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Abstract: This paper investigates the quality performance of FDM 3D printed models with thin walls.
The design of experiments method (DOE) was used and nine models of the same size were fabricated
in a low-cost 3D printer using polylactic acid (PLA) material. Two limited studied parameters were
considered (extraction temperature and wall thickness), each one having three levels. External X
and Y dimensions were measured using a micrometer, as well as four surface roughness parameters
(Ra, Rz, Rt, Rsm) with a surface tester. Two optimization techniques (the Taguchi approach and Grey
relational analysis) were utilized along with statistical analysis to examine how the temperature
and wall thickness affect the dimensional accuracy and the surface quality of the parts. The results
showed that high extraction temperature and median wall thickness values optimize both dimensional
accuracy and surface roughness, while temperature is the most important factor.

Keywords: additive manufacturing; FDM; PLA; optimization; extraction temperature; wall thickness;
dimensional accuracy; surface roughness; Taguchi approach; grey relational analysis

1. Introduction

Additive manufacturing is an advanced manufacturing technology in which computer-aided
designs (CAD) are used for the manufacture of three-dimensional (3D) parts by adding material layer
by layer [1]. This method offers the benefit to produce complex parts with shorter cycle time and lower
cost compared to traditional manufacturing processes [2,3]. The AM has found applications in various
fields such as bioengineering, automotive, aerospace and consumer products [4]. Fused filament
fabrication (FFF) or fused deposition modeling (FDM) is a popular type of additive manufacturing
(AM) method [5–7]. In FDM, a thermoplastic material is heated and extruded from a hot nozzle,
which deposits it in a controlled manner on the printing platform to construct an object [8]. The main
advantages of the FDM process are considered to be its simplicity, the high-speed printing, and its low
cost [9,10].

Dimensional accuracy and surface texture of fabricated parts are considered as two of
the main quality indicators in the manufacturing engineering process, especially in AM [11].
Dimensional accuracy refers to the resemblance of a manufactured piece’s actual dimensions to
the original part’s nominal dimensions. Products with better dimensional accuracy can achieve tighter
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tolerances [12]. The surface quality of a manufactured part is characterized by the surface roughness.
Lower surface roughness values indicate better surface texture. Despite the variety of advantages
of AM, two limiting aspects of this technology are the obtainable dimensional accuracy and surface
roughness [13,14]. Many attempts have been made for the identification of the printing parameters
which affect the dimensional accuracy and the surface roughness of FDM printed products.

Alafaghani et al. [15] investigated the effect of four process parameters namely infill percentage,
infill pattern, layer thickness, and extrusion temperature on the mechanical properties and dimensional
accuracy of FDM-printed parts. They used PLA as the printing material and Taguchi’s L9 orthogonal
array as the design of experiments. They found that the lowest values of the extraction temperature,
layer thickness and infill percentage (i.e., 190 ◦C, 0.2 mm and 20% respectively) along with hexagonal
infill pattern minimized the dimensional errors.

Hyndhavi et al. [16] studied the dimensional accuracy of FDM fabricated prototypes with the
use of grey relational analysis. Two printing materials were used (ABS and PLA), while the process
parameters whose influence on dimensional accuracy was analyzed were layer thickness, raster angle
and build orientation. It was concluded that in the case of ABS, 200 µm of layer thickness, 0◦ of raster
angle, and 90◦ of build orientation optimized the dimensional accuracy, while in the case of PLA the
corresponding process parameter levels were 200 µm, 0◦, and 0◦. Raster angle and build orientation
were found to highly influence the dimensional accuracy for both materials. Sood et al. [17] used the
grey Taguchi method to study the impact of layer thickness, part orientation, raster angle, air gap,
and raster width on the dimensional accuracy of PLA printed parts. Taguchi’s L27 orthogonal array
was utilized as the experimental design. The grey relational analysis showed that layer thickness of
0.178 mm, part orientation of 0◦, raster angle of 0◦, road width of 0.4564 mm, and air gap of 0.008 mm
optimize the overall dimensional accuracy. Moreover, it was observed that large numbers of conflicting
parameters, independently or in interaction with others, influence the dimensional errors. Few of them
were found to have more impact compared with others. Moza et al. [18] examined the dimensional
accuracy of parts created with FFF technology. An L9 orthogonal array was used as the design of
experiments, while the process parameters tested were the printing material (PLA and ABS), infill
rate (20%, 50% and 70%), number of shells (1, 2 and 3) and layer height (0.1 mm, 0.2 mm and 0.3 mm).
It was realized that PLA and 20% infill rate gave the best dimensional accuracy, whereas layer height
and number of shells were the most influencing factors. Tsiolikas et al. [19] made a study regarding the
dimensional accuracy of ABS FFF printed models using robust design. Four printing parameters were
analyzed, namely, deposition angle, layer thickness, infill ratio, and infill pattern. It was concluded
that the layer thickness was the dominant parameter.

