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Abstract: The work is devoted to the research of the changes that occur in the subsurface layer of the
workpiece during electrical discharge machining of conductive nanocomposite based on alumina
with the use of a brass tool. The nanocomposite of Al2O3 + 30% of TiC was electroerosively machined
in a water and hydrocarbon oil. The process of electrical discharge machining is accompanied by
oscillations that were registered by diagnostic means. The obtained surface of the samples was
researched by the means of scanning electron microscopy and X-ray photoelectron spectroscopy.
The observed surface and subsurface changes provide grounding for the conclusions on the nature
of processes and reactions that occur between two electrodes and nanomodification of the obtained
surfaces that can be an advantage for a series of applications.

Keywords: electrical erosion; ceramic nanocomposite; sublimation; chemical reactions;
submicrostructure; removal mechanism; fracture; erosion wear; monitoring; acoustic emission

1. Introduction

Electrical discharge machining is a well-known technology used for processing conductive
materials [1–4], while there are always developed techniques to subject the non-conductive material
to electroerosive wear [5–8]. However, these techniques do not show any outstanding results due to
small volumetric performance and expensive assisting materials—nanoparticles of precious or rare
materials, labor-intensive techniques of conductive layers applications, etc. Moreover, the character of
the processes often is not stable and can hardly be called electroerosive, as some chemical destruction
of the materials is more likely to occur than erosive destruction under electro current [9,10].

The idea of strength of ceramic composites and nanocomposites obtained by advanced sintering
techniques with the conductive particles or nanoparticles has been known from the middle of
the 1980s [11–14], and by the end of the 1990s, works devoted to the real experimental results
appeared [15–17]. The current state of the mentioned research subject is still far from the industrial
application, as the processed workpiece with a fine surface quality was never presented. This could be
related to the low understanding of the nature of that which occurs between electrodes.

The electrical discharge machining is based on the principals of electrical erosion of the materials
under current pulses [18–20]. Two electrodes are placed on the distance that correlates to the
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conductivity of the material to be processed and there is dielectric permittivity of the medium between
two electrodes. The material with higher conductivity requires a larger space between electrodes [21–23].
The material with lower conductivity is normally called the workpiece electrode, while material of
high conductivity is a tool electrode—the destruction of the workpiece should occur more intensively
that the destruction of the tool, otherwise the technology has no sense.

During the development of the technology of electrical discharge machining of the new ceramic
composites and nanocomposites, many factors should be taken into account.

Firstly, these materials have low conductivity and require a minimal possible discharge gap
(which, by precounting, should be in the range of 5–6 µm for some materials) that hampers evacuation
of the erosion products from the working zone [24]. Thus, some measures should be taken to
provide replicability of the dielectric in the discharge gap—intensive dielectric flows under pressure
or other technological intensification measures, for example, ultrasound emission, which can assist
the destruction of the agglomerates of the erosion products and intensify the dielectric flows in the
zone [25–27].

The low conductivity of the ceramic composites and nanocomposites leads also to the following
problem of its intensification and hampers any attempts to improve it. Many authors propose using
measures on it that are related to the assisting of the machining by conductive powders or layers,
which should introduce conductive particles to stimulate pulses on it, instead of the workpiece [28–30].
However, it shows its effectiveness only in micro-electrical discharge machining, when evenly weighted
nanoparticles of silver or carbon nanotubes are uninterruptedly delivered in the interelectrode gap under
pressure [31,32]. As it can be seen, the application of the developed measures hampers the effective
evacuation of erosion products. Thus, the developed approach is still far from industrial application.

The next problem is also related to the low conductivity. If we try to machine ceramic composites
and nanocomposites with a wire tool electrode, then we meet the problem of its self-oscillation.
During machining, the conventional conductive materials and tools vibration are never a problem as
the amplitude of the wire is rather less than the discharge gap and can be evaluated in a few nanometers
at the distance between the nozzles of less than 100 mm [33]. During machining with the materials that
have low conductivity with a smaller discharge gap and agglomeration of the erosion and assisting
products in the working zone, short circuits caused by many factors including wire self-oscillations
can occur even at a distance less than 100 mm [34,35].

