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Abstract: Deep hole boring using slender bars that have tuned mass dampers integrated within
them make the boring process chatter vibration resistant. Dampers are usually designed using
classical analytical solutions that presume the (un)damped boring bar which can be approximated by
a single degree of freedom system, and the damper is placed at the free end. Since the free end is
also the cutting end, analytical models may result in infeasible design solutions. To place optimally
tuned dampers within boring bars, but away from the free end, this paper presents a receptance
coupling approach in which the substructural receptances of the boring bar modelled as a cantilevered
Euler–Bernoulli beam are combined with the substructural receptances of a damper modelled as a
rigid mass integrated anywhere within the bar. The assembled and damped system response thus
obtained is used to predict the chatter-free machining stability limit. Maximization of this limit is
treated as the objective function to find the optimal mass, stiffness and damping of the absorber.
Proposed solutions are first verified against other classical solutions for assumed placement of the
absorber at the free end. Verified models then guide prototyping of a boring bar integrated with a
damper placed away from its free end. Experiments demonstrate a ~100-fold improvement in chatter
vibration free machining capability. The generalized methods presented herein can be easily extended
to design and develop other damped and chatter-resistant tooling systems.
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1. Introduction

Deep hole boring necessitates the use of long and slender cantilevered boring bars with length
to diameter ratios (L/D) typically being five and higher. On account of being long, slender, and
cantilevered, and because of their inherently low structural damping, the boring bars tend to vibrate with
large amplitudes under the action of cutting forces. Such process-induced large amplitude vibrations
often result in chatter vibration related machining instabilities. Chatter deteriorates surface finish and
results in high tool wear or breakage, thereby limiting productivity, precision, and material removal
rates. To make boring processes chatter-resistant, boring bars must possess improved dynamic stiffness
and damping behavior. This paper attempts to address this requirement by presenting a new method
to optimally tune and integrate absorbers within boring bars to improve their damping behavior.

Since boring to enlarge and finish holes remains an important machining operation in the
manufacture of several important industrial components, there has been substantial research and
industrial effort at developing more stable and chatter-resistant damped boring bars. These efforts have
centered on: the use of materials with higher strength and damping [1–6]; the use of passive dynamic
vibration absorbers, including the methods of tuned mass dampers [7,8], impact dampers [9–17] and/or
particle dampers [18–20]; and the use of (semi)active vibration control means using piezoelectric
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and/or electromagnetic actuators [21–27], and/or methods using electro-rheological fluid [28] and
magneto-rheological fluids [29–35].

Even though active systems can sometimes outperform passive ones, in most cases, a well-designed
passive dynamic vibration absorber is preferred due to its simplicity, ease of implementation, no
need for external energy source, low costs, and industrial viability. For these reasons, tuned mass
dampers are generally preferred over other passive damping methods. Industrial efforts too at making
passively damped boring bars have followed the developments reported in patents filed as early as
in the 1970s [36–39], with almost all major cutting tool manufacturers having their own version of a
boring bar with a tuned mass damper; see, for instance Silent ToolsTM from SANDVIK Coromant [40]
or KMTM Tunable Bars from Kennametal [41] or ISCAR’s Whisperline tools [42], or solutions from
Mapal [43].

The central idea in tuned mass dampers (vibration absorbers) is to attach a carefully chosen
secondary oscillator to a primary oscillator such that some vibratory energy of the primary system
is transferred to the secondary system for dissipation. The design of tuned mass dampers hence
concerns optimally selecting the mass, stiffness, and damping of the absorber (damper) such that it
helps dissipate energy from the primary system.

Tuning is generally based on the classical analytical method proposed by Ormondroyd and Den
Hartog [44,45] which seeks to minimize the magnitude of the frequency response function (FRF) of
the combined system. Since this classical analytical method [44,45] was for the special case of the
primary system being undamped, improvements considered the primary system being viscously
damped [46–48], and/or viscoelastically damped [49,50]. Since the critical chatter-free cutting conditions
for simple orthogonal cutting models and/or turning models are inversely proportional to the real
part of the FRF [51], analytical methods proposed by Sims [52] are also oft-used since the method
seeks to find optimal damper parameters by minimizing the negative real peak of the FRF. Sims [52]
also reported results with the primary system being damped using numerical optimization schemes.
All classical analytical methods of tuning the absorber [44–52] approximate the dynamics of the
primary system by an (un)damped single degree of freedom system model. While this is a reasonable
assumption for most long and slender cutting tools, this assumption always presumes attachment of
the damper at the free end of the cantilevered tool, which is also the cutting end, and hence any design
solution may not necessarily be feasible and/or practically realizable.

Since absorbers must be placed away from the free end, Moradi et al. [53], Miguelez et al. [54]
and Rubio et al. [55] presented methods to integrate the absorber with the boring bar modelled as
a continuous Euler–Bernoulli beam, and hence they were able to tune the absorber parameters for
when it is placed anywhere on the beam. Though these methods [53–55] were able to position the
damper anywhere on the boring bar, they modelled the boring bar as a solid beam. Since the absorber
must be integrated within the beam, the beam must be modelled as locally hollow, and since the
response of a solid beam and a locally hollow beam is undoubtedly different, and since tuning of the
absorber’s parameters depends on the response of the primary system, even though earlier methods
could account for tuning the absorber for placing it anywhere on the beam, design solutions resulting
from them may also not be feasible.

To address the need for a generalized method to help develop optimally tuned and damped
chatter-resistant boring bars that includes damping in the boring bars as well as optimizes parameters
for placing the absorber away from the free end and anywhere within the boring bar, this paper presents
a new receptance coupling (RC) based method. Methods presented herein build on our preliminary
work [56,57]. Though our earlier work outlined the receptance coupling approach, the boring bar was
modelled as a solid beam in earlier work, and not locally hollow—as it must be, and as is undertaken
herein. Furthermore, our earlier reported work offered no experimental validation. This paper will
overcome both shortcomings by presenting an expanded analytical treatment and will also discuss
how the proposed model guides prototyping and experiments.
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Receptance coupling is a structural modification tool and is used to couple two separate subsystems
in the frequency domain [58] using their individual component level receptances, i.e., frequency
response functions (FRFs). Receptance coupling methods have found much use in machine tool
applications to predict tool point dynamics [59–62] under changing tool and tool-holder configurations,
by treating the tool and tool-holder as separate individual subsystems whose receptances can be
measured and/or modelled, and that can be coupled with the measured and/or modelled receptances
of the machine’s spindle. Receptance coupling methods have also been used in recent works to design
absorbers to damp machine tool structural vibrations [63,64]. A receptance coupling approach was also
successfully used in [65] to rigidly couple a boring bar modelled as a free-free beam to a flexible holder
to evaluate the influence of the holder’s stiffness and damping on the assembled system receptance to
help tune the holder to improve the dynamic stiffness of the boring bar.

In the present work, receptances of two substructural systems, the boring bar (subsystem I), and
the tuned mass damper (subsystem II) placed anywhere (za) within the boring bar of length L, and
diameter, D as shown in Figure 1, are combined (damper of mass m is coupled with a spring, k and a
damper, c) to obtain the optimized damped response at the free end of the tool.
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The receptance coupling approach can work with modelled and/or measured receptances. Section 2
first presents the model-based approach, and Section 4 demonstrates the method with measured
receptances. For the model-based approach, the boring bar is modelled as a damped cantilevered
Euler–Bernoulli beam. The model accounts for the beam being locally hollow to account for the
absorber being placed inside it, and hence also address the shortcomings of the methods in [53–55].
Substructural receptances of the boring bar are combined with the receptance of a rigid mass connected
to the boring bar using a stiffness and damper to obtain the assembled system response. Since the
chatter-free machining stability limit in boring processes is governed by the assembled response of the
boring bar in the radial direction (the X direction in Figure 1) [66,67], the absorber to be integrated within
the beam is also assumed to be connected to the beam only in the X direction using elastic elements as
shown schematically in Figure 1, and maximization of the chatter-free stability limit is treated as the
objective function to find the optimal mass, stiffness and damping of the absorber. To compare our
findings with other classical methods [2,44–46,52,53], another objective function that minimizes the
negative peak of the real part of the assembled receptance to find optimal absorber parameters is also
discussed. We use a numerical optimization scheme based on the minimax method [68,69], and though
we incorporate the influence of the cutting insert and nose radius, our focus during optimization is
more on the structural design aspects. All analysis presented herein is for the case of a stationary
boring bar with a rotating workpiece.