Mahmood et al. [20] conducted an experimental investigation about the impact variation in the
printing parameter settings of FDM 3D printers on the dimensional accuracy of the printed parts.
A prototype was designed with a variety of geometrical characteristics, while Taguchi’s L27 design
of experiment and statistical analysis were utilized to identify the relationship between the varying
process parameter values. These process parameters were chamber temperature, layer thickness,
extruder temperature, platform temperature, number of shells, infill shell spacing multiplier,
inset distance multiplier, floor/roof thickness, infill pattern, infill density, infill speed, outline speed,
and inset speed. It was found that number of shells, inset distance multiplier, chamber temperature, infill
shell spacing multiplier and infill density were the most affecting printing parameters. Singh et al. [21]
investigated the FDM and CVS (chemical vapor smoothing) process parameters which influence the
linear and radial dimensions of ABS printed parts. The examined FDM process parameter were the
orientation and part density, while the corresponding ones for the CVS were number of cycles and cycle
time. They concluded that orientation, part density, and their interaction have a significant impact on
the dimensional accuracy. Camposeco-Negrete [22] conducted a study regarding the optimization
of three FDM quality indicators, namely processing time, energy consumption of the 3D printer and
dimensional accuracy. Taguchi L27 array was utilized while statistical analysis was employed to
identify the effect of five process parameters (filling pattern, layer thickness, orientation angle, printing



J. Manuf. Mater. Process. 2020, 4, 47 3 of 17

plane, and position of the piece on the printing table’s surface) on the abovementioned indicators.
It was found that in the case of dimensional accuracy, the filling pattern was the dominant factor for
width, while length and the part’s thickness were mainly affected by layer thickness and printing
plane correspondingly. Aslani et al. [23] used the grey Taguchi method to specify the effect of four
printing parameters namely number of shells, printing temperature, infill rate and printing pattern on
dimensional accuracy of FFF printed parts. L9 orthogonal array was utilized as the experimental design
and PLA as the printing material. They realized that the printing temperature (nozzle temperature)
was the dominant factor.

Many studies have examined the surface roughness of parts printed with the use of the FDM
method. Galantucci et al. [24] examined the FDM process parameters’ impact on the surface finish of
ABS printed models. A 23 full factorial array was the experimental design, while the tested printing
parameters were the tip values, raster width, and slice height. It was realized that slice height and raster
width were the dominant factors. Barrios et al. [25] investigated the surface properties (surface finish
and hydrophobic features) of FDM printed parts. An L27 design of experiments with five factors (layer
height, print temperature, print speed, print acceleration and flow rate) and three levels was utilized.
The obtained results showed that the flow rate and the print acceleration were the parameters with the
greatest impact. Anitha et al. [26] studied the influence of three process parameters (layer thickness,
road width and speed deposition) on the surface roughness of prototypes printed with the use of FDM
technology. A 23 experimental design along with statistical analysis were used for this examination.
It was found that layer thickness was the most important factor. Perez et al. [27] conducted a study
regarding the surface quality enhancement of FDM PLA printed samples. Five process parameters,
namely, layer height, printing path, printing speed, temperature, and wall thickness were varied.
They concluded that layer height and wall thickness were the dominant parameters for controlling
surface roughness. When these values increase, surface roughness increases, too, which leads to poor
surface quality. Printing speed and temperature were found to be unimportant for surface roughness.