One more problem is related to the low conductivity of the materials to be processed hampering
electrical discharge machining. The control system of the machine uses the system of electrical pulse
monitoring. Then, it counts all occurred pulses in the interelectrode gap. However, only a part of
pulses can be called working and a part of them are idle. The proportion of working pulses by all of
them can be called, in these conditions, effectiveness of the processing [23,33]. The process can be called
effective for different conditions when this ratio is above 70% or even close to 100%. The idle pulses
are always addressed to the destruction of erosion products when the working pulses are addressed
to the destruction of the workpiece electrode. One of the solutions can be in the development of the
multiparameter control system that counts not only every occurred impulse in the interelectrode gap,
but only working pulses, using a monitoring system based on acoustic emission [36,37]. The actuality
of the monitoring system’s development, based on acoustic emission, that occurs at the moment of
workpiece destruction, can be even higher in the context of innovative electrical discharge machining
assisted with conductive powders or pellets or nanotubes.

Another point is related to the temperatures achieved in the working zone. As it is known,
ceramics are heat-resistant materials that require high temperature in the working zone that should be
achieved to make all components of the material sublimated. The problem is in fact, that at the moment
when these temperatures will be achieved, the easy-to-melt conductive material of the tool will be
already sublimated and the pulse will be interrupted with the consequent cooling of the working zone.
It is obvious that the next pulse will not achieve any progress by reaching the same temperatures.
Even uninterrupted renewing and feeding of the tool in the working zone can lead only to the large
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consumption of the tool material or even to the short circuit but not to the stable and effective cutting
process [38–41].

The next point is related to the nature of the destruction that occurs at the electrodes.
The most advanced research showed success in processing zirconia and, based on it, composite and
nanocomposites, when electrical discharge machining of any composite based on alumina, or alumina
itself, shows such a low quality of machined surface that it is difficult to call the precision process.
However, most of the authors cannot explain why it is so different and refer to conclusions on
pyrolitic carbon and melting [5,32,42]. As we know, the carbon cannot be liquid or melted at
normal pressure [43–46] and the temperatures that reach in the discharge gap are close to 10,000 ◦C,
which correlates to the state of the substance called low-temperature plasma. In the conditions of
the formed discharge channel between electrodes, the material of its surfaces sublimates. In other
words, it changes its state from solid to low-temperature plasma bypassing the liquid phase. Only by
understanding this obvious nature of the material destruction, can the destruction of the carbon
material and its active use in electrical discharge machining in the role of tool electrodes and assisting
powder be explained. However, sublimated materials interact between each other and sublimated
components of working medium with the formation the substances that settle on the machined surfaces.
In the case of machining zirconia in hydrocarbonates, it is a conductive zirconium carbide that assists
further processing; in the case of machining alumina in hydrocarbonates, the nonconductive and
pyrotechnically active aluminum carbide that is often called “pyrolitic carbon” or “PyC” (this is,
however, not quite an exact term from a scientific point of view) is formed [47–50].

Moreover, traditionally, manufacturers of the equipment firmly recommend not using oil for
machining aluminum-containing materials since non-conductive ionic bonded salt carbide (acetylide)
is formed, where the bond’s ionic nature leads to a high melting point and solubility in water and
acids. Aluminum carbide forms at 1100 ◦C; it is abundant black sediment that can be observed
during machining. It can explosively react with water (×12) and with methane escape (×3): 144 g of
Al4C3 produces 3 × 22.4 L of CH4. Adsorption of Al4C3 by machine filtration system can damage it.
Aluminum carbide decomposes at 2200 ◦C to metallic aluminum with hydrogen (×6) and accompanied
by methane escape (×3). It reacts with oxygen (×6) and with the formation of alumina and carbon
dioxide (×3) at 650–700 ◦C due to its higher electronegativity (χ = 8.11 for oxygen and 5.19 for carbon).
It should be noted that all acetylides are not stable at normal conditions and can explode even with a tiny
move (Au2C2, the best known as initiating explosives are silver and copper acetylides—Ag2C2, Cu2C2),
and they exhibit dielectric properties [8].

However, the researchers continue to use oil or other hydrocarbons (kerosene) for unsuccessful
attempts to machine alumina and alumina-based materials and hesitate to explain why it does not
work when the surfaces’ quality is under the required level.

