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Abstract: Unforeseen machine tool component failures cause considerable losses. This study presents
a new approach to unsupervised machine component condition identification. It uses test cycle data
of machine components in healthy and various faulty conditions for modelling. The novelty in the
approach consists of the time series representation as features, the filtering of the features for statistical
significance, and the use of this feature representation to train a clustering model. The benefit in the
proposed approach is its small engineering effort, the potential for automation, the small amount
of data necessary for training and updating the model, and the potential to distinguish between
multiple known and unknown conditions. Online measurements on machines in unknown conditions
are performed to predict the component condition with the aid of the trained model. The approach
was exemplarily tested and verified on different healthy and faulty states of a grinding machine
axis. For the accurate classification of the component condition, different clustering algorithms were
evaluated and compared. The proposed solution demonstrated encouraging results as it accurately
classified the component condition. It requires little data, is straightforward to implement and update,
and is able to precisely differentiate minor differences of faults in test cycle time series.

Keywords: condition monitoring; machine learning; prognostics and health monitoring; unsupervised
learning; machine tools; manufacturing

1. Introduction

Failures and unplanned maintenance of machine tools cause severe productivity losses. As a
remedy, Kusiak [1] proposes a vision of the smart factory, in which monitoring and prediction of the
health status of systems prevent faults from occurring. A prerequisite for the monitoring of equipment
is the synergy of operational technology (OT) and information technology (IT). It is often described as a
cyber-physical system, which is a key research element of the smart factory [2,3]. For this cyber-physical
manufacturing of the future, Panetto et al. [4] have identified four grand challenges, of which two relate
to the operational availability of machine tools: resilient digital manufacturing networks, and data
analytics for decision support. More precisely, the required applications in view of machine tools
comprise tools for monitoring disruptions, prescriptive and predictive modelling, as well as risk
analysis and control.

In this context, this study presents a new prognostics and health management (PHM) approach
for machine tool components. It allows faults, critical states or deviations from a healthy behaviour to
be detected. Most current approaches model the healthy states of the components. Deviations from the
healthy states are then identified as potential failure causes. However, the breakdown reasons and
their characteristics with respect to different failure types remain unknown. The proposed approach by
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contrast identifies the type of fault that is present or likely to occur on a component. This is achieved
by comparing a test cycle sensor signal with previously observed or recreated fault states of a machine
component. To do so, the concept suggests transforming the sensor data time series of the test cycle
into a representation of features. The features are different time series characteristics, such as e.g.,
Fourier or continuous wavelet transforms. To allow a generalist approach that can be applied to
any type of component and test cycle data format, a large number of more than 700 features are
calculated, before deciding which are retained. To detect differences in test cycles of different health
or failure states, the features need to allow a clear distinction. All features with low significance,
i.e., strong overlap of feature values for different conditions, are discarded. Based on this cleaned
feature representation, previously recorded healthy or failure states can be grouped in clusters of
their feature values. This model, consisting of selected features and grouped clusters of different
healthy and faulty conditions, serves for the further predictive assessment of machine components
in unknown conditions. To analyse a component in an unknown condition, it needs to execute an
identical test cycle, for which the same features are calculated. The proximity of the feature values to
previously recorded healthy or faulty conditions allows the state of the currently analysed component
to be determined. As only the features with higher statistical significance are retained, even minor
differences can be represented in the combination of multiple features. However, the larger the
number of features, the higher the dimensionality of the clustering model, which introduces additional
requirements for the selection of the clustering algorithm. Moreover, the clustering model needs to
distinguish between healthy, faulty and previously unknown (neither healthy nor a known fault)
conditions. To fulfil this aspect, different partitioning and clustering algorithms were evaluated,
of which hierarchical density-based spatial clustering of applications with noise (HDBSCAN) managed
to meet all requirements and showed the best performance. To obtain the necessary data for the
different component conditions, faulty states were recreated artificially for model training by the head
service technician expert of the machine Original Equipment Manufacturer (OEM) on which the tests
and data collection were conducted. As the study is of exploratory nature to examine the feasibility of
the proposed approach, the artificially introduced faults serve as the basis to evaluate its performance.
Further research will be undertaken into a large-scale test and its applicability to a fleet of machines.
The novelty of the proposed approach lies within (i) the representation of time series for condition
monitoring as features for clustering, (ii) the fact that raw values of selected features are used rather
than e.g., principal component analysis (PCA), (iii) the detection of both formerly known and unknown
conditions of a component, and (iv) the universal applicability of the approach to different natures
(constant, controlled-constant and varying) and types (linear, rotatory) of components. Advantages (i)
and (iv) reduce the engineering effort in the implementation, (ii) retain the physical interpretability of
the calculated features and the clustering results, and (iii) allow the proposed solution to be used with
incomplete information and update it with growing data sets.

According to Choudhary et al. [5], the data-driven knowledge discovery process consists of
domain understanding, raw data collection, data cleaning and transformation, model building and
testing, implementation, feedback and final solution, and solution integration and storage. This study
focuses on the steps related to domain understanding, raw data collection, and emphasizes especially
data cleaning and transformation, and model building and testing.

2. Related Work

2.1. Failure Detection and Prognostics and Health Management (PHM) Applications in Machine Tools

Andhare et al. stipulate that more than 50% of common machine tool failures are due to component
damage or looseness [6]. To prevent downtimes, PHM applications supervise, detect and anticipate
machine and component behaviour. According to Tao et al. [7], increasing availability of both,
measurement data and advanced algorithms stimulate the application of machine learning approaches
in PHM. Equipping machines with the cognition to detect their health status autonomously follows
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the paradigm of biologicalization, which seeks to mimic human and natural traits of intelligence in
manufacturing systems, according to Wegener et al. [8]. Supervision of machine tool components is
possible via modelling of their behaviour in the healthy state, and subsequently detecting anomalies
during further operation, as shown e.g., by Sobie et al. and Ruiz-Carcel and Starr [9,10]. Often,
faults and failures are typically not unidimensional, but the result of multiple colluding or simultaneous
degradations. Most PHM approaches apply a binary distinction between health and failure states,
without consideration of the various faults and their severity. These fault types have different impacts
on the usability of the machine, depending on the process and the users’ requirements. Therefore,
not only does the presence of anomalies but also the different types and severities of faults on machine
tool components need to be identified. A multi-dimensional health assessment allows the impact a
degradation can have on a production process or a final product to be revealed. Besides an accurate
assessment, challenges are the data gathering and modelling effort for different faulty states, as well as
the reproducibility and applicability to different machine and component types.