Various studies have been conducted in order to examine both dimensional accuracy and surface
roughness of FDM printed models. Wang et al. [28] studied the effect of six process parameters (layer
thickness, deposition angle, support style, deposition orientation in Z direction, deposition orientation
in X direction and build location) on the tensile strength, dimension accuracy and surface roughness
of FDM fabricated parts. Taguchi method along with Grey relational analysis were used as the
optimization techniques. The results showed that deposition orientation in Z direction was the most
influential parameter for the dimensional accuracy, whereas layer thickness was the most important
factor for the surface roughness. Moreover, they revealed that the optimal parameter combinations for
all responses were obtained with fewer experiments with the use of the Taguchi method in comparison
with full factorial design. Nancharaiah et al. [29] investigated the dimensional accuracy and surface
roughness of FDM processed parts with the use of Taguchi’s design of experiments and statistical
analysis. This study examined the effect of four process parameters namely layer thickness, road width,
raster angle, and air gap, with three levels for each factor. They concluded that layer thickness and
road width had great impact on both surface roughness and dimensional accuracy. Raster angle was
found to be more important for dimensional accuracy than for surface roughness. Mohamed et al. [30]
reviewed the FDM printing parameters that significantly affect the quality of FDM printed parts. In the
case of surface roughness, layer thickness was found to be the dominant parameter. Subsequently,
lower value of layer thickness and high model temperature lead to smoother surface finish (i.e., lower
surface roughness values). In the case of dimensional accuracy, layer thickness was again the most
important factor along with air gap. Most studies investigate the effect of very specific parameters
such as layer thickness, part orientation, road width, air gap, and raster angle. Sheoran et al. [9]
also did a review regarding the process parameters which influence the mechanical properties and
quality of parts manufactured with FDM technology. They found that one of the most significant
and most analyzed process parameters for dimensional accuracy and surface roughness is layer
thickness. In general, low layer thickness, print speed, and extrusion temperature values optimized
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both dimensional accuracy and surface roughness. However, further investigation is needed for the
identification of the effect of other printing parameters such as the extrusion temperature and infill
density because the influence of these factors (other than layer thickness) on dimensional accuracy
and surface roughness is less investigated or still unknown. In this context, Dey et al. [31] also
explored the FDM process parameters and their settings to identify which of them optimize the
dimensional accuracy and the surface roughness of the products. Some very important conclusions of
this review study are: (i) high dimensional accuracy is achieved with low values of layer thickness,
extrusion temperature and number of shells, (ii) high surface quality can be obtained with low layer
thickness and high extrusion temperature, (iii) factors such as infill pattern, print speed, shell width,
or extrusion temperature are less studied compared to layer thickness, build orientation, raster width,
or raster orientation, and (iv) there are limited studies which optimize multiple parts’ characteristics
simultaneously (multi-objective optimization).

Motivated by all the above literature review, the influence of two limited studied process
parameters, namely extraction temperature and wall thickness on the dimensional accuracy and surface
roughness of FDM printed thin walled parts is investigated. Three levels are considered for each factor
and Taguchi’s L9 orthogonal array is utilized as the experimental design. The printing material used is
PLA. Both Taguchi’s method and grey relational analysis are employed as optimization techniques,
while statistical analysis (analysis of means (ANOM) and analysis of variance (ANOVA)) are used
to identify the process parameters’ impact on the parts’ quality and their optimal levels. To the best
of authors’ knowledge, the multi-objective optimization of the dimensional accuracy and surface
roughness of FDM printed parts in terms of extraction temperature and wall thickness has not been
addressed before. Two previous studies have been conducted regarding the dimensional accuracy and
the surface roughness measurements of these FDM thin walled parts, in which no optimization or
evaluation analysis was done (see [32,33]).

2. Materials and Methods

2.1. Workpiece Preperation, 3D Printer, and Printing Material

In this research, a 3D squared model was created as it can been seen by Figure 1. The part’s
nominal dimensions can be also found in the same figure. This model was designed in AutoCAD 2010
software (AUTODESK Inc, San Rafael CA, US) and it was extracted in STL format. Next, the STL file
was sliced and converted to G-Code with the use of the free “Ultimaker Cura” software. The low cost
“Ultimaker Original” 3D printer was used for the printing of the nine workpieces. This open source 3D
printer manufactured by Ultimaker Ltd. is based on the Replicating Rapid-prototyper technology and
it has been awarded as the fastest and most accurate 3D printer in 2012. Some technical specifications
of the 3D printer are [32,33]:

• Layer resolution: Up to 20 µm
• Build volume: 21 × 21 × 20.5 cm
• Print speed: 30–300 mm/s
• Travel speed: 30–350 mm/s
• Material filament diameter: 2.85 mm
• Nozzle diameter: 0.4 mm
• Operation nozzle temperature: 180–260 ◦C
• Unheated platform
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Figure 1. 3D model design and its nominal dimensions in millimeters (mm).