Section 3 contrasts predictions using the proposed receptance coupling approach with other
classical methods of Rivin and Kang [2], Ormondroyd and Den Hartog [44,45], Asami et al. [46], and by
Sims [52], and with results obtained with the method proposed in [53] that also model the boring bar
as a continuous beam. These comparisons assume placement of the absorber at the free end to verify
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the newly proposed method. Section 3 also discusses how the optimized absorber parameters change
with changing placement location of the absorber within the beam. This is followed by discussions
on how, for assuming placement of the absorber at a fixed location inside of the bar, the chatter-free
machining stability limit changes with absorber parameters.

Model-based investigations guide prototyping of a boring bar with an absorber placed inside it,
and Section 4 presents experimental results with the prototyped bar. Section 4 also discusses the use of
the measured receptances in an inverse manner to identify the absorber parameters and contrasts these
results with model predictions. Section 5 discusses cutting experiments with and without a damper
integrated within the prototyped boring bar and demonstrates how a damped boring bar can improve
the chatter-free cutting ability. This is followed by the main conclusions of the paper.

2. Receptance Coupling Method for Boring Bars Integrated with an Absorber

This section first presents the receptance coupling formulations, which is followed by describing
model-based methods to obtain receptances of the boring bar, and of the tuned mass. This is followed
by describing the objective function to maximize the chatter-free machining stability limits, and to
minimize the negative peak of the real part of the assembled receptance.

2.1. The Receptance Coupling Method

The boring bar modelled as a clamped-free Euler–Bernoulli beam is treated as subsystem I, and the
tuned mass of the damper is treated as subsystem II, as shown in Figures 1 and 2. Schematic coupling
of the absorber to the boring bar is shown in Figure 2a, and a schematic of coupling two equivalent
dynamical systems is shown in Figure 2b. Since the chatter-free machining stability limit in boring
processes is governed by the assembled response of the boring bar only in the radial direction (the X
direction in Figures 1 and 2a), the absorber to be integrated within the beam is also assumed connected
to the beam only in the X direction using a spring and damper connection as shown in Figures 1 and 2a.
Moreover, since the boundary conditions for the beam are assumed to be clamped-free, and since the
beam is assumed to be flexible only in the radial direction, i.e., since we ignore the axial and torsional
vibrations, we also ignore the influence of rotational degrees of freedom during the receptance coupling
procedure, and instead couple the two subsystems using a linear spring and damper connection as
shown in Figures 1 and 2.
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equivalent dynamical systems.

The coupling location where the mass of the absorber is attached using a spring and damper
connection, as shown in Figures 1 and 2a, is location 2a, which may correspond to any location along
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the length of the bar. Location 1 is the free end (cutting end) of the boring bar where the response is to
be predicted and optimized by tuning the absorber. For locations, see Figures 1 and 2a.

The absorber (subsystem II) integrated within the boring bar modelled as a cantilevered beam
(subsystem I) is assumed connected along the central axis of the beam with a spring of stiffness k N/m
and a dashpot damper of damping c N-s/m to form the assembly, III. The subsystems are coupled
at coordinates x2a and x2b belonging to subsystems I and II, respectively. Our interest is in getting
the assembled response at the X1 location in III which is at the same physical location as x1 in the
subsystem I. Though there is relative motion between the absorber and the beam due to the flexible
coupling between them, since the absorber is connected to the beam along the beam’s central axis, the
assembly locations X2a and X2b appear to be the same in the schematic in Figure 2a, and the coupling
between these locations is instead shown in Figure 2a by a representative spring and damper between
the absorber’s mass and the boring bar. Since it is difficult to characterize the relative motion at the
coupling location between the absorber and the beam, the procedure to obtain the synthesized response
is better explained by way of coupling two equivalent dynamical systems as represented in Figure 2b,
in which, subsystem I is still the beam, and the subsystem II is the absorber’s mass.

We assume that direct receptances h11 = x1
f1

and h2a2a =
x2a
f2a

and the cross receptances h12a =
x1
f2a

and

h2a1 = x2a
f1

for I, and h2b2b =
x2b
f2b

for II are known a priori. For such a system, component displacement
for the subsystem I with two forces can be written as:

x1 = h11 f1 + h12a f2a

x2a = h2a1 f1 + h2a2a f2a
(1)

and, for subsystem II, we have,
x2b = h2b2b f2b. (2)

To determine the direct response H11 at location 1 of the assembled structure, it is assumed that
only one harmonic force F1 is applied to the assembled system III and all other forces are zero. In this
case, response X1 can be simply written as: X1 = H11F1, which gives H11 = X1

F1
.

Force equilibrium conditions at the interface and free end are: f2a + f2b = 0 and f1 = F1,
respectively. Furthermore, displacement compatibility at the interface is:

k (x2b − x2a) + iωc (x2b − x2a) = − f2b. (3)

The assumption of harmonic motion due to the application of a harmonic force F1, allows us to
express velocity dependent damping forces in the form of iωcx. Equation (3) can hence be rewritten as:

(k + iωc)(x2b − x2a) = − f2b. (4)

Equation (4) is equivalent to k′(x2b − x2a) = − f2b, where k′ = k + iωc. Substitution of component
displacement and force equilibrium conditions in Equation (4) results in:

f2b =
(
h2a2a + h2b2b +

1
k′

)−1
h2a1F1. (5)

Applying the equilibrium condition, f2a = − f2b, we obtain:

f2a = −
(
h2a2a + h2b2b +

1
k′

)−1
h2a1F1. (6)
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This enables us to write the assembled receptance at the free end as [58]:

H11 = X1
F1

= x1
F1

=
h11 f1+h12a f2a

F1
=

h11 f1−h12a(h2a2a+h2b2b+
1
k′ )
−1

h2a1F1
F1

i.e., H11 = h11 − h12a
(
h2a2a + h2b2b +

1
k′
)−1

h2a1,

(7)

wherein h11 is the receptance at the free end for the original boring bar, i.e., at location 1, h2a2a is the
receptance at the coupling location of the absorber for the original boring bar, h12a and h2a1 are the
cross receptances between the free end and the coupling location of the absorber, again for the original
boring bar, and since the structure is symmetric and assumed to be linear, these cross receptances
are the same and equal, h2b2b is the tunable receptance of the absorber, and k′ is the effective complex
stiffness. Though receptances in Equations (1) and (2), and in Equations (5)–(7) are frequency (ω)

dependent, ω is omitted from all these equations for brevity. The subsystem level receptances for the
original boring bar and the tuned mass damper are obtained as discussed below.

2.2. Obtaining Receptances of the Boring Bar

For the model-based investigations herein, the receptances of the boring bar are obtained by
modelling it as a damped cantilevered Euler–Bernoulli beam that is cylindrical and symmetric.
The assumed clamped-free boundary conditions for the boring bar modelled as a Euler–Bernoulli beam
are consistent with other similar modelling approaches for slender boring bars [6,23,29,53–55,70–73],
and though the tightening torque, number and size of clamping screws, and the order of tightening the
screws in real holders supporting slender boring bars do influence their boundary conditions and their
dynamics [74], for investigations herein, the clamped-free model is thought to be adequate.