Machine tool failures depend on a multitude of influences. Internal variances (thermal and
dynamic behaviour, manufacturing and assembly of components) and external factors (surrounding
and environmental influences, usage and maintenance) make faults appear stochastic. These influences
are cumbersome to reproduce in purely physical models approaches, wherefore many recently
published PHM approaches in manufacturing incorporate statistical models. Prominent examples for
the application of data driven models in monitoring are described by e.g., [10–15], relevant studies on
data-based approaches for prognosis are described by [9,16–18]. Both the PHM approach, as well as
the applied learning algorithm strongly impact the capabilities and performance of the application.
Comprehensive overviews of learning and data mining techniques for manufacturing are provided by
Wuest et al. [19] and Choudhary et al. [5], of which the described clustering approaches are used for
this approach.

The field of prominent representatives of PHM applications in machine monitoring apply
supervised learning algorithms, as described in comprehensive overviews by Gao et al. and
Zao et al. [20,21]. As an example, Malhotra et al. [18] model the healthy state to subsequently detect
anomalies with recurrent neural networks (RNN). Sequences of a healthy state are trained on a
long short-term memory (LSTM) encoder-decoder, in order to obtain a degradation indication.
The degradation curves are matched to other failure curves, in order to estimate the remaining useful
lifetime (RUL). Reference [14] extracts features from volumetric errors (VE) on a five-axis machine tool
via fractal analysis, to recognize changes in VEs as degradations. Duan et al. apply an auto-regression
on multivariate numerical control (NC) signals of circular machine tool tests, where residuals due to
anomalies are used to model the machine state as a semi-Markov Process [22]. Malhotra’s and most
other PHM approaches rely on simulated degradation for model training, as it is also the case e.g.,
for Sobie et al. [9] and Xing et al. [14]. They conclude that PHM models trained on simulated degradation
data show an inferior performance to those trained on real machine data in a comparative study.

Overall, supervised algorithms allow differences from healthy behaviour of components in an
unknown condition to be quantified. The indication of a deviation from a previously defined healthy
state however lacks the description of the fault dimension or type. As each individual fault requires a
corresponding data set for learning or classification, simultaneously designating the deviation and
the fault type is a challenge. Moreover, component behaviour outside of the training or learned
cases is challenging to detect and label for supervised approaches. Due to the inherent input–output
relationship of supervised models, noise, outliers and inaccurate data have a strong adverse impact.
Filling these gaps with simulated data has the disadvantage of inferior performance as pointed out
by Sobie et al. [9]. Unsupervised algorithms can be applied to detect deviations from a collection of
previously observed healthy states, and equally consider a priori known faulty states. The issue of
incorrectly labelled data is irrelevant to unsupervised models, and they exhibit a higher robustness
to noisy data, as outlined by Zhang et al. [23]. They published an unsupervised machining process
supervision called AnomDB. It is an outlier detection framework for NC data, in which a PCA is
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applied to a multivariate time series prior to feature extraction, followed by a density-based spatial
clustering of applications with noise (DBSCAN). Zhang et al. showed a superior performance of their
proposal compared to other unsupervised approaches.

In conclusion, unsupervised approaches show promising potential for machine tool supervision.
However, their abilities to cope with noisy and multivariate data for PHM remains to be examined.
Density-based clustering algorithms have shown superior outlier detection as compared to other
clustering methods in these applications, as Zhang et al. demonstrated. On the downside, the anomalies
were introduced synthetically, and their approach lacks an interpretability of the features due to the
prior PCA performed on the features. Similarly, the distinction between known and unknown anomaly
types, and the applicability of unsupervised algorithms to component supervision with real machine
data needs to be proven.

2.2. Learning Algorithms for PHM Applications

Unsupervised learning algorithms differ significantly in view of clustering capabilities
(e.g., accommodation of varying cluster shapes, sizes and densities, as well as the ability to cope with
noisy data), and the amount of a priori required hyperparameters or assumptions for initialization.
For the proposed approach, the following requirements need to be met: For performance, the algorithm
must be computationally efficient. The attribution of samples to a cluster needs to be provided with an
uncertainty measure, to detect and avoid false classifications. It needs to accommodate clusters of
different shapes, which can be non-hyperspherical, or even non-convex. For the detection of unknown
states and noise, the algorithm needs to distinguish if a sample belongs to an existing or a new, a priori
unobserved cluster. To avoid heuristic tuning of hyperparameters, both the number of clusters, as well
as other hyperparameters (e.g., maximum distance of neighbouring points) need to be inferred by
the algorithm.

Finally, the number of samples per observed state will vary significantly, as observations of healthy
axes typically dominate observations of failure states. Hence, the algorithm must be robust towards
strong variance in cluster densities and sizes. Four state of the art clustering algorithms are compared
in terms of their viability of PHM applications in machine tools: k-means [24], Gaussian mixture
models (GMM) [25], DBSCAN [26] and hierarchical DBSCAN (HDBSCAN) [27].

2.2.1. k-Means

k-Means is a partitioning algorithm originally presented by MacQueen [28], which divides an
n-dimensional space of data points into k distinct regions. Each partition k is defined by all points
within the region and represented by its mean. The algorithm seeks to minimise the average squared
distance between points in the distinct clusters. According to Arthur and Vassilvitskii [24], k-means
can be designed in a computationally efficient way, but it has a number of disadvantages: (1) the
algorithm attributes each data point to a cluster, it cannot designate noise or new clusters. (2) Following
from its attribution rule, the cluster shape is assumed to be hyperspherical. (3) Attributed data
points are provided without a measure of uncertainty for points lying further away from the cluster
mean. (4) The number of clusters k has to be set in advance, it cannot be inferred by the algorithm.
Some shortcomings can be overcome by modifications of the k-means algorithm, but the assumption
of a globular cluster shape remains inevitable. Therefore, the predictive attribution of data points with
high uncertainty or noise inhibits a risk of false positive classifications.

2.2.2. Gaussian Mixture Model (GMM)

Some of the shortcomings of k-means are addressed by GMMs, which model clusters as normal
distributions around a mean, and expresses cluster attribution for a point as a probability. Hence,
it inherently provides the uncertainty measure k-means lacks, and can identify points with low
attribution probabilities as outliers. Through its probability-based cluster description, cluster shapes
are not limited to globular shapes. While GMM addresses some issues of k-means, it still preserves
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other disadvantages, according to McLachlan et al. [25]: (1) similar to k-means, the parameter k cannot
be inferred by the algorithm itself. (2) The algorithm cannot represent more complex non-convex
cluster shapes.