As it is mentioned above, the printing material used in this investigation is polylactic acid (PLA).
PLA is a thermoplastic polyester material with good processing performance and acceptable mechanical
properties [34,35]. PLA was found to give better dimensional accuracy in comparison with ABS,
which is a commonly used printing material in FDM method [18].

2.2. Selection of the Process Parameters

As it can be by the literature review, the dimensional accuracy and the surface roughness of the
FDM processed parts are strongly influenced by the parameters and their selected levels during the
printing process. The printing parameters whose effect on the dimensional accuracy and surface
roughness that are examined here are the extraction temperature and the wall thickness. Limited studies
exist regarding the impact of these two factors on the dimensional accuracy and surface roughness
(see Section 1). For experimentation, three levels have been determined for each process parameter.
The varied FDM printing parameters and their levels used in this study can been found in Table 1.
These parameters are briefly defined as follows:

• Extraction temperature: It is the temperature that the material is heated inside the nozzle before
extrusion during the printing process. This factor depends upon the type of the thermoplastic
material used. The recommended extraction temperature for PLA is 195–230 ◦C [9,36]. The levels
of this parameter selected in this study is within this recommended range.

• Wall thickness (or shell thickness): It is the thickness of the parts’ walls as it can be seen by Figure 2.
This is the parameter that defines the term “thin walled parts”. It is a geometrical factor which is
rarely considered in studies regarding the quality of parts manufactured with the use of the FDM
technology (see Section 1). The levels of this parameter were selected according to the indication
that the wall thickness should be two times higher than the size of the nozzle extruder (0.4 mm in
our case) [9,37].

Table 1. Selected FDM process parameters and their levels.

Parameters
Levels

1 2 3

Wall Thickness (mm) 1 2 3
Extraction Temperature (◦C) 210 220 230
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Figure 2. The nine printed items. From left to right: (a) First row (1 mm wall): Models 9 (230 ◦C),
8 (220 ◦C), and 7 (210 ◦C), (b) Second row (2 mm wall): Models 6 (230 ◦C), 5 (220 ◦C), and 4 (210 ◦C),
(c) Third row (3 mm wall): Models 3 (230 ◦C), 2 (220 ◦C), and 1 (210 ◦C).

Some other process parameters have kept constant throughout the printing process. The levels of
these parameters have been selected according to the optimized levels proposed by other relevant
studies (see Section 1). These factors are:

• Layer thickness: 0.2 mm [15,16]
• Deposition angle: 0◦ [17]
• Infill density: 20% [18]
• Infill pattern: Grid
• Raster angle: 45◦

• Printing speed: 100 mm/s [9]
• Build orientation: 0◦ [9,16]
• Table temperature 20 ◦C
• Environment temperature 20 ◦C

2.3. Design of Experiments

In this study, the experimental design that is utilized is Taguchi’s orthogonal array. In general,
Taguchi’s design is used by many engineers and researchers in order to conduct experiments with
minimum number of trials [38–41]. It is considered as a simple, efficient, and systematic method for
the optimization of the performance, quality and cost [42]. In Taguchi method, it is mandatory to select
the appropriate orthogonal array in order to derive statistically valid conclusions. As two factors are
examined, each one having three levels, the proper experimental design is Taguchi’s L9 orthogonal
array [43]. This particular experimental design has been used in a variety of investigations regarding
the impact of the FDM process parameters on dimensional accuracy and surface roughness, as it can
been seen in the literature review (Section 1). The L9 array with all the printing parameters and their
levels designed in the study is tabulated in Table 2.
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Table 2. L9 orthogonal array with the process parameters and their levels.

Experiment No. Wall Thickness (mm) Extraction Temperature (◦C)

1 1 210
2 1 220
3 1 230
4 2 210
5 2 220
6 2 230
7 3 210
8 3 220
9 3 230

2.4. Measurement Techniques

All nine components printed in this study were measured in terms of dimensional accuracy and
surface roughness. Three measurements were taken in X and Y direction for every part (see Figure 3) and
their average value was computed. Next, dimensional deviation was derived, which is the difference
between the nominal and the averaged measured values and represents the parts’ dimensional accuracy.
A micrometer with a range of 25–50 mm and 0.01 mm accuracy was utilized for the dimensional
measurements [33]. The dimensional measurements for every part and the direction are presented in
Table 3, while the dimensional calculations are tabulated in Table 4.
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Figure 3. Measurement points for the X and Y directions.