The model presented below expands on the beam formulations presented in [53–55] by
accommodating for the beam to be locally hollow to house the damper inside it. The boring
bar with length L, density ρ, outer diameter D, and with an elastic modulus E, with one end fixed and
the other end free can be thought to be made of three parts as shown in Figure 3, with part 2 being
hollow to accommodate the absorber. The response of the bar is desired to be obtained for when it is
subjected to a cutting force, f (z, t) acting at a location z f measured from the fixed end.
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The governing equation of motion of a damped Euler–Bernoulli cantilevered beam with
clamped-free boundary conditions describing the transverse motion in the radial direction while
neglecting effects of rotary inertia and shear deformations, and ignoring the tangential, axial, and
torsional vibrations of the slender boring bar, using the Hamilton’s principle, can be shown to be [75]:

ρAp
∂2u
∂t2 +

Cb
L

(
∂u
∂t

)
+
∂2

∂z2

(
EIp

∂2u
∂z2

)
= f (z, t)δ

(
z− z f

)
(8)
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wherein A is the cross-section area of the beam, I is the area moment of inertia of the beam, u is the
deflection of the beam in the X-direction, Cb is the damping coefficient of the boring bar, δ is a Dirac
delta function, and the value of ‘p’ depends on the part of the beam considered, i.e., 1, 2 or 3.

Consider a modal solution (for j modes) for the undamped form of Equation (8) of the form of:

u(z, t) =
∑

j
q j(t)φpj(z) (9)

wherein q j(t) represents the time component of the displacement, and φpj are the undamped mode
shapes that are different for every section of the beam, such that:

φp = C1p cos
(
βpz

)
+ C2p cosh

(
βpz

)
+ C3p sin

(
βpz

)
+ C4psinh

(
βpz

)
p =


1; 0 < z ≤ a
2; a < z ≤ b
3; b < z ≤ L

,
(10)

and, the corresponding undamped natural frequencies are [75]:

ω = β2
p

√
EIp

ρAp
. (11)

The boundary conditions for the beam are listed below, and show the slope and deflection at the
clamped end to be zero, and that the shear force and bending moment at the free end are also zero:

φ1(0) = 0; φ′1(0) = 0; EI3φ
′′

3 (L) = 0, EI3φ
′′′

3 (L) = 0. (12)

Furthermore, the compatibility conditions at the interfaces ‘a’ and ‘b’ (see Figure 3) to ensure
continuity are:

φ1(a−) = φ2(a+); φ2(b−) = φ3(b+);

φ′1(a
−) = φ′2(a

+); φ′2(b
−) = φ′3(b

+);

EI1φ
′′

1 (a
−) = EI2φ

′′

2 (a
+); EI2φ

′′

2 (b
−) = EI3φ

′′

3 (b
+)

EI1φ
′′′

1 (a−) = EI2φ
′′′

2 (a+); EI2φ
′′′

2 (b−) = EI3φ
′′′

3 (b+)

(13)

wherein the superscripts, ‘−’ and ‘+’ denote positions slightly before and after the interfacial point(s).
Modal solutions to Equation (8) require the twelve unknowns (C1p, C2p, C3p, C4p, for p = 1

to 3) in the mode shape equation (Equation (10)) to be satisfied by the twelve equations from the
four boundary conditions in Equation (12) and the eight compatibility conditions in Equation (13) to
result in a transcendental equation in β with infinite solutions. In the domain of R+, the first solution
corresponds to the first mode, and the second solution corresponds to the second mode, and so on.

To obtain the desired receptances, the orthogonality property of the mode shape is used, and the
equation of motion is rewritten as [75]:

M
..
q1 + C

.
q1 + Kq1 = fφp1

(
z f

)
wherein

M =
∫ L

0 ρAp φp1(z) φp1(z)dz

C =
Cb
L

(∫ L
0 φp1(z) φp1(z)dz

)
K =

∫ L
0 EIpβ4

p1

(
φp1(z) φp1(z)

)
dz.

(14)



J. Manuf. Mater. Process. 2020, 4, 53 8 of 26

Assuming the excitation and response are both harmonic, i.e., f = Feiωt and q1 = Q1eiωt,
Equation (14) can be re-written as:

Q1

F
=

[ 1
−ω2M + iωC + K

]
φp1

(
z f

)
. (15)

Pre-multiplying Equation (15) with φp1(zr), the frequency response function matrix for the beam
can be written as:

h =
U
F

= φp1(zr)
[ 1
−ω2M + iωC + K

]
φp1

(
z f

)
(16)

wherein, zr is response location and z f is the excitation location. The subscript 1 in Equations (14)–(16)
corresponds to only the first mode being considered. Since the receptance coupling formulation
requires the receptances at the free end of the boring bar, i.e., at location 1, and at the location where
the damper is to be integrated within the boring bar, i.e., at location 2a, these can be easily obtained
using Equation (16), by choosing zr and z f appropriately. Additionally, the cross receptance between
locations 1 and 2a can also be accordingly obtained. Having described how to obtain four of the five
receptances necessary to find the assembled receptance (see Equation (7)), the receptance of the tuned
mass is obtained as described next.

2.3. Obtaining the Receptance of the Tuned Mass

The receptance of the tuned mass, m is simply:

h2b2b = −
1

mω2 . (17)

Having obtained receptances for both the boring bar (subsystem I), and the tuned mass (subsystem
II), these can be combined as in Equation (7) with appropriate values of the complex stiffness k′, to
predict the assembled system response at the free end of the boring bar.

2.4. Setting up the Optimization Problem

Since the damped boring bar is being designed to make possible chatter-free machining,
maximization of the chatter-free stability limit is treated as the objective function. Since the slender
boring bar is often more flexible than the workpiece it is used to bore, and since the depths of cut in
boring are often of the order of the nose radius, the absolute minimum chatter vibration-free depth of
cut can be estimated by the so-called ‘1D solution’ model in which the nose radius is accounted for and
the flexibility of the boring bar in the radial direction (the X-direction in Figures 1 and 3) is used to
estimate the limiting speed-independent depth of cut, blim as [66,67]:

blim =
−

1
2 ΛR

(
1 + κ2

)
− be

∑n
g=1 Ag

Am
+ nbe (18)

wherein ΛR is the real part of the eigenvalue, Λ, i.e., ΛR = Real(Λ), and the eigenvalue in turn
is expressed as: Λ = −1/H11, wherein H11 is the assembled receptance at the free end. κ within
Equation (18) is the ratio of the imaginary and real parts of the eigenvalue Λ, i.e., κ = ΛI/ΛR. be is the
element height, assuming that the nose radius (r) on the cutting insert is divided into n trapezoidal
elements, such that bnose = r− r sin ce, and be = bnose/n, wherein ce is the equivalent side cutting edge
angle. Ag and Am within Equation (18) are elemental directional coefficients that are a function of r, ce,
and the radial cutting force coefficient Kr, and are obtained as defined in [66,67].

Since Equation (18) clearly shows the limiting depth of cut in boring processes to be governed
by the assembled system response at the free end, the optimization problem is setup such as to find
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the appropriate parameters of the stiffness, k and damping, c of the damper for a given mass, m, that
maximizes the chatter-free stability limit. The objective function is hence defined as:

maximize fobj( f , ζ) = min(blim)

subject to : 0.5 < f < 1.2, 0 < ζ < 0.5
(19)

wherein f is the ratio of natural frequency of the absorber to the natural frequency of the dominant
mode of the primary system, and ζ is the damping ratio for the absorber.