Furthermore, as it was mentioned before, the occurred physical sublimation of the electrodes and
chemical interaction of the components occurs faster for easy-to-melt materials. During the electrical
pulses’ interruption, the formed substances depose on the formed nanocarcass or nanoframe of the
heat-resistant components of the workpiece material [51–55].

The purpose of the study is the research of physical phenomena of electrical discharge machining
of oxide ceramic nanocomposite, and the classification of the nature of the observed defects.

This study aims to research the nature of nanocomposite destruction under discharge pulses,
the nanomodification of the machined surface that occurs by means of scanning electron microscopy,
to analytically research the chemical interaction of the workpiece and working medium components,
and classify the obtained defects of the ceramic nanocomposite (Figure 1).

The scientific novelty of the work is new data on physical phenomena that occurred between
the tool and workpiece electrode depending on the working medium in the case of ceramic
nanocomposite machining, the classification of the obtained machined surface defects, and new
data on nanomodification of the machined surfaces and chemical interactions of the near-surface layer
after processing.
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The tasks of the study are: adaptation and testing of the vibroacoustic monitoring mean for the
machining of nanocomposites; research on the morphology and chemical content of the subsurface
layer of machined surfaces; classification of the observed defects and traces of destruction; research on
the medium content’s influence on the composition of the subsurface layer after the machining of
nanocomposite–nanomodifed conductive alumina Al2O3 + 30% of TiC.
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electrical discharge machining of ceramic composites and nanocomposites.

2. Materials and Methods

2.1. Materials and Discharge Gap

The nanocomposite samples were sintered of Al2O3 powder (Alcoa, New York, NY, USA) with
30% of TiC nanoparticles (Plasmotherm, Moscow, Russia) at 1450 ◦C in the graphite dies, with a heating
rate of 100 ◦C·min−1, under a uniaxial pressure of 80 MPa [56–58] by a hybrid current-assisted spark
plasma sintering furnace KCE direct / hybrid heated 25-SD (FCT Electronic GmbH, Munich, Germany).
The average particle diameter of powder granules was of 0.53 µm for Al2O3, and 0.6 µm for TiC.

Powders were preliminarily mixed in a multidirectional Turbula shaker mixer (Eskens B.V., Alphen
aan den Rijn, The Netherlands) in ethanol at 150 rpm for 24 h. Lyophilizer FreeZone2.5 (LabConco,
Kansas, MO, USA) was used for drying of the slurries to avoid TiC agglomerates in the ceramic matrix
and additional sieving [7,8]. The collector temperature was of 50 ± 2 ◦C, the shell temperature was of
+23 ± 2 ◦C; the chamber pressure was of 0.02 ± 0.01 mbar.

The control sample was made of ceramic composite VOK-6O (analogue of K01 by ISO, Al2O3—70%;
TiC—30%) [59–61]. The sample thickness is of 10 mm.

An eddy current conductivity meter Sigmascope SMP10 (Helmut Fischer GmbH, Sindelfingen,
Germany) measured the specific electrical resistance of the materials ρ used in the experiments (Table 1,
Figure 2a). The device measures the material electric conductance in Siemens (S) and the percentage
of the electrical conductance of the control sample produced from annealed bronze in the range
of 1 ÷ 112%. All measured values were converted to

[
Ω·mm2

m

]
. It should be noted that the specific

electrical conductivity of Al2O3 is 2.10 × 105
÷ 106 Ω·mm2

m at +20 ◦C and ~10.0 Ω·mm2

m at +1000 ◦C,
and ~6.0 × 103 Ω·mm2

m for TiC.
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The melting/sublimation points of the materials T are provided in Figure 2b [62–66].
The sublimation point of the nanocomposite is determined by the most low-melting component;
it is alumina with the temperature T of 2072 ◦C in the case of the chosen nanocomposite.

Table 1. Specific electrical resistance ρ of some materials at +20 ◦C.