Table 3. Dimensional accuracy measurements.

Experiment
No.

Measured Dimensional Values (mm)

X Direction Y Direction

1 2 3 1 2 3

1 29.91 29.95 29.81 29.96 29.92 29.95
2 29.94 29.90 29.94 29.98 29.96 30.04
3 29.99 29.91 30.00 30.01 30.01 30.04
4 29.91 29.95 29.81 29.96 29.92 29.95
5 29.94 29.90 29.94 29.98 29.96 30.04
6 29.99 29.91 30.00 30.01 30.01 30.04
7 29.85 29.96 29.94 30.04 30.04 30.07
8 29.93 29.85 29.75 30.01 30.00 30.00
9 30.04 30.03 30.04 30.03 30.03 30.07
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Table 4. Dimensional calculations.

Experiment
No.

Averaged Dimensional Values (mm) Dimensional Deviation (mm)

X Direction Y Direction X Direction Y Direction

1 29.89 29.94 −0.110 −0.060
2 29.93 29.99 −0.070 −0.010
3 29.97 30.02 −0.030 0.020
4 29.89 29.94 −0.110 −0.060
5 29.93 29.99 −0.073 −0.001
6 29.97 30.02 −0.030 0.020
7 29.92 30.05 −0.080 0.050
8 29.84 30.00 −0.160 0.000
9 30.04 30.04 0.040 0.040

In the case of surface roughness measurements, a Mitutoyo Surftest SJ-210 roughness tester
was utilized with a “cut off length” of 0.8 mm, along Z axis direction [32]. The four surface texture
parameters measured during this experiment are defined as follows [44]:

• Arithmetic mean surface roughness Ra (µm). It is the arithmetical mean of the absolute values of
the profile deviations from the mean line of the roughness profile.

• Surface roughness depth Rz (µm). It is the mean value of the sum of the height of the highest
profile peak and the depth of the deepest profile valley, relative to the mean line.

• Total height of the roughness profile Rt (µm). The difference between the highest peak and the
deepest valley.

• Arithmetic mean width of profile elements Rsm (µm). It is the mean value of the width of the
profile elements.

All surface roughness measurements can be found in Table 5.

Table 5. Surface roughness measurements.

Experiment No. Ra (µm) Rz (µm) Rt (µm) Rsm (µm)

1 17.00 83.47 123.80 229.73
2 14.66 75.96 103.90 224.10
3 14.08 63.98 68.86 203.10
4 16.48 85.74 85.74 321.00
5 13.04 62.20 83.07 205.46
6 12.84 62.26 69.22 196.73
7 21.77 128.48 74.39 204.30
8 19.49 98.21 145.60 248.50
9 12.98 57.84 65.62 198.50

3. Results

As it is mentioned above, the goal of this study is to optimize the dimensional accuracy and
surface roughness of the FDM printed parts. This is achieved by calculating the process parameter
levels which minimize the absolute values of the dimensional deviation and the surface roughness
parameters. For this reason, two optimization techniques are used, namely the Taguchi approach and
grey relational analysis, along with statistical analysis. All plots were created with the use of Minitab
17 statistical software.

3.1. Taguchi Approach

The Taguchi approach (or Taguchi method) is used to identify the influence of the process
parameters along with their levels on the selected quality responses. In this context, two very
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popular statistical tools are employed namely analysis of means (ANOM) and analysis of variance
(ANOVA). The results from the statistical analysis are utilized to specify the impact of the extraction
temperature and wall thickness on the dimensional deviation in X and Y direction and the surface
roughness parameters.

According to the ANOM calculations (Table 6 and Figure 4), the level parameter’s combination
that minimizes the absolute value of the X and Y deviation is, correspondingly: wall thickness:
3 mm, extraction temperature: 230 ◦C; wall thickness: 1–2 mm, extraction temperature: 220 ◦C.

Table 6. Mean values for dimensional deviation.