Since we also verify our proposed receptance coupling approach with the other classical methods of
tuning absorber parameters [52], to make such comparisons meaningful, we also setup an optimization
problem as in the other studies [52], wherein the objective function minimizes the negative peak of the
real part of the assembled receptance to find optimal absorber parameters. In which case the objective
function in Equation (19) is replaced by:

minimize fobj( f , ζ) =
∣∣∣min(Real(H11))

∣∣∣
subject to : 0.5 < f < 1.2, 0 < ζ < 0.5

(20)

wherein f and ζ are the same as described above.
To maximize/minimize the objective functions in Equations (19) and (20), we prefer to use the

Nedler–Mead algorithm [68,69]. For all optimization investigations herein, the initial guess for the
frequency and the damping ratios are taken to be 1 and 0.1, respectively.

3. Model-Based Results

This section first demonstrates the workings of the proposed receptance coupling method, followed
by contrasting predictions using the proposed scheme with the results of other classical methods of
optimally tuning the absorber, assuming that the absorber is placed at the free end. Having verified
the proposed method, we then discuss how the optimized absorber parameters change with changing
placement location of the absorber within the beam. This is followed by discussions on how, for
assuming placement of the absorber at a fixed location inside of the bar, the chatter-free machining
stability limit changes with absorber parameters.

3.1. Demonstrating the Workings of the Receptance Coupling Approach

As an example of how the substructural receptances can be combined to obtain the assembled
receptance, and how both methods of optimization, i.e., maximization of the chatter-free depth of
cut, and minimization of the negative peak of the real part of the assembled receptance result in
potentially different damped responses of the assembled boring bar and correspondingly different
optimal parameters of the tuned mass damper, consider a boring bar approximated as a cantilevered
beam made of steel with a density of 7800 kg/m3, a modulus of 200 GPa, a length of 200 mm, and a
diameter of 25 mm ( L

D = 8), with the hollow section placed at a distance of 90 mm from the fixed
end. The cavity has a diameter of 16 mm, and a length of 55 mm. The structural damping coefficient
of the boring bar is assumed to be 46.5 N-s/m. An absorber of mass 0.135 kg is assumed placed at
length of ~120 mm from the fixed end ( za

L � 0.6), and it is coupled to the boring bar using an arbitrarily
chosen spring and damper with a stiffness of 1.13× 106 N/m and a damping coefficient of 78 N-s/m,
respectively. For maximizing the chatter-free depth of cut, we assume cutting of Aluminium with a
cutting insert that has a nose radius of 0.4 mm, and a side cutting edge angle of 3◦, and the radial cutting
force coefficient is assumed to be 580 N/mm2. The number of trapezoidal elements to adequately
describe the nose are taken to be 1000.

The substructural receptances for the boring bar with the given specifications, and for the absorber
with the given mass are shown in Figure 4, which also shows the assembly receptance at the free end of
the boring bar. This assembly receptance is optimized using both methods to find the optimal stiffness
and damping, and the resulting optimized receptances at the free end are also shown in Figure 4. Since
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all receptances are complex valued, Figure 4 shows their real and imaginary parts. Analysis herein is
limited to discussing only the first fundamental bending mode of the boring bar, which is usually also
the most flexible.
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of the boring bar (subsystem I), (b) receptance of the tuned mass (subsystem II), and (c) assembly
receptances (III) without the absorber, and with untuned and optimally tuned absorber parameters.

As is evident from Figure 4a that shows the receptances of the boring bar at the free end and
at the absorber connection location, as well as the cross receptance between the free end and the
absorber coupling location, the receptance at the free end is a lot more flexible than the receptance at
the absorber mounting location. This already makes clear that any method that assumes placement of
the absorber at the free end will naturally result in a different design of the absorber than the more
realistic consideration of placing the absorber away from the free end and somewhere within the
beam. The receptance of the tuned mass is shown in Figure 4b, and since it is assumed to be rigid, it
has no imaginary part. The assembly receptances at the free end shown in Figure 4c make clear that
the response with the tuned absorber is significantly damped (more than an order in magnitude) as
compared to the case of the boring bar without an absorber as well as for the case of the absorber
connected to the boring bar with an arbitrarily selected spring stiffness and damping coefficient.

Furthermore, as is also evident from Figure 4c, the real and imaginary parts of the assembled
receptance obtained by tuning the absorber using the method of maximizing the chatter-free depth
of cut are of similar amplitudes as that of the receptance obtained by tuning the absorber using
the method of minimizing the negative real peak of the assembled receptance. Even though the
peak-to-peak amplitudes of the real parts and/or the negative peaks in the imaginary parts of the
receptances are similar for both methods of optimization, the natural frequencies of the resulting
damped and assembled receptances are not, and this is due to the fact that the optimal spring stiffness
and damping coefficient obtained using both methods of optimization are different. For the case of
minimizing the negative peak of the real part of the assembled receptance, the optimal spring stiffness
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and damping coefficient are found to be 1.17× 106 N/m and 179 N-s/m, respectively. Whereas, for the
case of maximizing the chatter-free depth of cut, the optimal spring stiffness and damping coefficient
are found to be 6.6× 105 N/m and 134 N-s/m, respectively. Since the stiffness and damping in the latter
case are lesser than in the former, the natural frequencies of the assembled system are also lesser in the
latter case. However, in both cases, the absorber parameters settle at values significantly different than
the arbitrarily assumed parameters, and in both cases, the response is significantly and comparably
damped in contrast to the case of the boring bar without the absorber.

Having demonstrated the workings of the proposed scheme for placing the absorber with a
fixed mass somewhere within the beam, similar procedures as discussed above were adopted to find
optimized absorber parameters for placing different absorbers anywhere inside the beam—as discussed
in Sections 3.3 and 3.4. However, before doing so, we first verify our proposed method against other
classical analytical methods, and to do so, we assume the beam to be solid and for the absorber to be
placed at the free end—such as to make possible comparative analysis, as is discussed next.

3.2. Comparing Proposed Model Predictions with Other Classical Analytical Models

To verify our proposed receptance coupling based approach against other classical analytical
methods, we assume that the boring bar approximated by the cantilevered beam can in turn be
approximated by only its first and dominant mode, making it thus equivalent to a single degree of
freedom system with a modal mass, stiffness, and damping of mpr, kpr and cpr respectively. To make
comparisons furthermore meaningful, we assume that the absorber is placed at the free end of the
boring bar, and as such the boring bar is solid, i.e., it has no hollow cavity within it to house the
absorber. Besides being solid, the boring bar has the same size, material, and L/D specifications as
those discussed in Section 3.1. For the case of maximizing the chatter-free depth of cut, the insert
geometry and material specifications are also kept the same as discussed in Section 3.1. Having
made these approximations, results from our approach are contrastable with the classical methods of
Rivin and Kang [2], Ormondroyd and Den Hartog [44,45], Asami et al. [46], Sims [52], and with those
proposed in [53]—all of which assume the absorber to be placed at the free end.

The classic absorber model used for comparisons is shown in Figure 5. As shown, a vibration
absorber is attached to an (un)damped primary system. The main structure’s mass, stiffness, damping,
and displacement are denoted by mpr, kpr, cpr, and xp respectively. Equivalent terms for the absorber,
i.e., for the secondary system are assigned the subscript s. mpr is the effective modal mass for the first
mode, and in the present case is identified from the analysis with the beam to be 0.197 kg. Similarly, kpr

is 1.47× 106 N/m, and cpr is 42.5 N-s/m. F0 sinωt is the harmonic load acting on the main structure.
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Table 1 lists the solutions to the optimized frequency ratio ( fopt) and the optimized damping ratio
(ζopt) as suggested in [44–46,52]. The mass ratio, µ in Table 1, is the ratio of the mass of the absorber to
the modal mass of the primary system. Similarly, the frequency ratio, as articulated in Section 2.4 is the
ratio of the natural frequency of the absorber to the natural frequency of the primary system, and the
damping ratio is simply that of the secondary system.
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Table 1. Solutions of the optimization problems as suggested in [44–46,52].