2.2.3. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN is a non-probabilistic algorithm and assumes clusters to be regions of high sample
density [26]. It identifies clusters of any shape, as no prior shape assumptions are maintained.
Moreover, it is able to infer the number of clusters itself and, therefore, resolves the downsides of
k-means and GMM. Unfortunately, DBSCAN performs poorly on clusters with varying density, as the
neighbour count threshold is a fixed parameter. McInnes et al. extended DBSCAN to a hierarchical
algorithm (HDBSCAN), retaining the advantages of DBSCAN by inferring cluster sizes via the union
of neighbouring clusters sharing a similar hierarchical. This detaches the cluster attribution from
its shape and points distribution, resolving the problem of handling varying cluster densities [27].
Moreover, outliers, lying by definition in sparse regions, are not clustered by HDBSCAN. They are
identified and marked as so-called noise-points, which are not attributed to any existing cluster. Overall,
HDBSCAN performs well with outliers and noisy data sets, and has the ability to handle varying cluster
densities, making it a suitable candidate for time-series feature based component state identification.
An overview of the requirements for the proposed approach and the degree of fulfilment of the
presented algorithms is shown in Table 1.

Table 1. Qualitative capability comparison of selected clustering algorithms.

k-Means GMM DBSCAN HDBSCAN

Computationally efficient

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 5 of 15 

 

cannot be inferred by the algorithm itself. (2) The algorithm cannot represent more complex non-

convex cluster shapes. 

2.2.3. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

DBSCAN is a non-probabilistic algorithm and assumes clusters to be regions of high sample 

density [26]. It identifies clusters of any shape, as no prior shape assumptions are maintained. 

Moreover, it is able to infer the number of clusters itself and, therefore, resolves the downsides of k-

means and GMM. Unfortunately, DBSCAN performs poorly on clusters with varying density, as the 

neighbour count threshold is a fixed parameter. McInnes et al. extended DBSCAN to a hierarchical 

algorithm (HDBSCAN), retaining the advantages of DBSCAN by inferring cluster sizes via the union 

of neighbouring clusters sharing a similar hierarchical. This detaches the cluster attribution from its 

shape and points distribution, resolving the problem of handling varying cluster densities [27]. 

Moreover, outliers, lying by definition in sparse regions, are not clustered by HDBSCAN. They are 

identified and marked as so-called noise-points, which are not attributed to any existing cluster. 

Overall, HDBSCAN performs well with outliers and noisy data sets, and has the ability to handle 

varying cluster densities, making it a suitable candidate for time-series feature based component state 

identification. An overview of the requirements for the proposed approach and the degree of 

fulfilment of the presented algorithms is shown in Table 1. 

Table 1. Qualitative capability comparison of selected clustering algorithms. 

 k-Means GMM DBSCAN HDBSCAN 

Computationally efficient     

Provision of uncertainty measure     

Non-hyperspherical clusters     

Recognition of noise or emerging clusters     

Accommodation of non-convex clusters     

Inference of number of clusters     

Complete hyperparameter inference     

Accommodation of varying cluster densities     

Meaning of symbol annotation: —incapable, —capable with modifications, —capable. 

3. Materials and Methods 

As the method is designed according to a conventional data science approach, this section is 

structured as follows: 

(1) Data acquisition: the preparation of the machine component, the test cycle design and the 

necessary data to be acquired and their format are described. 

(2) Data pre-processing: after the data are acquired, their parsing, cleaning and treatment to prepare 

them for model construction and training are detailed. 

(3) Model creation: the cleaned and prepared data of the training set are fed to a clustering 

algorithm to train a model. 

(4) Model deployment: the constructed model is used evaluated on the test data set, and 

furthermore used as a predictor for prior unknown data sets. The update and maintenance of 

the model is outlined as well. 

(5) Advantages over the state of the art: the differentiation and novelty of the proposed approach 

are highlighted, in order to allow a comparison with related studies. 

3.1. Data Acquisition 

On an arbitrary machine tool component, a test cycle is conducted outside of machining times 

and without a work piece engaged. This ensures comparable preconditions for data generation and 

acquisition. The test cycles for model training and the use of the model for predictions are identical. 

Each component of a machine is analysed separately, the measurement and modelling process 

� � �
Provision of uncertainty measure

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 5 of 15 

 

cannot be inferred by the algorithm itself. (2) The algorithm cannot represent more complex non-

convex cluster shapes. 

2.2.3. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

DBSCAN is a non-probabilistic algorithm and assumes clusters to be regions of high sample 

density [26]. It identifies clusters of any shape, as no prior shape assumptions are maintained. 

Moreover, it is able to infer the number of clusters itself and, therefore, resolves the downsides of k-

means and GMM. Unfortunately, DBSCAN performs poorly on clusters with varying density, as the 

neighbour count threshold is a fixed parameter. McInnes et al. extended DBSCAN to a hierarchical 

algorithm (HDBSCAN), retaining the advantages of DBSCAN by inferring cluster sizes via the union 

of neighbouring clusters sharing a similar hierarchical. This detaches the cluster attribution from its 

shape and points distribution, resolving the problem of handling varying cluster densities [27]. 

Moreover, outliers, lying by definition in sparse regions, are not clustered by HDBSCAN. They are 

identified and marked as so-called noise-points, which are not attributed to any existing cluster. 

Overall, HDBSCAN performs well with outliers and noisy data sets, and has the ability to handle 

varying cluster densities, making it a suitable candidate for time-series feature based component state 

identification. An overview of the requirements for the proposed approach and the degree of 

fulfilment of the presented algorithms is shown in Table 1. 

Table 1. Qualitative capability comparison of selected clustering algorithms. 

 k-Means GMM DBSCAN HDBSCAN 

Computationally efficient     

Provision of uncertainty measure     

Non-hyperspherical clusters     

Recognition of noise or emerging clusters     

Accommodation of non-convex clusters     

Inference of number of clusters     

Complete hyperparameter inference     

Accommodation of varying cluster densities     

Meaning of symbol annotation: —incapable, —capable with modifications, —capable. 

3. Materials and Methods 

As the method is designed according to a conventional data science approach, this section is 

structured as follows: 

(1) Data acquisition: the preparation of the machine component, the test cycle design and the 

necessary data to be acquired and their format are described. 

(2) Data pre-processing: after the data are acquired, their parsing, cleaning and treatment to prepare 

them for model construction and training are detailed. 