Level

Response Table for X Direction Response Table for Y Direction

Wall Thickness
(mm)

Extraction
Temperature (◦C)

Wall Thickness
(mm)

Extraction
Temperature (◦C)

1 −0.072 −0.101 −0.014 −0.021
2 −0.072 −0.101 −0.014 −0.003
3 −0.068 −0.010 0.032 0.028
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In the case of surface roughness parameters, the ANOM results showed that the factor levels
which minimize them are: wall thickness: 2 mm, extraction temperature: 230 ◦C for Ra; wall thickness:
2 mm, extraction temperature: 230 ◦C for Rz; wall thickness: 2 mm, extraction temperature: 230 ◦C for
Rt; wall thickness: 3 mm, extraction temperature: 230 ◦C for Rsm (see Table 7 and Figure 5).

Table 7. Mean values for surface roughness.

Level

Response Table for Ra Response Table for Rz

Wall Thickness
(mm)

Extraction
Temperature (◦C)

Wall Thickness
(mm)

Extraction
Temperature (◦C)

1 15.25 18.42 74.47 99.23
2 14.12 15.73 70.07 78.79
3 18.08 13.30 94.84 61.36

Level

Response Table for Rt Response Table for Rsm

Wall Thickness
(mm)

Extraction
Temperature (◦C)

Wall Thickness
(mm)

Extraction
Temperature (◦C)

1 98.85 94.64 219.0 251.7
2 79.34 110.86 241.1 226.0
3 95.20 67.90 217.1 199.4
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Figure 5. Plot of means for surface roughness parameters: (a) arithmetic mean surface roughness Ra,
(b) surface roughness depth Rz, (c) total height of the surface roughness profile Rt, and (d) mean width
of profile elements Rsm.

Analysis of variance (ANOVA) is used to investigate the parameters’ impact onto the performance
indicators. In this analysis, the F value is calculated, which is the variance ratio, i.e., the mean square
ratio due to a parameter and the mean square of the error. A parameter with an F ratio greater than
4 is considered as very important. If the F ratio is smaller than 1, it is considered as unimportant.
The p value is used to weigh the strength of the evidence (what the data are telling you about the
population). A p value smaller than 0.05 implies significance. ANOVA for the dimensional deviation
in the X and Y directions is presented in Table 8, whereas for the surface roughness parameters are
tabulated in Table 9.

Table 8. ANOVA for dimensional deviation.

Response Table for X Direction

Source DF Adj SS Adj MS F-Value p-Value

Wall Thickness (mm) 2 0.0000 0.0000 0.01 0.991
Extraction

Temperature (◦C) 2 0.0166 0.0083 3.99 0.112

Error 4 0.0083 0.0021 - -
Total 8 0.0249 - - -

Response Table for Y Direction

Source DF Adj SS Adj MS F-Value p -Value

Wall Thickness (mm) 2 0.0044 0.0022 2.38 0.208
Extraction

Temperature (◦C) 2 0.0037 0.0018 2.01 0.249

Error 4 0.0037 0.0009 - -
Total 8 0.0117 - - -
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Table 9. ANOVA for surface roughness parameters.

Response Table for Ra

Source DF Adj SS Adj MS F-Value p-Value

Wall Thickness (mm) 2 24.98 12.489 3.23 0.146
Extraction Temperature (◦C) 2 39.30 19.652 5.08 0.080

Error 4 15.46 3.866 - -
Total 8 79.75 - - -

Response Table for Rz

Source DF Adj SS Adj MS F-Value p -Value

Wall Thickness (mm) 2 1048.3 524.2 2.28 0.218
Extraction Temperature (◦C) 2 2155.7 1077.9 4.70 0.089

Error 4 918.0 229.5 - -
Total 8 4122.1 - - -

Response Table for Rt

Source DF Adj SS Adj MS F-Value p -Value

Wall Thickness (mm) 2 645.5 322.8 0.47 0.654
Extraction Temperature (◦C) 2 2823.4 1411.7 2.07 0.242

Error 4 2729.5 682.4 - -
Total 8 6198.4 - - -

Response Table for Rsm

Source DF Adj SS Adj MS F-Value p -Value

Wall Thickness (mm) 2 1066 532.8 0.29 0.765
Extraction Temperature (◦C) 2 4093 2046.5 1.10 0.415

Error 4 7420 1854.9 - -
Total 8 12578 - - -

3.2. Grey Relational Analysis

Although the Taguchi approach is widely used for the optimization of single performance
characteristics, it is unsuitable for multiple response optimization [45]. In this case, grey relational
analysis (grey Taguchi approach) can be utilized. The grey relational analysis is an advanced form of
the Taguchi method [46]. It is employed to analyze various relationships and to optimize multiple
attribute characteristics [47]. In this study, all dimensional accuracy and surface roughness responses
(i.e., the dimensional deviation in X and Y direction and the four surface roughness parameters) are
optimized with the use of grey relational analysis.