Optimum Tuning (fopt) Optimum Damping (ζopt) Method

1
1+µ

√
3µ

8(1+µ)
[44,45]

1
1+µ − ζ0

1
1+µ

√
1

2(1+µ)

(
3 + 4µ− AB

2+µ

) √
3µ

8(1+µ) + ζ0
60+63µ+16µ2

−2(3+2µ)AB
8(1+µ)(2+µ)(9+4µ)

[46] 1 (H∞)

1
1+µ

√
1 + µ

2 − ζ0(4 + µ)
√

µ

8(1+µ)3(2+µ)(4+3µ)

√
µ(4+3µ)

8(1+µ)(2+µ) − ζ0
µ3

4(1+µ)(4+3µ)
√

2(2+µ)3
[46] (H2)

√
µ+2−

√
2µ+µ2

2(1+µ)2

√
µ
(
µ+3−

√
2µ+µ2

)
4(1+µ)

(
µ+2−

√
2µ+µ2

) [52]

1 A =

√
3(2 + µ) −

√
µ(2 + µ), and B =

√
3(2 + µ) +

√
µ(2 + µ).

For Ormondroyd and Den Hartog’s method [44,45], the primary system is undamped, and the
optimized solutions are for the case of minimizing the absolute response of the system. For the two
methods proposed by Asami et al. [46], we use the proposed H∞ series solution that minimizes the
amplitude magnification factor of the primary system, and also use the proposed H2 solution that is
based on a closed-form algebraic solution to minimize the squared area under the response curve of
the primary system. For both methods proposed by Asami et al. [46], the damping ratio of the primary
system, ζ0 is taken to be 1%. For Sims’s method [52], we only list the solutions proposed for the case of
the real part of the receptance being negative, and for the primary system being undamped. Since
the method of Rivin and Kang [2] is based on a numerical optimization approach and has a different
definition for the optimized frequency ratio, we evaluate the optimum absorber design as suggested
by them and directly report the results in Figure 6. For comparisons with the method reported in [53],
we use their proposed analytical model that seeks to minimize the deflection at the free end, and, like
we do for the case of the methods of Rivin and Kang [2], in this case too, we directly report the results
obtained from using their methods in Figure 6.
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The results from the proposed receptance coupling method are compared with the other classical
methods in Figure 6. Four curves presented in Figure 6 are with the formulations reported in Table 1.
Two more are generated using methods reported in the literature, i.e., the method reported in [2],
and in [53]. And two more are obtained using the proposed receptance coupling approach that seeks
to maximize the chatter-free depth of cut, and to minimize the negative peak of the real part of the
assembled receptance. For the proposed approach, for fixed primary system parameters, the mass of
the absorber is varied (µ is varied in steps of 0.001), and for each case, optimal stiffness and damping
parameters of the secondary system are found, and those in turn are used to evaluate the optimal
frequency and damping ratios, and those results are reported in Figure 6. Since the optimization
results from the presently proposed receptance coupling method result in discrete data points for
every combination of primary and secondary system parameters (an example of such a discrete data
point was discussed in Section 3.1), these are fitted with a fourth order polynomial, and only the fitted
curves are reported in Figure 6. Figure 6a shows the optimum frequency ratio as a function of the mass
ratio, and Figure 6b shows results for the optimum damping ratio again as a function of the mass ratio.
As is evident, for each mass ratio, there exists an optimum combination of absorber frequency and
damping ratio.

For the case of the optimal frequency ratios shown in Figure 6a, the results and trends with the
proposed approach that finds optimal absorber parameters by minimizing the negative peak in the
real part of the assembled receptance are consistent with findings reported in [52], which also seek
to do the same. The offsets in the frequency ratios between the proposed approach and the methods
reported in [2,44,45] are thought to be due to those methods neglecting damping in the primary system.
These offsets were also reported by Sims in [52], and the differences between the proposed approach
and the results obtained from methods reported in [46] are also consistent with what was reported
by Sims in [52]. For the case of the optimum damping ratio shown in Figure 6b, results with the
proposed method are consistent with almost all other classical analytical methods. Since results with
the proposed method (at least for the case of finding absorber parameters by minimizing the negative
real peak of the assembled receptance) are the same as other methods, the proposed methods are
deemed to be verified.

However, as is also clear from Figure 6a, results for the frequency ratios obtained with the
proposed approach that finds optimal absorber parameters by maximizing the chatter-free depth of cut
are significantly different and lower than the other methods. Since the damped boring bar is being
made to make possible chatter-free machining, and since the chatter-free machining stability limit in
boring processes is not directly a function of the negative peak in the real part of the receptance, but
depends on the dynamics as described by Equation (18), even if the absorber parameters that are found
by maximizing the chatter-free depths of cut are different than the other methods, this paper advocates
the selection and tuning of absorber parameters based on maximizing the chatter-free depth of cut.
Hence, all subsequent investigations in this paper are presented for the case of absorber parameters
that are obtained by maximizing the chatter-free depth of cut.

3.3. Influence of Absorber Position on Optimized Frequency and Damping Ratios

Having verified the efficacy of the proposed receptance coupling approach, the influence of
placing the absorber at different locations within the beam on the optimized absorber parameters is
presented herein. For investigations herein, the size, material, and L/D specifications of the boring
bar modelled as a beam are the same as those discussed in Section 3.1. Furthermore, for maximizing
the chatter-free depth of cut, the insert geometry and material specifications are also kept the same as
discussed in Section 3.1. To understand the influence of position, the absorber is placed at distances of
za
L = 0.5, za

L = 0.6, and at za
L = 0.7, wherein za is the distance of the absorber from the fixed end, and

L is the length of the boring bar (see Figure 1 for these dimensions). To accommodate the absorber
within the boring bar, the cavity within the boring bar is assumed to be of a diameter of 16 mm, and
a length of 55 mm. This precludes placing the absorber nearer to the free end. Placing the absorber
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nearer to the free end is also constrained by practical issues of boring bars with cartridges on which the
cutting tool is mounted.

Receptances (cross and direct) thus obtained from the boring bar modelled as a beam for all three
cases are combined with the receptance of the tuned mass, and the response of the assembled system
is used as an input to maximize the chatter-free machining stability to find the optimal stiffness and
damping of the absorber. Knowledge of these are used in conjunction with the modal mass, stiffness,
and damping of the primary system to obtain the optimal frequency and damping ratios for a given
value of the absorber’s mass. This procedure is repeated by varying the mass of the absorber to obtain
different mass ratios for which the optimized frequency and damping ratios are found. The results
thus obtained are summarized in Figure 7. Again, as before, i.e., as discussed in Section 3.2, since the
optimization results in discrete parameters values, these are curve fit with a fourth order polynomial,
and only the fitted curves are shown in Figure 7. Figure 7 also include for comparative purposes
the case of the beam being solid, and the absorber being placed at the free end, as was presented in
Section 3.2. All analysis herein too is limited to tuning the absorber to damp only the first fundamental
bending mode of the boring bar, which is usually also the most flexible.
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As is evident from Figure 7, the optimized frequency and damping ratios for the absorber being
placed away from the free end are quite different than the absorber placed at the free end. From
Figure 7a, it is further evident that for all mass ratios under consideration, as the absorber is placed
away from the free end, the frequency ratios are consistently higher than the case(s) of placing the
absorber nearer the free end. Furthermore, evident from Figure 7a is that for the absorber placed
farther away from the free end, the change in frequency ratio with increasing mass ratios is lesser as
compared to the absorbers being placed nearer the free end. As is observed for the frequency ratios, for
the damping ratios too, as is evident from Figure 7b, there is a significant difference in the optimized
parameters for placing the absorber away from the free end than placing it at, or nearer the free end.
Interestingly, contrary to what is observed for the case of frequency ratios being higher for the absorber
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being placed farther from the free end, the damping ratios for placing the absorber farther from the
free end are lower than the case of placing the absorber nearer the free end.