(3) Model creation: the cleaned and prepared data of the training set are fed to a clustering 

algorithm to train a model. 

(4) Model deployment: the constructed model is used evaluated on the test data set, and 

furthermore used as a predictor for prior unknown data sets. The update and maintenance of 

the model is outlined as well. 

(5) Advantages over the state of the art: the differentiation and novelty of the proposed approach 

are highlighted, in order to allow a comparison with related studies. 

3.1. Data Acquisition 

On an arbitrary machine tool component, a test cycle is conducted outside of machining times 

and without a work piece engaged. This ensures comparable preconditions for data generation and 

acquisition. The test cycles for model training and the use of the model for predictions are identical. 

Each component of a machine is analysed separately, the measurement and modelling process 

� � �
Non-hyperspherical clusters # � � �

Recognition of noise or emerging clusters #

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 5 of 15 

 

cannot be inferred by the algorithm itself. (2) The algorithm cannot represent more complex non-

convex cluster shapes. 

2.2.3. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

DBSCAN is a non-probabilistic algorithm and assumes clusters to be regions of high sample 

density [26]. It identifies clusters of any shape, as no prior shape assumptions are maintained. 

Moreover, it is able to infer the number of clusters itself and, therefore, resolves the downsides of k-

means and GMM. Unfortunately, DBSCAN performs poorly on clusters with varying density, as the 

neighbour count threshold is a fixed parameter. McInnes et al. extended DBSCAN to a hierarchical 

algorithm (HDBSCAN), retaining the advantages of DBSCAN by inferring cluster sizes via the union 

of neighbouring clusters sharing a similar hierarchical. This detaches the cluster attribution from its 

shape and points distribution, resolving the problem of handling varying cluster densities [27]. 

Moreover, outliers, lying by definition in sparse regions, are not clustered by HDBSCAN. They are 

identified and marked as so-called noise-points, which are not attributed to any existing cluster. 

Overall, HDBSCAN performs well with outliers and noisy data sets, and has the ability to handle 

varying cluster densities, making it a suitable candidate for time-series feature based component state 

identification. An overview of the requirements for the proposed approach and the degree of 

fulfilment of the presented algorithms is shown in Table 1. 

Table 1. Qualitative capability comparison of selected clustering algorithms. 

 k-Means GMM DBSCAN HDBSCAN 

Computationally efficient     

Provision of uncertainty measure     

Non-hyperspherical clusters     

Recognition of noise or emerging clusters     

Accommodation of non-convex clusters     

Inference of number of clusters     

Complete hyperparameter inference     

Accommodation of varying cluster densities     

Meaning of symbol annotation: —incapable, —capable with modifications, —capable. 

3. Materials and Methods 

As the method is designed according to a conventional data science approach, this section is 

structured as follows: 

(1) Data acquisition: the preparation of the machine component, the test cycle design and the 

necessary data to be acquired and their format are described. 

(2) Data pre-processing: after the data are acquired, their parsing, cleaning and treatment to prepare 

them for model construction and training are detailed. 

(3) Model creation: the cleaned and prepared data of the training set are fed to a clustering 

algorithm to train a model. 

(4) Model deployment: the constructed model is used evaluated on the test data set, and 

furthermore used as a predictor for prior unknown data sets. The update and maintenance of 

the model is outlined as well. 

(5) Advantages over the state of the art: the differentiation and novelty of the proposed approach 

are highlighted, in order to allow a comparison with related studies. 

3.1. Data Acquisition 

On an arbitrary machine tool component, a test cycle is conducted outside of machining times 

and without a work piece engaged. This ensures comparable preconditions for data generation and 

acquisition. The test cycles for model training and the use of the model for predictions are identical. 

Each component of a machine is analysed separately, the measurement and modelling process 

� �
Accommodation of non-convex clusters # # � �

Inference of number of clusters # # � �
Complete hyperparameter inference # #

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 5 of 15 

 

cannot be inferred by the algorithm itself. (2) The algorithm cannot represent more complex non-

convex cluster shapes. 

2.2.3. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

DBSCAN is a non-probabilistic algorithm and assumes clusters to be regions of high sample 

density [26]. It identifies clusters of any shape, as no prior shape assumptions are maintained. 

Moreover, it is able to infer the number of clusters itself and, therefore, resolves the downsides of k-

means and GMM. Unfortunately, DBSCAN performs poorly on clusters with varying density, as the 

neighbour count threshold is a fixed parameter. McInnes et al. extended DBSCAN to a hierarchical 

algorithm (HDBSCAN), retaining the advantages of DBSCAN by inferring cluster sizes via the union 

of neighbouring clusters sharing a similar hierarchical. This detaches the cluster attribution from its 

shape and points distribution, resolving the problem of handling varying cluster densities [27]. 

Moreover, outliers, lying by definition in sparse regions, are not clustered by HDBSCAN. They are 

identified and marked as so-called noise-points, which are not attributed to any existing cluster. 

Overall, HDBSCAN performs well with outliers and noisy data sets, and has the ability to handle 

varying cluster densities, making it a suitable candidate for time-series feature based component state 

identification. An overview of the requirements for the proposed approach and the degree of 

fulfilment of the presented algorithms is shown in Table 1. 

Table 1. Qualitative capability comparison of selected clustering algorithms. 

 k-Means GMM DBSCAN HDBSCAN 

Computationally efficient     

Provision of uncertainty measure     

Non-hyperspherical clusters     

Recognition of noise or emerging clusters     

Accommodation of non-convex clusters     

Inference of number of clusters     

Complete hyperparameter inference     

Accommodation of varying cluster densities     

Meaning of symbol annotation: —incapable, —capable with modifications, —capable. 

3. Materials and Methods 

As the method is designed according to a conventional data science approach, this section is 

structured as follows: 

(1) Data acquisition: the preparation of the machine component, the test cycle design and the 

necessary data to be acquired and their format are described. 

(2) Data pre-processing: after the data are acquired, their parsing, cleaning and treatment to prepare 

them for model construction and training are detailed. 

(3) Model creation: the cleaned and prepared data of the training set are fed to a clustering 

algorithm to train a model. 

(4) Model deployment: the constructed model is used evaluated on the test data set, and 

furthermore used as a predictor for prior unknown data sets. The update and maintenance of 

the model is outlined as well. 

(5) Advantages over the state of the art: the differentiation and novelty of the proposed approach 

are highlighted, in order to allow a comparison with related studies. 

3.1. Data Acquisition 

On an arbitrary machine tool component, a test cycle is conducted outside of machining times 

and without a work piece engaged. This ensures comparable preconditions for data generation and 

acquisition. The test cycles for model training and the use of the model for predictions are identical. 