Material Specific Electrical Resistance ρ
[

Ω·mm2

m

]
Brass alloy CuZn35 0.065
Al2O3 + 30%TiC ceramic nanocomposite 3.773
VOK-6O ceramic composite (analogue of K01,
standards of ISO) 3.510

Aluminum oxide 1 2.10 × 105
÷ 106

Titanium carbide 1 6.0 × 103

1 Provided for references.
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The discharge gap ∆DB is calculated by the next equations:

∆DB =
l− dw

2
, (1)

∆DB =
lm − lp

2
, (2)

where l is the measured distance of the cut between two machined surfaces, mm; dw is the diameter of
the wire tool, mm; lm is the measured distance between two adjacent cuts, mm; lp is the programmed
distance between two adjacent cuts, mm.

2.2. Equipment and Methods

A four-axis wire electrical discharge machine AgieCharmilles CUT 1000 OilTech (GF Machining
Solutions, Bern, Switzerland) was used for machining ceramic nanocomposite in Sorepi-LM oil
medium—purified of sulfur, zinc and other components’ mineral oil with refined paraffins (mixture of
liquid hydrocarbons of C8-C15). A two-axis wire electrical discharge machine ARTA 123 Pro
(OOO “Scientific Industrial Corporation “Delta-Test”, Fryazino, Moscow Oblast, Russia) was used



J. Manuf. Mater. Process. 2020, 4, 96 6 of 28

for experiments with ceramic nanocomposites in water. The main characteristics of the machines are
presented in Table 2.

Table 2. Main characteristics of wire electrical discharge machines used in experiments.

Characteristic Value and Description

CUT 1000 OilTech

Max axis motions along the axes X × Y × Z, mm 220 × 160 × 100
Max angle of conical machining, degree ±3◦

Max weight of workpiece, kg 35
Accuracy of positioning along the axes, µm ±0.5
Achievable roughness Ra, µm 0.05
Dielectric medium Mineral oil
Machine body Solid
Max power consumption, kW not confined

ARTA 123 Pro

Max axis motions along the axes X × Y × Z, mm 125 × 200 × 80
Max weight of workpiece, kg not confined
Accuracy of positioning along the axes, µm ±1
Achievable roughness Ra, µm 0.6
Dielectric medium Deionized water
Machine body Solid
Max power consumption, kW <6

The machines are located in a thermo-constant room to reduce the effect of ambient temperature
on the results of processing. For all the experiments, a workpiece was immersed in a dielectric
medium for 10 min before machining to avoid dimensional fluctuations associated with the difference
in temperatures between the environment and working fluid. The dielectric height was established
~1–2 mm above the workpiece. The upper guide of the machine was placed at the minimum position
2–5 mm above the level of the dielectric [67,68].

The computer numerical control (CNC) programs were prepared manually, and the path offsets were
not taken into account. The EDM-machine factors chosen following the recommendations [23,33,69–71] are
presented in Table 3. The values are provided in equivalent units of the machine. The tool electrode used
in all the experiments was a brass wire dw of 0.25 mm in diameter made of CuZn35 (Cu—65%; Zn—35%).

Table 3. Electrical discharge machining factors during experimental work for machining Al2O3 + 30%TiC
in water.

Factor Value

Operational voltage, Vo 75, 85, 108 V
Pulse frequency, fp 5 kHz
Pulse width, Tp 1 µs
Speed of the tool rewinding, Ws 7 m/min
Feed rate, Rf 0.4 mm/min

2.3. Monitoring

Piezoelectric accelerometers were located at an upper wire guide and at a working table
of the machine for vibroacoustic monitoring [23,33,35,69,72,73]. The signals received by the
accelerometers were forwarded to preamplifiers, VShV003 amplifiers (Joint-stock company “Izmeritel”,
Taganrog, Russia), and an analog-to-digital converter E440 (“L-card”, Saint-Petersburg, Russia),
and were recorded at 1 min, 30 s, and 5 s before the end of processing with a personal computer (PC).
Spectral analysis was performed at frequencies of 4–10 kHz. The measuring circuit is shown in Figure 3.
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Figure 3. The layout of the sensors on the machine for electrical discharge machining of nanocomposites:
(1) is a ceramic workpiece; (2) is a wire tool; (3) is a current sensor; (4) is accelerometers; (5) is a fastening
system; (6) is an upper wire guide; (7) is a lower guide; ADC is the analog-digital converter; PC is the
personal computer; Ws is the direction of wire rewinding.