First, all dimensional accuracy and surface roughness responses are normalized to a range of 0–1.
Since they correspond to the lower-the-better, the normalized values are calculated as [48]:

xi j =
max yi j − yi j

max yi j −min yi j
, (1)

where xi j is the normalized deviation value, min yi j is the lowest value of the ith characteristic in the jth
response and max yi j is the highest value of the ith characteristic in the jth response. Table 10 outlines
all the normalized dimensional accuracy and surface roughness response results.

Next, the grey relational coefficient γ is generated in order to connect the desired and actual
normalized data [48] as:

γi j =
∆min + ζ∆max

∆i j + ζ∆max
, (2)

where ∆i j =
∣∣∣x0 j − xi j

∣∣∣, ∆min = min ∆i j for all i and j, ∆max = max ∆i j for all i and j while ζ is called
distinguishing coefficient (0 ∼ 1). Here, the distinguishing coefficient is considered as 0.5. The grey
relational coefficient results for all responses are presented in Table 11.
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Table 10. Normalized quality responses.

Experiment No. X Deviation Y Deviation Ra Rz Rt Rsm

1 0.3846 0.0000 0.5342 0.6372 0.2726 0.7345
2 0.6923 0.8333 0.7962 0.7435 0.5214 0.7798
3 1.0000 0.6667 0.8611 0.9131 0.9595 0.9487
4 0.3846 0.0000 0.5924 0.6050 0.7484 0.0000
5 0.6692 0.9833 0.9776 0.9383 0.7818 0.9298
6 1.0000 0.6667 1.0000 0.9374 0.9550 1.0000
7 0.6154 0.1667 0.0000 0.0000 0.8903 0.9391
8 0.0000 1.0000 0.2553 0.4285 0.0000 0.5834
9 0.9231 0.3333 0.9843 1.0000 1.0000 0.9858

Table 11. Grey relational coefficient results.

Experiment No. X Deviation Y Deviation Ra Rz Rt Rsm

1 0.4483 0.3333 0.5177 0.5795 0.4074 0.6531
2 0.6190 0.7500 0.7104 0.6609 0.5109 0.6942
3 1.0000 0.6000 0.7826 0.8519 0.9251 0.9070
4 0.4483 0.3333 0.5509 0.5587 0.6653 0.3333
5 0.6019 0.9677 0.9571 0.8901 0.6962 0.8768
6 1.0000 0.6000 1.0000 0.8888 0.9174 1.0000
7 0.5652 0.3750 0.3333 0.3333 0.8201 0.8914
8 0.3333 1.0000 0.4017 0.4666 0.3333 0.5455
9 0.8667 0.4286 0.9696 1.0000 1.0000 0.9723

Finally, the grey relational grade is computed, by averaging all grey relational coefficient values.
The optimization of the grey relational grade is equivalent with the optimization of all the quality
responses considered in this study. The optimum process parameter levels can be derived by the
highest grey relational grade.

αi =
n∑

i=1

γi j. (3)

Table 12 presents all the grey relational grade results of each dimensional accuracy and surface
roughness responses and their optimization order.

Table 12. Grey relational grade results.

Experiment
No.

Wall Thickness
(mm)

Extraction
Temperature (◦C)

Grey Relational
Grade (-) Order

1 1 210 0.4899 8
2 1 220 0.6576 5
3 1 230 0.8444 3
4 2 210 0.4816 9
5 2 220 0.8316 4
6 2 230 0.9010 1
7 3 210 0.5531 6
8 3 220 0.5134 7
9 3 230 0.8729 2

Analysis of means along with analysis of variance have been conducted for the derived grey
relational grade. The ANOM results (see Table 13) revealed that extraction temperature is more
influential than wall thickness. The optimal parameter levels are those that have the highest grey
relational grade value as it is shown in the plot of means (Figure 6). These levels are: (a) wall thickness:
2 mm, (b) extraction temperature: 230 ◦C.
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Table 13. Mean values grey relation grade.