In general, the results from Figure 7 suggest that for a given mass ratio, the suggested optimized
damping ratio is lower for lower length ratios (za/L), whereas the suggested optimized frequency ratio
is higher for lower length ratios in comparison to the case with the absorber placed at the free end.
Since placing the absorber at the free end is not feasible (since the free end is also the cutting end)
results from Figure 7 suggest that the absorber must be tuned depending on its placement location,
and the generalized receptance coupling approach presented herein facilitates such analysis to guide
the development of better tuned mass damped boring bars. This is indeed one of the stated goals of
this paper, and these model-based investigations indeed help the prototyping of a damped boring
bar, as discussed in Section 4. However, before doing so, we discuss how the maximized chatter-free
depths of cut change with a change in the absorber’s parameters.

3.4. Dependence of the Maximized Chatter-Free Stability Limit on the Absorber’s Parameters

This section shows how the chatter-free stability limit changes with different absorber parameters
for assumed placement of the absorber at a fixed length ratio of za

L = 0.6. These results in turn guide
the prototyping of a damped boring bar discussed in Section 4. For investigations herein, the dynamics
of the boring bar modelled as a beam are again approximated by only its first mode. The size, material,
L/D specifications, and the size of the hollow cavity within the boring bar are all the same as those
listed in Section 3.1. Furthermore, the insert, and specifications of the material being cut are also the
same as those listed in Section 3.1.

Results in Section 3.2 and in Section 3.3 have shown that for every combination of the mass
ratio, there exists an optimized frequency and damping ratio, and, since, for each of these mass,
frequency and damping ratios, there exists a corresponding maximized chatter-free depth of cut, how
that chatter-free depth of cut changes with the absorber’s parameters is shown in Figure 8. The size of
the circles shown in Figure 8 correspond to the possible chatter-free depth of cut.
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As is very evident from Figure 8, for the case of assuming the absorber to be placed at a distance
of ~120 mm from the fixed end (length ratio is za

L = 0.6), the chatter-free depth of cut increases with
an increase in the mass ratio and the damping ratio, and a corresponding decrease in the frequency
ratio. Since the primary system parameters are fixed, these results suggest that an increase in the
mass and damping of the absorber may significantly improve the chatter-free machining capability of
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the damped boring bar. These observations will guide the prototyping of damped boring bar, as is
discussed next in Section 4.

4. Experimental Characterization of the Prototyped Damped Boring Bar

This section discusses experiments conducted on a damped boring bar that was developed using
model-based recommendations. At first, constructional details of the boring bar are presented. These
are followed by discussions about the measured receptances with and without the damper. These
receptances are then used in an inverse sense to identify the stiffness and damping characteristics of
the damper and to compare those with the model predictions.

4.1. Constructional Details of the Prototyped Boring Bar

A cylindrical boring bar made of stainless steel, and with a diameter of 25 mm and an overhang
length of 200 mm, i.e., with a L/D ratio of 8 was developed and mounted in a specially designed
compression holder, as shown in Figure 9. The boring bar is made to be symmetric. Since model-based
investigations presented in Section 3 suggest that the chatter-free depth of cut increase with an
increase in the mass ratio, an absorber made of Tungsten carbide that has a high density is chosen.
The equivalent mass of the absorber for the given geometry is 0.135 kg. This absorber is supported
in two O-rings that are housed inside the plug and the slider, respectively. The slider is designed to
slide inside the boring bar and is used to tune the stiffness and damping characteristics of the O-ring
and the absorber. The mid position of the absorber is approximately ~120 mm away from the fixed
end, making the length ratio za

L � 0.6. Clearly, placing the absorber anywhere nearer the free end is
not practically realizable. The cartridge to mount the cutting insert is fastened to the end plug, which
in turn is screwed into the body of the boring bar. A DCGT11T304FN-25PH210T cutting insert was
mounted on the cartridge.
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Though the analysis in Section 3 suggested that for a given mass ratio, the absorber should be 
supported in springs that result in optimal frequency and damping ratios, selection of viscoelastic 
materials that will help obtain optimal frequency and damping ratios is non-trivial and is beyond the 
present scope of the paper. Moreover, the aim of this paper is not to make commercial and industry-
ready chatter-resistant boring bars, but instead guide their design using our proposed model. Hence, 
systematic dynamic characterization of different elastomeric materials as would be necessary to 
develop industry-ready boring bars is not performed herein, and instead simple O-rings are selected 

Figure 9. Constructional details of the prototyped damped boring bar, 1—body of the boring bar,
2—slider to tune the damper, 3—the absorber, 4—end plug, 5—cartridge to mount the cutting insert,
6—O-rings, 7—tuner.

Though the analysis in Section 3 suggested that for a given mass ratio, the absorber should be
supported in springs that result in optimal frequency and damping ratios, selection of viscoelastic
materials that will help obtain optimal frequency and damping ratios is non-trivial and is beyond
the present scope of the paper. Moreover, the aim of this paper is not to make commercial and
industry-ready chatter-resistant boring bars, but instead guide their design using our proposed model.
Hence, systematic dynamic characterization of different elastomeric materials as would be necessary
to develop industry-ready boring bars is not performed herein, and instead simple O-rings are selected
to support the mass of the damper within the boring bar. Since stiffness and damping characteristics
of the O-rings selected are not known a priori, and since this information is necessary to know how
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effective our model-based suggestions are, we identify these characteristics using the inverse receptance
coupling analysis approach as discussed in Section 4.3. Since measured receptances are necessary to
extract the stiffness and damping characteristics of the absorber, these are first discussed in Section 4.2.

4.2. Measured Receptances With and Without the Absorber

The experimental setup to measure receptances of the prototyped damped boring bar is shown in
Figure 10b, in which the boring bar is clamped inside a compression holder mounted on the cross-slide
of a CNC turning machine. To make comparisons with the newly prototyped damped boring bar
meaningful, receptances of a standard solid boring bar without the absorber were also measured—as
shown in the setup in Figure 10a. The standard solid boring bar has the same diameter and L/D ratio
as that of the damped boring bar and is also made of the same material as that of the body of the
damped boring bar. The solid boring bar also has an end plug and the same cartridge to mount the
cutting insert (see Figure 9) as that of the damped boring bar.
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Figure 10. Experimental setup to measure receptances of: (a) a standard solid boring bar with the same
material and L/D ratio as that of the damped bar, and (b) the prototyped damped boring bar.

To measure the dynamics of the damped and the solid boring bar(s), a dynamically calibrated
modal hammer (Dytran make with model number 5800B4) was used to excite the tools and an
accelerometer (Dytran make with model number 322F1) mounted at the location of interest was used
to measure the response. CutPRO’s® MALTF measurement module [76] along with a four-channel
data acquisition system (NI make with model number 9234) was used to measure all receptances.