Pulse energy is the work done by the pulse in the interelectrode gap. It is inconvenient to use it in
calculations, therefore, for independent generators, this energy is estimated by the average current [74].
In the experiments, a Hall sensor was used to record the discharge current. The effective values (I) of the
signals from the Hall sensor after amplification and processing by a high-pass filter gave an idea of
the energy entering the interelectrode gap. The signal depending on the energy used for material
removal came from an accelerometer mounted on the elastic system of the machine (fastening system)
from the side of the workpiece. The signal was preliminarily cleaned from low-frequency noise
using a high-frequency filter, and then its effective amplitude was determined, the square of which is
proportional to the energy of the signal arising in the elastic system under the influence of disturbing
influences from the discharge pulses. The cutoff frequency of filters for vibroacoustic signals is 2 kHz,
for current—100 Hz.

3. Results

3.1. Monitoring

Figure 4a shows the spectra of signals from the accelerometer and current sensor. As can be seen,
the frequency of the operational discharges is marked fi. It can easily be identified from the rest of the
spectrum when the recorded signal amplitude shows disturbance in the interelectrode gap related to
the destruction of the material in the wide frequency range. The changes in root-mean-square value
(RMS) of the vibroacoustic signal recorded during processing give more adequate data about the state
of machining (Figure 4b).

The shown example (Figure 4b) of parallel records of A and I after processing by high-pass filters.
Graph 1 shows a gradual increase in A, finding it at a sufficiently high level for 12 s and falling to a
minimum during the rest of the idle time of the wire tool. At the same time, I rapidly increases at the
beginning of the electrical discharge machining, remains at a stable level throughout the entire time
of machining, but with further idle movement of the tool, I does not fall (Graph 2), as can be seen in
the example of A, and even increases in certain periods of time. This is because breakdown occurred
through the medium- or short-term short circuits between the electrodes along the surfaces to be
processed during this period. However, it is clear from the Graph 1 that no useful work is performed
during this period.
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Figure 4. Spectrum of the recorded amplitude A and electrical current I signals and its root-mean-square
value in recorded time: (a) spectra; (b) recorded root-mean-square value of the signal amplitude
(1) and electrical current (2).

3.2. Roughness and Surface Topology

The research of the nanocomposite sample’s microrelief after machining in oil and water medium
is presented in Figure 5. The samples machined in hydrocarbon dielectric have a particular topology
with the wire traces that correspond to the case of the heterogeneous workpiece structure or other
difficulties in machining. At the same time, the topology of the surface after machining in water has a
more even structure that is more similar to the surface profile after EDM and can be characterized as a
typical “shagreen” type.
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It can be related to the complex nature of material destruction during the EDM of alumina and
alumina-based materials that has not only the presence of the thermal destruction under discharge
pulses (EDM of nanocomposite in water) but also of the chemical interaction of workpiece electrode
material with the medium (EDM of nanocomposite in oil). The formed dielectric sediment can change
electrical conditions in the interelectrode gap and hampers the intensity of electrical discharges, leading
to the reduction in the discharge gap that induces multiple short circuits that were observed during
processing, with the formation of black dust clouds that settled in the tank.

The surface topology is presented in Figure 6. The visible pellets form the entire elaborate
flakes in machining in oil and have a maximum size of 7 × 5 µm, with cracks and pores that are
evidence of its secondary sublimation (Figure 6a). In machining in water, a set of pellets—flake—has a
more interconnected character with a maximum size of 10 × 5 µm and with even more noticeable
secondary sublimation evidence—cracks and pores (Figure 6b). The cracks are more evident for
machining in water due to more intensive heat removal from the processing area that depends on
the thermal diffusivity α of the used medium, which is 0.143 × 10−6 m2

·s−1 at +25 ◦C for water and
7.38 × 10−8 m2

·s−1 at +100 ◦C (similar to wood) for mineral oil.
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3.3. Chemical Content of Eroded Surfaces under Discharge Pulses