Level Wall Thickness (mm) Extraction Temperature (◦C)

1 0.664 0.508
2 0.738 0.667
3 0.646 0.873

Delta 0.092 0.365
Rank 2 1
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The ANOVA results for grey relational grade can been found it Table 14. It should be noted that
the ANOM gave the same results as ANOVA in terms of factor significance (extraction temperature is
most important than wall thickness).

Table 14. ANOVA for grey relational grade.

Source DF Adj SS Adj MS F-Value p-Value

Wall Thickness (mm) 2 0.0142 0.0071 0.69 0.553
Extraction

Temperature (◦C) 2 0.2004 0.1002 9.72 0.029

Error 4 0.0412 0.0103 - -
Total 8 0.2559 - - -

4. Discussion

This study concerns the optimization of two very important quality indicators namely the
dimensional accuracy and surface roughness for nine FDM printed parts. The process parameters
considered are the wall thickness and the extraction temperature; both are limited examined by
other researchers (see Section 1). The experimental design used is Taguchi’s L9 orthogonal array,
which is commonly utilized by other studies concerning the optimization of the 3D printing parameters
(see Section 2.3). The dimensional accuracy responses were the dimensional deviation measured in
the X and Y directions, while four surface roughness parameters (arithmetic mean surface roughness
Ra, surface roughness depth Rz, total height of the surface roughness profile Rt and mean width
of profile elements Rsm) were used as the surface finish responses. The optimization techniques
employed were the Taguchi approach and grey relational analysis. Taguchi’s method is used for
the optimization of single performance characteristics, while grey relational analysis is suitable for
multiple data optimization.
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The Taguchi approach results revealed that different printing parameters optimize X and Y
dimensional deviations. For X direction, 3 mm of wall thickness, and 230 ◦C of extraction temperature
optimize the dimensional deviation, while the corresponding levels for Y direction are 1–2 mm and
220 ◦C. In the case of surface finish, 2 mm of wall thickness and 230 ◦C of extraction temperature
optimize all surface roughness parameters expect for Rsm which is optimized with 3 mm of wall
thickness and 230 ◦C of extraction temperature. Moreover, it was found that extraction temperature had
higher impact on the X dimensional deviation and all surface roughness parameters than wall thickness.
For the Y dimensional deviation, wall thickness was found to be more important than temperature.

In a similar manner, the results derived from the grey relational analysis are very close to the
ones derived from the Taguchi approach. The optimization of the calculated grey relational grade
corresponds to the optimization of all dimensional accuracy and surface roughness responses. It was
found that 2 mm of wall thickness and 230 ◦C optimize the grey relational grade, while extraction
temperature was more influential than wall thickness. In fact, extraction temperature is a very important
parameter for dimensional accuracy and surface roughness (F = 9.72, p = 0.029). Wall thickness was
found to be unimportant (F = 0.69, p = 0.553).

Although this experimental study examines a number of issues of the quality performance of FDM
printed parts, it has some limiting aspects. As it is mentioned above, the extraction temperature and
the wall thickness are two very limited investigated factors. Investigation of other process parameters
such as infill pattern, deposition angle, and infill density should be investigated in future work. For the
evaluation of the surface finish, four surface roughness parameters were considered, as in many other
relevant studies (see Section 1) only the arithmetic mean surface roughness Ra is used. Some other
quality characteristics should be studied in future such as shell bonding performance and shell strength.
Moreover, this paper is a multi-objective optimization, a method which needs more research as it
can been by the literature review. However, other equally important and limited studied process
parameters, such as printing speed and infill pattern could have been included. Other tools such as
response surface model (which is very interesting when more than three factors are considered) could
have been used. The authors are aware of these issues and they will examine them in future studies.

5. Conclusions

Following the above discussion, the main conclusions derived from this study are:

1. The results from the Taguchi approach showed that different parameter levels optimize the
dimensional deviation in X and Y direction, while high extraction temperature values optimize
the surface roughness parameters. The extraction temperature is more important than wall
thickness in the case of surface roughness parameters and X dimensional deviation.

2. The grey relational analysis revealed that high temperature extraction and median wall thickness
values optimize both dimensional accuracy and surface finish. Extraction temperature was found
to be the dominant factor, whereas wall thickness can be considered unimportant.

3. There is a limitation in this examination considering that only the impact of two factors was studied.
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