Each component of a machine is analysed separately, the measurement and modelling process 

�
Accommodation of varying cluster densities # # # �

Meaning of symbol annotation: #—incapable,

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 5 of 15 

 

cannot be inferred by the algorithm itself. (2) The algorithm cannot represent more complex non-

convex cluster shapes. 

2.2.3. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

DBSCAN is a non-probabilistic algorithm and assumes clusters to be regions of high sample 

density [26]. It identifies clusters of any shape, as no prior shape assumptions are maintained. 

Moreover, it is able to infer the number of clusters itself and, therefore, resolves the downsides of k-

means and GMM. Unfortunately, DBSCAN performs poorly on clusters with varying density, as the 

neighbour count threshold is a fixed parameter. McInnes et al. extended DBSCAN to a hierarchical 

algorithm (HDBSCAN), retaining the advantages of DBSCAN by inferring cluster sizes via the union 

of neighbouring clusters sharing a similar hierarchical. This detaches the cluster attribution from its 

shape and points distribution, resolving the problem of handling varying cluster densities [27]. 

Moreover, outliers, lying by definition in sparse regions, are not clustered by HDBSCAN. They are 

identified and marked as so-called noise-points, which are not attributed to any existing cluster. 

Overall, HDBSCAN performs well with outliers and noisy data sets, and has the ability to handle 

varying cluster densities, making it a suitable candidate for time-series feature based component state 

identification. An overview of the requirements for the proposed approach and the degree of 

fulfilment of the presented algorithms is shown in Table 1. 

Table 1. Qualitative capability comparison of selected clustering algorithms. 

 k-Means GMM DBSCAN HDBSCAN 

Computationally efficient     

Provision of uncertainty measure     

Non-hyperspherical clusters     

Recognition of noise or emerging clusters     

Accommodation of non-convex clusters     

Inference of number of clusters     

Complete hyperparameter inference     

Accommodation of varying cluster densities     

Meaning of symbol annotation: —incapable, —capable with modifications, —capable. 

3. Materials and Methods 

As the method is designed according to a conventional data science approach, this section is 

structured as follows: 

(1) Data acquisition: the preparation of the machine component, the test cycle design and the 

necessary data to be acquired and their format are described. 

(2) Data pre-processing: after the data are acquired, their parsing, cleaning and treatment to prepare 

them for model construction and training are detailed. 

(3) Model creation: the cleaned and prepared data of the training set are fed to a clustering 

algorithm to train a model. 

(4) Model deployment: the constructed model is used evaluated on the test data set, and 

furthermore used as a predictor for prior unknown data sets. The update and maintenance of 

the model is outlined as well. 

(5) Advantages over the state of the art: the differentiation and novelty of the proposed approach 

are highlighted, in order to allow a comparison with related studies. 

3.1. Data Acquisition 

On an arbitrary machine tool component, a test cycle is conducted outside of machining times 

and without a work piece engaged. This ensures comparable preconditions for data generation and 

acquisition. The test cycles for model training and the use of the model for predictions are identical. 

Each component of a machine is analysed separately, the measurement and modelling process 

—capable with modifications, �—capable.

3. Materials and Methods

As the method is designed according to a conventional data science approach, this section is
structured as follows:

(1) Data acquisition: the preparation of the machine component, the test cycle design and the
necessary data to be acquired and their format are described.

(2) Data pre-processing: after the data are acquired, their parsing, cleaning and treatment to prepare
them for model construction and training are detailed.

(3) Model creation: the cleaned and prepared data of the training set are fed to a clustering algorithm
to train a model.

(4) Model deployment: the constructed model is used evaluated on the test data set, and furthermore
used as a predictor for prior unknown data sets. The update and maintenance of the model is
outlined as well.

(5) Advantages over the state of the art: the differentiation and novelty of the proposed approach are
highlighted, in order to allow a comparison with related studies.

3.1. Data Acquisition

On an arbitrary machine tool component, a test cycle is conducted outside of machining times
and without a work piece engaged. This ensures comparable preconditions for data generation and
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acquisition. The test cycles for model training and the use of the model for predictions are identical.
Each component of a machine is analysed separately, the measurement and modelling process remains
the same for all machine components. In this study, the approach is demonstrated exemplarily for
machine axes. For each axis, the data of test cycles of both healthy and different faulty states are
collected. Faulty conditions can be recreated by artificially introducing mechanical or electronical
faults that reproduce the dynamics of a critical behaviour. In an exemplary case, common faults
like excessive friction, mechanical defects, pretension loss and wear are used as representative fault
types to be detected. The component prepared in both healthy and faulty conditions executes a test
cycle trajectory: A translatory axis is moved from one end to the other, and back to its initial start
position. Similarly, a rotatory axis is turned from start to its outward movement limit and back to
its start position. The trajectory consists of 4 segments in each direction: an acceleration ramp and
its transient response, a constant velocity segment, a deceleration ramp until complete halt and its
transient response, and the constant holding in the following position. All of these segments show
different aspects of the component’s dynamic behaviour, allowing it to incorporate a high information
density in the test cycle data. As the segments are recorded for both (+) movement or clockwise
direction and (−) movement or counter clockwise direction, a total of 8 different segments are recorded
in each test cycle. They are referred to as regions of interest (ROI). The test cycles are executed with the
common process dynamics and velocities of the machine component in operation, in order to recreate
operating conditions for the detection and quantification of anomalies. Furthermore, the test cycles are
repeated multiple times to minimize variance over the samples and to enable the detection of outliers
in the recordings. The test cycle data are acquired directly by the component drive or the NC of the
machine with high sampling rates. Higher sampling rates allow to detect faults with high-frequency
oscillations of mechanics and control feedback loop signals while satisfying the Shannon–Nyquist
theorem. This is especially important for highly rigid structures, short axis travels, low inertia of
moving parts or high axis dynamics, in which faults tend to translate into higher frequency oscillations
of mechanics and control loop feedback signals.

3.2. Data Pre-Processing

The resulting data set is split in a test set and a training set, in order to both train and evaluate the
model. During model deployment for prediction, the model is applied to test cycle data of machine
axes in unknown condition to assess their health status. The status is described as either healthy
condition, similar to a known faulty condition, or unknown (neither healthy nor a known faulty state).

