous structure. All being said, in order to have the highest
efficiency and functionality of a protective layer, different aspects need to be considered carefully.
Layer thickness, coating composition, suitability of the deposition technique regarding feedstock and
substrate materials, and physical/chemical properties of the deposited layers are the key features
changing the final protection quality. Table 3 presents a brief overview of the discussed processes and
their features. In addition, pros and cons of covered coating techniques in this review are summarized
in Table 4.
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Table 3. Summary of coating processes and their specific feature.

Deposition Process Source Feedstock Material Substrate Material Coating Thickness (µm) Reference

PVD Physical TiCxOy-ZrCxOy, TiN, PE, PVDF,
PTh

AISI M2 steel, SS, glass, Si,
potassium

bromide(KBr)-carbon-Au-Al,
Ag-Au-Cu-Al

1.2–6.3, 5, 0.2, 0.2, 0.1, 0.1 [10,11,17,18,118]

CVD Chemical

Niobium oxide(Nb2O5),
W-TiN-WSi2-Ta2O5-Cu-SiO2,

polycrystalline Si- Si3N4-SiO2,
PTFE, Ni3Ti

Glass, Si, Si, Kleenex, Ni-Co-Fe 0.05–0.2, -, 0.2–0.6,
0.04–0.1–16 [24,25,119–121]

MAO Electrochemical Hydroxyapatite (HA)/TiO2, PCL
duplex, HA- HA/ZrO2

Ti-6Al-4V, Mg, NiT 10–20, 2–3, 7 [32,34,37]

ELD Electrochemical Ni-Co-Al2O3, Ni-Co-SiC,
Zn-Ni-Al2O3, PPy Steel, carbon steel, mild steel, Cu 50–200, 10–70, -, - [48–51]

EPD Electrochemical
bioactive glass (45S5

BG)-Cu-doped BG, SiO2,
chitosan, grapheme, SiC

AISI 316L SS, AISI 304 SS, AISI
316 L SS, Ti-6Al-4V alloy (TC4),
Aramid-carbon-cellulose fibers

composite

-, 7, 1–6, -, - [56–59,122]

Sol–gel Physical

TiCl4-(tetraethyl orthosilicate)
TEOS- (methyltriethyl

orthosilicate)MTEOS, HA, PDMS,
Polycarbonate

Si, NiTi, stainless steel 0.01–1, 1–4 [62,68,74,123],

HVOF Thermal HA, CoNiCrAlY, WC Ti-6Al-4V, Inconel 738 metal, AISI
4340 SS 70, -, 100 [83,84,124]

Plasma spray Thermal

Al2O3-ZrO2- yttria stabilized
zirconia (YSZ), Metco 447-

Alumina/Titania 87/13- Nicrome
80/20- Hastalloy G30,

TiC-NiCrBSi

SS, steel, AISI 4140 steel -, 0.5–1, - [91,92,96]

Cold spray Physical HA, AA7075, Ni/Al, mixed
Ni/Al/MoO3, and Ni-clad Al Ti-6Al-4V, Al 6061-T6, Al 6061 100–1000, 40–300, - [103,105,106]

Warm spray Physical Zr-Cu12.3Ni7.6-Al3.5, Ti, Ti,
WC-Co 316L SS, steel, steel, carbon steel 400–1000, -, 400, 300 [108,110,111,125]

Arc wire spray Thermal MoS2-TiC-Fe, Ti/Al Carbon steel, SUS 304 1000, - [112,113]
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Table 4. Advantages and disadvantages of reliable coating processes.

Deposition Process Advantages Disadvantages Reference

PVD
Corrosion and wear resistance/thin film deposition is

possible/adjustable mechanical, corrosion and aesthetic
properties

Requires a high vacuum/corrosion resistance is affected
by abrasion/degradation control is challenging for

polymer deposition applications
[9,17,18]

CVD
Corrosion and wear resistance/deposition of various

types of materials with different microstructures/works
with low and atmospheric pressures

Requires ultra-high vacuum/requires heat resistant
substrates/small amount of coating materials waste [24,25,30,31]

MAO
High corrosion resistance and hardness/porous

structure for biomedical applications/different scales of
porosity through the thickness/

Mostly applicable to valve metals [33,35]

ELD Decorative and low-corrosion/wear
applications/high-temperature applications Works for conductive substrates [46,47]

EPD
Various kinds of selective, graded material, and porous

structure depositions/biomedical applications/wear
resistant

Works for conductive substrates [53,54,59]

Sol–gel

Cost effective/biomedical applications/providing
corrosion and ion release protection/multilayered

(thick) coating/high adhesion/ability to coat complex
geometries/flexibility in the composition/no need of

conductive substrates

Thickness control/slow rate of coating cycle/possibility
of coating failure during heat treatment on multilayered

coating structures
[66,67]

HVOF
High density of coating layer and well substrate

adherence/works for non-conductive
substrates/corrosion and wear resistance

Requires a small range of powder size (5–60 µm) with a
narrow size distribution/numerous process variable to

change the coating structure/requires a heat source
[83–88]

Plasma spray

High corrosion and wear resistance/high substrate
adherence/surface modification of engineering
polymers, rubbers, metals, and fibers/anti-stick

coatings

A low-temperature process that is mostly used for
materials that cannot perform reactions in atmospheric
pressure to modify the surface of the substrate/requires

a heat source

[92,93]

Cold spray Simple and cheap method compared to the other
thermal spray methods

Limited operation range/mostly used for soft and hard
metal substrates/low efficiency and reliability due to

low temperatures/not useful extremely harsh
environments

[102,103]

Warm spray Applicable to materials with sensitivity to oxidization at
high temperatures or heat sensitive materials

Impurity complications/not useful extremely harsh
environments [108,109]

Arc wire spray Internal surface coatings such as engine blocks/wear
and corrosion resistant

Limited to conductive wires and materials as the
coating layer [79,113]
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