Since stability of boring processes is governed by the dynamics of the tool in the radial direction [66,67],
i.e., the X direction in Figure 10, only X-directional receptances are measured, and these are shown
in Figure 11. For the case of the damped boring bar, all receptances at the free end are measured in
two configurations of the boring bar, i.e., with the absorber integrated within the bar, and separately
without the absorber inside the bar. For the case of the assembled receptance at the free end, the
absorber is tuned (using the tuner shown in Figure 10b) to obtain the optimally damped response,
which is also shown in Figure 11a. For the case of the solid boring bar, only the free end receptance
was measured, which is compared with the optimally damped response in Figure 11b. All receptances
in Figure 11 are shown in the logarithmic scale to make comparisons meaningful.
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Figure 11. (a) Measured receptances of the boring bar with and without the absorber wherein h11, h12a,
and h2a2a are the receptances of the boring bar without the absorber, H11 is the assembled optimally
tuned receptance at the free end for the boring bar with the absorber, and H11 from receptance
coupling (RC) is the assembled receptance reconstructed using measured substructural receptances;
(b) Comparison of the measured assembled optimally tuned receptance at the free end for the boring
bar with the absorber (H11) with that of the receptance of the solid standard boring bar at the free
end (h11).

Since model-based tuning of the absorber parameters using the receptance coupling approach
requires the direct receptances of the boring bar without the absorber at the free end (location 1 in
Figure 10b) and at the location of the coupling the absorber (location 2 in Figure 10b), as well as the
cross receptances in between the free end and the absorber mounting location, these are all measured
separately, and these measurements are also shown in Figure 11a. Although the absorber is supported
in two O-rings as shown in Figure 9, we assume that it can be approximated as supported at one location
with an equivalent spring and damper, which we think to be a reasonable approximation since the
absorber does not have a flexible body motion, but moves only as a rigid body supported on a spring
and a damper. Furthermore, since O-rings are complex elastomers that may have different stiffness and
damping characteristics in tension/compression, in torsion, and in shear, and since modelling these
direction-dependent elastomeric characteristics is non-trivial and is beyond the present scope of the
paper, we simply approximate the absorber supported in a linear spring and damper in the X direction.

As is evident from Figure 11, there appears a single dominant mode of the boring bar in the
frequency range of interest. Though there are other higher frequency modes, those are dynamically
stiffer than the dominant mode shown in Figure 11, and hence those are neglected. As is also amply
clear from Figure 11a, for the boring bar without the absorber, the receptance at the free end is
significantly more flexible than the receptances at the absorber connection location, and/or the cross
receptance between the free end and the absorber connection location. These are consistent with the
model-based investigations shown in Figure 4a. These observations further support the argument
that the absorber must be tuned for where it is placed. Since the measured cross responses were
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observed to be symmetric, i.e., since h12a � h2a1, h2a1 is not shown in Figure 11a. Furthermore, evident
from Figure 11 is how the damped response at the free end is significantly stiffer (almost an order of
magnitude) than the response without the absorber. These observations are also consistent with those
seen in the case of model-based investigations in Figure 4c.

Figure 11a also shows the assembled receptance that was reconstructed using measured
substructural receptances of the boring bar without the absorber, and the modelled receptance
of the absorber using Equation (17). Furthermore, as is evident, though the trend of both receptances
compare reasonably well, the reconstructed receptance appears to be more damped, and its peak
appears at a higher frequency than the peak in the measured assembled receptance. Interestingly,
the peak in the reconstructed receptance appears around the natural frequency of the substructural
boring bar without the absorber. This peak is likely due to the nature of the coupling procedure that
approximates the O-rings supporting the absorber as an equivalent spring and damper. Furthermore,
since the parameters of the effective complex stiffness of the absorber are not known a priori, those
parameters are identified in an inverse sense as discussed in Section 4.3, and any potential errors in
identification will naturally influence the coupling procedure, and the reconstructed receptance.

Since the main objective of this paper is not so much to have the reconstructed receptance match
the measured assembled receptance as is it to demonstrate the use of the receptance coupling procedure
to tune an absorber integrated anywhere within a boring bar modelled as a beam to improve the bar’s
chatter-resistance (as was characterized in Section 3), and to use those model-based results in turn
to guide prototyping of a boring bar, if a better match between the measured and the reconstructed
receptance is so desired, higher-fidelity modelling methods that better approximate the coupling of the
absorber to the boring bar may well be considered in future studies.

However, if this reconstructed receptance was to be used to predict machining stability limits to
guide cutting, since its peak magnitudes and frequencies are different than the measured assembled
receptance, stability limits and pockets would undoubtedly be different for both cases, as is indeed
shown in Section 5 that discusses cutting experiments.

Furthermore, comparisons shown in Figure 11b of the damped response at the free end with that
of the solid boring bar at the free end, clearly show that the solid boring bar is almost as flexible as the
locally hollow boring bar without the absorber (see Figure 11a), and, that the magnitude of the damped
response remains an order of magnitude stiffer than the response of the solid boring bar. However, the
natural frequency of the solid boring bar is significantly lower than the boring bar with/without an
absorber, and this is thought to be due to the higher mass of the solid boring bar in comparison to the
boring bar with a locally hollow cavity. These receptances of the standard solid boring bar, and the
prototyped damped boring bar are used in Section 5 to predict the stability behavior for cutting with
both types of boring bars.

4.3. Inverse Receptance Coupling Analysis to Experimentally Identify Absorber Parameters

Since the stiffness and damping characteristics of the O-rings supporting the absorber are not known
a priori, these are identified from the measured receptances presented above in Section 4.2. Assuming
that the absorber can be thought to be supported in an equivalent complex spring (k′ in Equation (7)), it
is easy to show that, if the assembled response and corresponding substructural responses are known
a priori, the expression for the complex spring can be rewritten using Equation (7) as:

k′ =
1

h12a(h11 −H11)
−1 h2a1 − (h2a2a + h2b2b)

(21)

wherein k′ = k+ iωc; i.e., the absorber’s equivalent stiffness and damping are: k = real(k′); c = imag(k′)
ω .

As is evident from Equation (21), k and c are identified using the measured assembled response at the
free end (H11), measured direct and cross receptances of the original boring bar (h2a2a, h2a1, h12a), and
the modelled response of the damper mass (h2b2b).
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Though the identified parameters are frequency dependent, since damping is only relevant around
the natural frequency, we average the values of k and c around the natural frequency of the original
beam. The stiffness and damping thus identified are tabulated in Table 2. Furthermore, since the
substructural receptances of the boring bar are already known (they have been measured and presented
in Section 4.2), and since the modelled receptance of the tuned mass for the given absorber mass of
0.135 kg is also known from Equation (17), these are synthesized with the receptance coupling approach
using Equation (7), and used to maximize the chatter-free depth of cut (using Equation (18)) to find the
optimal stiffness and damping parameters for the absorber. These optimized parameters are listed in
Table 2 to compare them with parameters identified using the inverse receptance coupling approach.

Table 2. Comparison of absorber’s stiffness and damping parameters identified using an inverse
receptance coupling approach and estimated using the proposed receptance coupling approach.

Absorber’s Stiffness [N/m] Absorber’s Damping [N-s/m] Method of Estimation

2.51× 105 238.8 Inverse receptance coupling
approach

1.08× 106 190.2 Obtained by maximizing
chatter-free blim

As is evident from Table 2, the absorber’s stiffness identified from the inverse receptance coupling
scheme is ~1/4th that estimated by maximizing the chatter-free stability limit using the traditional
receptance coupling approach (which uses a combination of measured and modelled receptances).
The damping coefficients on the other hand are found to be in closer agreement. The differences
between the stiffness identified from the inverse receptance coupling scheme and that estimated by
maximizing the chatter-free stability limit using the traditional receptance coupling approach can
be attributed to approximation errors due to averaging k′ around the natural frequency, and due to
approximating the absorber to be supported only in one spring-damper combination when in reality
the absorber is supported in two O-rings as shown in Figure 9. Despite these differences, it is clear that
the inverse receptance coupling method can be used to identify stiffness and damping characteristics of
the absorber, and these in turn can be used to guide the selection of elastomers that have similar desired
characteristics, which can come handy in developing commercial and industry-ready chatter-resistant
boring bars.