Figure 1 provides an overview of the solution structure, with a focus on data processing: For the
analysis of the measurement data, the current signals of the component’s control loop are used, as a
representative for the resulting force or torque. Preliminary filtering for poor signal accuracy, for outliers
of test cycle duration, for sampling rate inconsistencies and for other anomalies is conducted. (1) Since
the axes exhibit different behaviours for different conditions, e.g., lag in force or position signal due to
mechanical play, a precise synchronization of the test cycle data is crucial. The current signal is best
synchronized on feed forward rather than feedback signals. The test cycle current signal time series
are segmented into the ROIs beforehand for separate analysis. Each ROI represents different dynamics,
responses and, therefore, potential fault characteristics of the component, whereby a separation
is necessary. The ROIs are treated as independent time series for data analysis, their results are
merged in a later step. (2) To make the sampled, synchronized and segmented force signal time series
comparable, features describing the relevant time series characteristics are extracted. The considered
feature extraction approaches are e.g., fast Fourier transform (FFT), continuous wavelet transform
(CWT), autocorrelation, or approximate entropy, which are each calculated with various parameter sets.
The feature extractions are calculated for all possible parameter sets for each ROI, before irrelevant and
insignificant features are filtered and discarded. This allows to extract a different set of features for
each ROI, as the significance of a single feature for a specific ROI is higher than that of the same feature
for the entire test cycle. In practice, a component with a loose motor may exhibit a behaviour similar
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to healthy axis when held still or moved at a constant velocity (ROIs 2,4,6,8), but it is significantly
different during, acceleration, braking and inversion (ROIs 1,3,5,7). For a component with signs of
excessive friction, the exact opposite may be the case. The extraction of nm features of all of m ROIs
transforms the time series into a higher dimensional feature space, with all features constructing a
vector v of rank nTotal =

∑m
1 nm. The corresponding feature values vn ε v describe the time series as a

point in an n-dimensional space. After calculation of all features per ROI, the features are normalized
(3). As some faulty components show an extreme behaviour e.g., in vibrations, their features would
distort the scaled distribution when using a standard mean or a min-max scaler. Hence, a robust scaler
less susceptible to outliers and variance is used. Subsequently, multiple filters are applied to retain only
those features allowing conditions to be distinguished from one another, reducing the dimensionality
of the feature vector v. First, features are filtered for statistical significance by p-value. Second, a filter
for variance and kurtosis of features within samples of the same condition is applied—the variance
filter removes features of which the values for the same condition negatively impact clustering due to
the broad distribution. The kurtosis filter allows outliers to be filtered for, by opting for features with a
flat-tailed distribution. A third filter discards highly correlated features to avoid bias. Overall, the filters
are intended to remove unwanted stochastic influences during test cycles, introduced both by variance
in the execution of the test cycle, the behaviour of the component, and the data acquisition. As a result,
each time-series is now described by a vector v̂ in a high-dimensional feature space. The dimensionality
of v̂ is reduced by the filtered features compared to v, as it comprises only significant and uncorrelated
features. Moreover, each feature exhibits a low variance and a platykurtic distribution over all test
cycles for each specific, measured condition—hence a high density with very few outliers.
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unknown states (orange).

3.3. Model Creation

Based on the aggregated feature sets, a model can be trained to learn similarities or differences
between feature set samples, which are high-dimensional (n > 50). Unsupervised algorithms are
prone to perform worse with a growing dimensionality of the input vector, and therefore PCA for
dense data, or singular value decomposition (SVD) for sparse data can reduce the dimensionality.
In this case however, the significance, correlation, variance and kurtosis filtering already ensures that
each element of the input vector explains a significant part of the overall variance. An additional
dimensionality reduction negligibly increases the variance explained per vector element, and comes at
the cost of detaching the input vector from their physical representation by the PCA/SVD aggregation.
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Using unsupervised learning of the feature structures, the samples are clustered in agglomerations of
similar feature sets. In this context, the notion of unsupervised learning refers to the fact that the actual
conditions of the test cycle samples, commonly referred to as labels, are not fed into the model for
training. The labels are merely used to determine the features to be retained for training the model in
the initial model creation. Moreover, the labels of the test set are used to evaluate the performance of
the approach. However, as the clustering approach only receives the feature values for each test cycle
sample without labels, the actual training of the model is of an unsupervised nature.

Due to its ability to distinguish noise points from actual clusters, to accommodate varying
cluster densities, as well as to infer the number of clusters, HDBSCAN is applied (4). For model
training, noise points (i.e., samples with unknown conditions or failure states) are not relevant, as all
samples definitely belong to a cluster (either healthy or one of the fault types). For the further analysis
of unknown time series, however, a sample classified as noise reveals an unknown failure type,
and therefore shall not be wrongly attributed to an existing cluster (false positive).

The results consist of a set of defined features and their normalization factors, as well as a model
representing the distribution of the feature set samples. It enables time series of a test cycle performed
on a component in an unknown condition to be processed, and a prediction on the component’s current
condition to be received. Future model updates can be performed similar to its initial training, where all
n features are again extracted over all m ROIs, and subsequently normalized, filtered and clustered.
With the measurement of a priori unknown failure types, the feature selection and filtering need to be
repeated, as feature significance may have changed, i.e., previously insignificant features now serve as
distinction between known failure type a, and new failure type b. Merely retraining the clustering
model without recalculation of feature significance, therefore, neglects substantial information.

3.4. Model Deployment

For the prediction of a time series sample of an unknown machine condition, the following steps
are conducted: (1) the time series is split into the defined ROIs, (2) the retained features of the model
are selected and calculated, (3) the resulting features are normalized with the model scaler, and (4) the
trained HDBSCAN model is applied to the unknown feature set. The return can yield two possible
outcomes: either the sample of the test cycle is attributed to an existing cluster, which indicates that
the component’s condition corresponds to a prior measured and identified condition (healthy or a
known fault type); or it is classified as a noise point, if the position of the sample vector v̂ lies outside
of previously found regions with higher densities of samples in the feature space. The noise point
classification occurs if the behaviour is different from any previously observed cluster of samples,
meaning the component is either in an unknown faulty state, or neither in a healthy nor a known faulty
condition. The latter may seem abstract, but could potentially happen if the boundaries of the healthy
cluster are very dense, e.g., if only perfectly healthy machines were used for model training. Over time,
intermediary states in a component lifetime (e.g., light, medium, strong wear) can be integrated and
enable a more detailed clustering, ultimately allowing a RUL estimation when transition times between
the different known conditions are measured or known.