Figures 7 and 8 show the elemental distribution at the Al2O3 + 30%TiC nanocomposite machined
surface with a magnification of 6.0 k×. The provided images show an even distribution of the chemical
elements such as aluminum, oxygen and titanium on the surface machined in water (Figure 8a–c) when
machining in the oil medium gives more local agglomeration of the chemical elements (Figure 7a–c).
This can correlate to the more elaborate and pronounced topology of the surface produced in oil.
Carbon has a specific distribution in machining in hydrocarbon oil with the formation of more saturated
and unsaturated areas that do not correlate with the obtained topology (Figure 7d); machining in water
provides an even carbon distribution over the entire observed area (Figure 8d). It should be noted that
all colors for chemical elements at microphotographs and graphs are generated automatically by used
software equipment.
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3.4. Microstructure and Chemical Content of Cross-Section

The microstructure and chemical analyses of the samples machined in oil are presented in Figure 6.
The pictures show an even distribution of the nanocomposite components when the surface and
subsurface layers demonstrate changes in the chemical content (Figure 9a). The distribution of
aluminum and oxygen can demonstrate a denser presence of alumina (Figure 9b,c) in the surface layer
and depletion of the titanium carbide (Figure 9d) despite the higher sublimation point T of the TiC
(3257 ◦C) that can be related to the high chemical reactivity of aluminum towards oxygen [75–77].
However, the subsurface layer saturated with carbon of oil medium is detected on the chemical map of
the observed area (Figure 9e).

The microstructure and chemical analyses of the samples machined in water are presented
in Figure 10. The similar chemical content of the surface and subsurface layer can be observed.
However, the distribution of aluminum and oxygen has a more pronounced character and forms
plaques (flakes) of secondary structures of the second order (Figure 10b,c) [78,79]. The titanium and
carbon depletion can be also observed (Figure 10d,e) as the presence of a solid solution of aluminum
and titanium and more complex compounds in the form of pellets (Figure 10b,d). The subsurface layer
has also detected the presence of carbon but this sublayer is less pronounced and can be explained only
by thermal influence (heat-affected zone), decomposition of titanium carbide and titanium depletion
(Figure 10e).
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The details of chemical analyses with higher resolution and magnification along the line (14 µm)
of the sample machined in oil and water show a similar picture of the changes in the chemical content
of surface and subsurface layers (Figure 11). Both samples demonstrate a more pronounced and
deep saturation of the samples with aluminum and oxygen and a less pronounced spike in carbon
content when titanium content gradually decreases towards the machined surface. The surface and
subsurface layers demonstrate almost similar content—the sample machined in oil is more saturated
with aluminum (Figure 11b) and the absence of the wire tool’s chemical components.

3.5. X-Ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy of the surface and subsurface layers is presented in Figure 12.
Tables 4 and 5 quantitively show X-ray peaks [eV] and the atomic percentage (at.%) of one type of
atom to the total number of atoms.

Table 4. X-ray peaks of the machined Al2O3 + 30%TiC nanocomposite in oil.

Chemical Element Binding Energy E Binding Energy
Peak, eV Atomic %

Carbon

C1s Graphite 283.8 16.64
C1s C-C 284.4 17.06

C1s Carbide 283.3 12.66
C1s C=O 287.4 8.49
C1s C-O 285.1 19.68

Aluminum Al2p3 Oxide 74.3 2.75

Nitrogen N1s C-N 399.3 3.61
N1s N-Si, Me-N 397.6 0.23

Calcium Ca2p3 Carbonate 346.8 1.58

Oxygen
O1s C=O 532.5 5.16

O1s Scan B 530.9 6.55
O1s C-O 531.7 3.66

Copper Cu2p3 Me 932.4 0.16

Zinc Zn2p3 ZnO 1021.7 0.11

Silicon Si2p3 organic, Si3N4, Silicates 101.8 1.39

Titanium
Ti2p3 TiC 454.4 0.09

Ti2p3 TiO2 458.3 0.15
Ti2p3 TiN 455 0.02

Table 5. X-ray peaks of the machined Al2O3 + 30%TiC nanocomposite in water.