Having described the constructional details of the prototyped boring bar, and having characterized
its damped behaviour, these dynamics are used to predict the machining stability limits which are then
experimentally validated as discussed next in Section 5.

5. Experimental Characterization of Chatter

Improvement in chatter-resistance with the damped boring bar is discussed in this section, and
results for the damped boring are benchmarked against experiments with a standard solid boring bar.
Measured dynamics are used to predict stability using the ‘1D solution’ model [66,67] described in
Section 2.4. Since Equation (18) only accounts for limiting depth of cut, influence of speed is accounted
for as described in [66,67]. The geometric specifications of the cutting insert and the radial cutting
coefficient for cutting Aluminium are the same as described in Section 3.1. Experiments with the solid
boring bar and with the damped boring bar to validate model predictions were conducted with the
setups shown in Figure 12.
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Experiments with the prototyped damped boring bar as well as with the solid boring bar without
the absorber were conducted at three speeds, at a feed of 0.1 mm/rev, and the depth of cut was increased
incrementally at these three speeds until chatter vibrations were detected. A tri-axial accelerometer
and a microphone were used to record signals during cutting with the damped boring bar, and for
cutting with the solid boring bar, only the microphone was used as shown in Figure 12a. Cutting
parameters with increasing amplitudes of sound and/or accelerations were flagged as potential cases
of chatter. Spectra of these signals were observed to be dominated by frequencies near the natural
frequencies of the boring bar(s), further confirming the presence of chatter. Visual inspection of the
machined surface quality was also used to confirm the presence of chatter.

Model predictions of stability limits for the case of the solid boring bar and for the case of the
damped boring bar are shown in Figure 13. For the case of the damped boring bar, stability predictions
are made using the measured damped receptance, as well as with the receptance that was reconstructed
using measured substructural receptances shown in Figure 11a. The regions below the stability lobes
in Figure 13 correspond to chatter-free stable zones, and those above correspond to the case of unstable
cutting conditions. Experimental data points for cutting with both boring bars are superimposed
on the predictions in Figure 13. Since the stability limit for cutting with the solid boring bar is less
than the nose radius, a modified form of Equation (18) as suggested in [66,67] was used to predict the
boundaries shown in Figure 13. Figure 13 also shows microphone signals and their corresponding
frequency content along with photos of machined surface characteristics for representative stable and
unstable cutting conditions.

For the case of cutting with the solid boring bar, the predicted stability limit was found to be less
than 5 µm, and predictions were observed to be sensitive to the number of trapezoidal elements used
to discretize the nose radius, with lesser elements resulting in higher boundaries. To keep comparisons
meaningful, the number of elements to discretize the nose radius were kept the same as for predictions
with the damped boring bar (n = 1000). Experiments were conducted at depths of cuts of 20, 30 and
50 µm, and all experiments for cutting with the solid boring bar were found to be unstable. The growing
tendency of the measured microphone signals shown for representative cutting conditions clearly
suggest the occurrence of chatter vibrations, with the chatter frequency of ~405 Hz being higher than
the natural frequency of the solid boring bar, measured to be ~385 Hz. A representative image of the
machined workpiece also confirms the presence of chatter.

For the case of cutting with the damped boring bar, transition from stable to unstable (chatter)
cutting conditions were more obvious, and as is evident from the Figure 13, experimental observations
agree with model predictions made using the measured assembled receptance, and not with predictions
made with the reconstructed receptance. Since the reconstructed receptance was observed to be more
damped than the actual measured assembly receptance (see Figure 11a), the predicted stability
boundary with it is naturally higher than the boundary predicted with the actual measured receptance.
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For the case of cutting with the damped boring bar, the microphone signal corresponding to
cutting at a speed of 1200 RPM with a depth of cut of 2.5 mm, which lies just above the stability
boundary, clearly shows a growing tendency of the signal, and the frequency spectra of this signal
shows a peak around ~432 Hz, which is higher than the measured natural frequency of the damped
boring bar being ~420 Hz, confirming the occurrence of chatter vibrations. Similar observations were
made from the measured accelerations and its spectra, but for brevity, those are not reported herein.
The image of the machined workpiece surface for cutting with the damped boring bar at a speed
of 1200 RPM with a depth of cut of 2.5 mm shows chatter marks on the surface. Whereas, for the
case of cutting at a speed of 1600 RPM at a depth of cut of 2 mm, which lies just below the stability
limit, the microphone signal does not exhibit a growing tendency, and the frequency spectra of this
signal does not show any dominant peak anywhere near the natural frequency of the damped boring
bar, suggesting that this data point indeed corresponds to the case of stable cutting. This is indeed
confirmed by the image of the machined workpiece for this cutting condition.

Also evident from Figure 13 is that the absolute chatter-free stability limit for cutting with a solid
boring bar without the absorber is less than ~20 µm, and for cutting with a boring bar with an optimally
tuned absorber integrated within it is ~2.2 mm. This ~100-fold increase in the chatter-free stability
limit is significant and will correspondingly increase the productivity. The damped boring bar that was
prototyped based on the proposed receptance coupling model-based recommendations can clearly
enable chatter-free machining, which was the stated objective of the paper.
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6. Conclusions

This paper presented a receptance coupling based approach to design chatter-resistant damped
boring bars. The boring bar, modelled as a clamped-free Euler–Bernoulli beam, and the absorber
modelled as lumped mass, were treated as separate substructures whose receptances were combined
to obtain the assembled response at the free end of the boring bar. The assembled response was used
to predict the chatter limit, which in turn was maximized to find the optimal stiffness and damping
characteristics of the absorber. The proposed methods were shown capable of integrating the absorber
anywhere within the boring bar, thus overcoming the limitations of earlier approaches to design
damped tooling systems. Results with proposed methods were contrasted and verified with the results
from other classical methods.

For placing the absorber anywhere within the boring bar, the proposed method recommended
selection of an absorber with a high mass, high damping, and relatively low stiffness such as to
increase the chatter-free machining capability of the damped boring bar. These recommendations
guided prototyping of a damped boring bar. Measurements with the prototyped damped boring bar
showed the damped response to be an order of magnitude dynamically stiffer than the response of
a standard boring bar as well as the response of the locally hollow boring bar without the absorber.
These observations were consistent with model predictions. Measured receptances were also used in
an inverse sense to identify the stiffness and damping characteristics of the absorber, which can be
used to guide the selection of elastomers that have similar desired characteristics. This can further aid
in developing commercial and industry-ready chatter-resistant boring bars.

Experiments with the prototyped damped boring bar demonstrated a ~100-fold improvement
in chatter vibration free machining capability. Generalized methods presented herein can be easily
extended to design and develop other damped and chatter-resistant tooling systems.

Furthermore, though the trend of the measured damped response was found to agree with the
receptance reconstructed using measured substructural receptances of the boring bar without the
absorber, the use of still higher-fidelity modelling methods that better approximate the coupling of the
absorber to the boring bar may well result in a better match between the measured and the reconstructed
receptance. Moreover, though investigations in this paper assumed that a single-directional linear elastic
element supporting the absorber within the tool can sufficiently approximate the elastomer’s behaviour,
since elastomers may have different stiffness and damping characteristics in tension/compression, in
torsion, and in shear, how those characteristics influence tuning of the absorber remains unaddressed,
and can be investigated in future studies. Future investigations may also consider incorporating
high-fidelity joint models to account for how macro/micro translational and/or rotational slip in the
joint between the tooling system and the holder may influence the primary system’s response and in
turn influence the optimal tuning of the absorber.
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