3.5. Advantages Over the Current State of the Art

Compared to other approaches presented in the related work section, the proposed method detects
not only the presence of failures. It also classifies the type of failure, given that it has previously been
trained on and integrated in the model. Unknown conditions, which are neither a known fault or a
healthy condition, are identified as such. This ability to cope with unknown failure types distinguishes
it from conventional supervised classification approaches. It is applicable to various component and
also machine types and natures: by the distinction of Gittler et al. [29], it can cope with test-cycle
data of constant, controlled-constant and varying components. Moreover, the principle remains
identical for translatory and rotary components. Given this versatility in the application of the method,
it provides a high degree of automation in model construction and analysis. Moreover, updates
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of the existing model require little engineering effort, as filtering and modelling require very few
hyperparameters. The features retain the physical description of the signal samples, as the feature
values without PCA or SVD transformation are used for clustering. In other related studies, large
numbers of features or descriptive characteristics are usually reduced in dimensionality by PCA,
e.g., as shown by Zhang et al. [23]. The training of the model can be performed on a small number
of samples, enabling an application even with limited availability of test cycle samples. Therefore,
it can serve both small and large installed bases and types of machines and components. The small
number of hyperparameters and amount of data needed for the method reduce the engineering effort
in its implementation, and lower the barrier of entry for machine and component OEMs. Furthermore,
the model can be updated continuously with growing numbers of data samples and observed conditions.
To the best of our knowledge, unsupervised approaches have not been demonstrated in machine tool
component PHM applications.

4. Results

As a demonstration component, a translatory axis of a grinding machine is measured in different
states—healthy state, and different faulty states. The tests are conducted on an Agathon DOM 4-axis
grinding center typically used for the grinding of indexable inserts. The Agathon DOM has two
translatory axes (X, Y) and two rotatory axes (B, C), of which the X axis is used exemplarily for the
collection of data and the implementation of the approach described. The data collection is carried out
in a controlled environment at constant 21 ◦C to ensure consistency and reproducibility of the results.
The faulty states are artificially created, and reproduce the behaviour of defects that occur in operation.
The faulty states include: (a) excessive friction (due to a lack of lubricant, contamination or debris
in moving parts, collision), (b) a loose motor (tear and wear in the drive unit, involuntary release of
screws due to vibrations), (c) a wrong commutation offset (due to a mechanical shift in the gearbox
or along the cinematic chain), or (d) general signs of wear in the mechanics. The faulty states were
recreated artificially for model training by the head service technician expert of the machine OEM.
The selection of faults is based on the most frequent errors that have occurred on the entire installed
base of machines in the field. The fault (a) was recreated by the insertion of a gasket between the
moving parts of the axis and an adjacent wall, allowing an elevated friction and stick-slip effect to be
created similar to that of a distorted or unlubricated axis. Fault condition (b) was recreated by losing
screws in the coupling between the motor and the drive shaft. The commutation offset error in (c) was
introduced by manipulating the encoder offset in the drive unit of the motor. The fault of general
wear in the mechanics (d) was achieved by untightening the screws that connect the guiderails to the
machine, allowing the axis to shift slightly during movements. Faults (b) and (d) correspond exactly to
the type of error that potentially occurs on machines with a lack of maintenance, whereas fault (a) and
(c) were recreations that approximate the behaviour of the axis under a real-world fault condition.

Overall, test cycles in 1 healthy and 4 faulty conditions are measured. For the different component
conditions, 10 test cycle samples for healthy, and 6 samples each for faulty states are collected.
For the model construction, 7 samples of the healthy state, and 5 samples of 3 faulty states are used.
The remaining 3 samples of the healthy state and each sample of the faulty states are used as a test set
to demonstrate and evaluate the functioning and the performance of the model. One faulty state is
disregarded for the model, to test the model’s capability to detect and classify a previously unknown
faulty condition not used for prior model training, as neither healthy nor one of the known faulty
states. The signals are sampled with 2 × 104 Hz, as some unhealthy vibrations are observable just
below 104 Hz. The data are collected directly via the Agathon DOM’s numerical control (NC), which is
a Bosch Rexroth MTX with IndraControl L65. The NC has an integrated oscilloscope, allowing to
record up to 4 signals on 4 channels in parallel, in addition to the monitoring of a trigger signal which
can be configured separately. The oscilloscope can store up to 8192 values, wherefore a maximum test
cycle duration of 4096 ms at 2 × 104 Hz can be recorded. As the test cycle for the entire outward (+)
and return (−) movement exceeds this threshold, the test cycle is split into two parts, each covering one
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direction of the movement. Figure 2 shows a section of the test cycle for different healthy and faulty
state signals, in which the axis performs the (+) movement part of the test cycle. The plotted lines
correspond to the sample data used for model training: green—healthy, red—faulty: excessive friction,
blue—faulty: wrong commutation offset, yellow—faulty: motor loose. Of the entire test cycles, only the
very relevant time segments are examined (orange shaded sections represent ROIs 1–4), to consider
the different dynamic characteristics. It becomes clear that the different time segments (ROIs) exhibit
significantly different aspects of the component behaviour, whereby the separate feature extraction
per ROI is reasonable. Nonetheless, it is visible that some faults show only minimal differences,
e.g., for the healthy condition (green) vs. the motor loose (yellow) fault. Figure 3 exhibits a small slice
of ROI 2 in which the challenge becomes evident: whilst the excessive friction is simple to distinguish
from the signal of the healthy axis, the motor loose fault behaviour is almost identical to healthy
behaviour. The mere differences that can be spotted are in the vibrations and characteristics of the
curve. This observation justifies the motivation to extract time series features to represent and classify
the different test cycle measurements.
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Prior to clustering, nearly 700 features for each of all m = 8 ROIs were extracted, resulting in a
total of more than 5600 features. After filtering for relevance, statistical significance, variance, kurtosis
and correlation, a total of 120 features for each sample were retained and used for clustering model
construction. The discarded features are those, whose distribution does not allow samples of different
conditions to be distinguished from one another at all. Some of the extracted and filtered features allow
to distinguish clearly between all different kinds of faults, while others only permit us to distinguish
between a pair of conditions, as show in Figure 4. Here, the exemplary distribution of 4 features
extracted from ROI 2 in the slow test cycle (positive direction of axis travel) are shown, in which the
histograms of the upper row show a distinct separation of feature values for all different conditions.
The lower row shows two histograms of features that were retained, but that nonetheless have an
overlap for some conditions. However, these features are nonetheless useful, as they still fulfil a viable
function for the distinction of two or more conditions, and they potentially also permit to differentiate
unknown conditions from those used to train the model. As the extraction and selection of features is
the main determinant factor of the clustering result, this aspect is considered the most relevant in the
described approach.
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Figure 4. Examples of extracted and filtered features of ROI 2, in which the upper row [(a) and
(b)] display high quality features allowing to distinguish all different conditions, whereas the lower
row [(c) and (d)] contains features that overlap for some conditions: (a) Fourier-transform type;
(b) Fourier-transform type; (c) Fourier-transform type; (d) complexity-invariant distance (CID) value.