Chemical Element Binding Energy E Binding energy peak,
eV Atomic, %

Carbon
C1s C-O 285.5 30.54
C1s C=O 288.3 4.85
C1s C-C 284.6 25.42

Aluminum Al2p3 Oxide 73.8 10.47

Nitrogen N1s C-NH2 399.6 2.67

Calcium Ca2p3 CaCO3 347.4 1.18

Oxygen
O1s C=O 532.8 5.77
O1s C-O 531.7 9.49
O1s MeO 530.5 8.67

Titanium
Ti2p3 Me 453.6 0.34

Ti2p3 TiO2 457.8 0.22
Ti2p3 TiN 455 0.17

Zinc Zn2p3 Me 1022 0.11
Copper Cu2p3 CuO 932.9 0.12
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Figure 12. X-ray photoelectron spectroscopy of the Al2O3 + 30%TiC nanocomposite cross-section
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in oil; (d) Oxygen content, in water; (e) Titanium content, in oil; (f) Titanium content, in water;
(g) Carbon‘content, in oil; (h) Carbon content, in water.
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The graphs show a similar content of aluminum in the form of oxide. The sample machined
in water has an alumina content by 3.8 times higher than the sample machined in oil, which can be
explained by the active formation of Al3C4 in the form of sediment in the oil medium.

The sample machined in oil shows the bonding of titanium in carbides as well as the formation
of TiO2 and TiN ceramics, while the sample machined in water has a significant presence of metallic
titanium and the same ceramics. However, the content of TiN in the sample machined in water is
8.5 times higher than for the sample machined in oil.

The presence of C-C, C-O, C=O bonds corresponds to the normal atmosphere contamination of
the samples. Still, the summarized percentage of contaminations is lower by 1.35 times for the samples
machined in oil. It can be explained by partial carbon bonding in the form of graphite and carbides.

Oxygen is bonded in the surface and subsurface layers in the forms that correspond to the
mentioned atmospheric contaminations and, in the case of the sample machined in water, metallic oxides.
The summarized presence of oxygen is 1.5 times higher for the samples produced in water than for the
samples machined in oil.

It is quite interesting that both of the samples demonstrate the presence of the compounds that
correspond to the chemical composition of the wire tool—brass. In the case of sample machined in oil,
the presence of the metallic copper and zinc oxide was detected, while the sample produced in water
showed an almost similar presence of metallic zinc and copper oxide.

The presence of other components—bonded nitrogen, calcium carbonate, traces of the organic
silicon and silicates for the sample machined in oil and an amino group with a carbon atom, bonded in
TiN nitrogen, also calcium carbonate for the sample machined in water—can be explained by the
chemical composition of the working mediums. The first one correlates to the chemical composition of
the organic mineral oil, while the second one correlates to the chemical composition of distillate and
deionized technical water.

3.6. Discharge Gap

The optically measured cut width l is 0.380 ÷ 0.400 mm (Figure 13), the measured distance
between the machined surfaces lm is 1.858 ÷ 1.978 mm, and the accuracy of measuring is 5 µm.
The programmed distance between two cuts lp is 2 mm. The calculated discharge gap ∆DB is in
the range of 0.065 ÷ 0.075 mm. The recommended offset is 0.190 ÷ 0.200 mm, which is larger than
for structural anti-corrosion steels (0.175 mm) but less than recommended for aluminum alloys
(0.204 ÷ 0.207 mm).
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4. Discussion

As it can be seen, one can estimate the efficiency of electrical discharge machining of
nanocomposites by controlling the effective values of the vibroacoustic signal and discharge current.
For example, it is known that the size of the well formed after the discharge depends in an extreme
way on the pulse duration [33,35,80,81]. It is possible to select the optimal value of the effective values
ratio of the signals and current automatically by varying the pulse duration during electrical discharge
machining and monitoring the parameters of the recorded signals. Other parameters of the process can
be varied in a similar way, including the value of the discharge, by maintaining the constancy of the
ratio of useful energy to consumed energy [36,82,83]. It can be seen that, in the latter case, the signal
becomes more complex during electrical discharge machining of the nanocomposites compared with
other processing methods [7,23]. Quite weighty components appear around the spectral maximum at
the frequency of the impulse action, indicating the presence of discharges between the electrodes and
non-periodic short-circuits, which contribute to the energy of signals. In this situation, finer filtering of
the signal, tuned to the frequency of the applied discharge pulses, may be required.