To test the prediction precision, 5 samples of an unknown component condition representing
mechanical wear are fed to the model for prediction. Figures 5 and 6 show the outcome of the different
clustering approaches: The visualization is realized by transforming the multi-dimensional feature
vectors of the samples into a 2D plane via T-distributed stochastic neighbour embedding (tSNE)
for intuitive visualization [30]. The marker ‘O’ denotes a sample used for training, the marker ‘X’
designates a sample used as a prediction. The spatial location of the points represents the proximities
of all points, wherefore neighbouring points have similar values of the feature vector v̂. The colours
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of the markers are assigned by the actual state of the training samples (‘O’), or by the prediction of
the test samples (‘X’). As the prediction in clustering is an unsupervised process, the label for the
predicted samples is assigned the label of the majority of points within the attributed cluster, e.g., if a
sample is predicted to share a cluster with a large number of other healthy samples, it is assigned the
condition healthy, and hence the colour green. To allow comparison of the engineering and tuning
effort for all clustering algorithms, each was initialized with a minimum number of hyperparameters,
i.e., without further modification. The optimal outcomes based on different initialization parameters
were found iteratively. All results of a range of reasonable initialization parameters were evaluated
and compared, of which the best results were chosen as a representative for the different algorithms.
Figure 5 contains the k-means and the GMM clustering and prediction, in which both algorithms
deliver identical results. k-Means was initialized with the parameter Number of Cluster n, with which
the optimal result was found for n = 4. In a similar fashion, GMM was initialized with the Number of
Components n, for which the optimum was also reached at n = 4. It is evident that the inability to
handle noise points produces ambiguous prediction results, where all samples, regardless if outliers
or noise points, are attributed to a cluster. In this case, a collection of points forming a proprietary
cluster (red circle in Figure 5), corresponding to the unknown fault condition (mechanical wear),
is wrongly attributed to the ‘loose motor’ cluster. Even though the distance between the two clusters
is small, and the ‘loose motor’ condition shows similar physical properties and test cycle as results
as the ‘mechanical wear’ fault, it is nonetheless a false positive prediction. Figure 6, depicting the
model and prediction results of the HDBSCAN approach. In view of accurately classifying known
healthy and faulty conditions, HDBSCAN performs identical to the k-means and GMM approaches.
However, Figure 6 clearly shows that the samples of the prior unknown fault condition ‘mechanical
wear’ are accurately identified as noise points, and therefore attributed to a new separate cluster.
There is a pertinent notion in this context: the healthy condition, the motor loose and the mechanical
wear faults show very similar behaviour considering the raw test cycle data. The faults are very minor
and, therefore, do not differ greatly from the healthy condition. The fact that their distance and their
delimitation from the other two similar conditions appears so clear demonstrates the effectiveness of
the pre-processing, i.e., the feature representation and the subsequent filtering for significant features.
All in all, the proposed approach allows us to concisely separate even minor differences and hence
small faults from the optimal healthy condition of a component.
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After extensive testing of various parameter sets, only HDBSCAN was able to precisely cluster the
training data, and accurately classify a cluster of unknown faults as noise. HDBSCAN was initialized
with the only parameter Minimum Cluster Size k, for which the optimal results were achieved with
k = 3. The results justify the selection of HDBSCAN as the optimal choice for unsupervised learning of
machine component test cycle feature clusters. Its ability to accommodate varying cluster densities
(i.e., more samples for the healthy vs. fewer samples for faulty states), the capability to classify a point
or cluster of unknown condition samples, as well as the handling of non-convex cluster shapes in a
high-dimensional space of feature vectors, make it a sound choice for the proposed approach. Table 2
shows the resulting best performances of all hyperparameter sets for each of the different algorithms.
All initialization parameters were evaluated in sensible ranges to determine the optimal outcome,
and hence the best possible performance for the underlying training and test data sets. For Figures 3
and 4, the visualization via t-SNE distorts the true noise and variance of some of the samples, as it
warps the dimensions to accurately represent the distances of all points to one another. For this study,
it is only meant as a visual reference to demonstrate the quality of the results. In reality, the clusters are
of non-convex shape in the high-dimensional feature space.

Table 2. Result comparison of applied unsupervised approaches.

Parameters Optimum True Positive False Positive

k-Means Number of clusters n n = 4 85.3% 14.7%
GMM Number of components n n = 4 85.3% 14.7%

DBSCAN Min samples per cluster k
Epsilon ∈ k = 3, ∈ = 0.7 94.1% 5.9%

HDBSCAN Minimum cluster size k k = 3 100% 0%

5. Discussion

The proposed approach to assess the health of machine tool axes via time series feature extraction,
filtering and unsupervised clustering has shown positive results. It has proven the applicability of
unsupervised algorithms to component health identification, and demonstrated the advantages of
unsupervised approaches over supervised models. It requires few data, and is straightforward to
implement, maintain and extend for machine tool manufacturers. Unlike other PHM approaches,
it allows for more than a binary distinction between healthy and failure states, including a priori
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unobserved failure states. Therefore, not only can the presence of anomalies be identified, but different
types and severities of faults on machine tool components. This multi-dimensional health assessment
allows to reveal the impact a degradation can have on a production process or a final product.
Besides an accurate assessment, the approach has proven to be applicable to real machine data rather
than simulated data or anomalies. In the future, the performance with continuous model updates
needs to be demonstrated. When new measurements of defects emerge, a model update with select
measurements and subsequent model tuning is helpful. Moreover, the model tuning can be automated,
as the multi-step approach is a complex optimization problem currently subject to heuristics and,
therefore, non-deterministic. As most supervised approaches are able to quantify the degradation from
the healthy state, this capability is yet to be delivered by the proposed approach. e.g., via distance
or k-nearest neighbour calculation of actual test cycle samples. Additionally, the approach can be
extended to components without control loop, by observing a stationary regime and applying the
same solution scheme. Since the identification of a fault type yields an additional dimension, a future
addition of a further dimension could be the evaluation of faults depending on the position of an axis.
This allows for a more concise indication of where precisely a potential fault on an axis may develop
or occur.
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