The microstructure and chemical analyses of the machined nanocomposites (Figures 9 and 10)
showed an oxygen unsaturated type of surface destruction. This type of destruction is correlated
to the complex wear in the presence of heat when the metastable secondary structure of the second
order (formed ceramic plaques with the width of 25–30 µm for the sample machined in water and
non-homogenous plaques of 8–10 µm in oil) is adherent to the heat-affected surface of the base
nanocomposte. The formed surface and subsurface layers under this type of wear have the presence of
partial removal of the secondary structures, which are more brittle in the case of machining in water
(Figure 14) [78,79,84–88].
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In the context, zinc oxide (ZnO) formed during machining in oil is an n-type semiconductor and
sublimates at a temperature of 1800 ◦C [89,90]; copper (II) oxide (CuO) that is observed after machining
in water does not react with an aqueous medium and decomposes to metallic copper in the presence of
hydrogen, carbon, or carbon monoxide [91,92]:

CuO + H2 → Cu + H2O, (3)

2CuO + C→ 2Cu + CO2 ↑ . (4)

This explains the presence of CuO in the sample machined in the water when the metallic copper
is observed in the sample produced in oil, where the reaction (4) has more probability due to the
prevalence of carbon in the hydrocarbon oil.
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At the same time, the possibly formed zinc carbide ZnC2 is not stable in the presence of water and
reacts with it to form acetylene C2H2↑.

Copper (II) carbonate or copper (II) acetanilide is not possible to obtain by the direct exchange
reaction in water. Moreover, these compounds are explosive and have particular colors and their
presence can be easily detected.

The presence of carbon in the subsurface layer, which is at least 3–5 times higher than in the
primary material, cannot be explained by the presence of a heat-affected zone as it can usually be
characterized by the low carbon microstructure layer and the following transition zone to the base
material [93,94].

However, the mechanism of sublimation for composites and nanocomposites can explain it by the
adsorption of formed chemical components of the first order (graphite, metallic copper for the sample
machined in oil; metallic titanium and zinc—in water) and the second order (carbides, zinc oxide,
silicon compounds, TiO2, TiN—in oil; TiO2, TiN, CuO—in water) by an eroded refractory matrix of
base nanocomposite [95–98].

The presence of the significant content of aluminum and carbides in the sample machined in
oil (aluminum is 3.8 times higher when there is around 12% of carbides) can prove the formation of
aluminum carbide. As it is known, aluminum demonstrates the high chemical reactivity towards
oxygen that is higher than for halogens (except fluorine) and with no-metals, including carbon, in the
presence of heat. In the proposed conditions of electrical erosion that corresponds to the oxygen
unsaturated type of destruction in the presence of heat, when the quantity of oxygen stays less than it
should be for alumina forming, aluminum forms pyrotechnical aluminum carbide. It is resistant up to
1400 ◦C but reacts with water (×12), forming a gelatinous sediment of aluminum hydroxide (×4) and
methane (×3):

4Al + 3C→ Al4C3, (5)

2Al2O3 + 9C 1800 ◦C
→ Al4C3 + 6CO ↑, (6)

Al4C3 + 12H2O→ 4Al(OH)3 ↓ +3CH4 ↑ . (7)

This pyrotechnical aluminum carbide is often called “pyrolytic carbon.” However, the correct
form probably will be pyrotechnical or pyrolytic aluminum carbide.

Furthermore, the actively formed Al3C4 is a dielectric that can hamper electroerosive machining
by changing the discharge gap’s electrical conditions since hydrocarbon oil has better conductivity
(1.9 ÷ 4.3 Ω·m depending on oil purity) than isolating ceramics (≤10−4 Ω·m). However, the discovered
proof of formed Al4C3 has an indirect character despite the observed abundant black sediment during
machining and indirect spectroscopy evidence. It means that most of the formed sediment was settled
in the medium that was not collected during experiments but can be a direction for further research to
unveil wholly and finally the subject of electrical discharge machining alumina and alumina-based
materials in oil.

It should be noted that amphoteric oxides—Al2O3, TiO2, ZnO [99,100]—do not react with water
but can interact between each other with the formation of more complex structures, such as insoluble
solid solutions: aluminum titanate or tialite Al2TiO5 (Figure 10), zinc dialuminate (III) gahnite Al2ZnO4,
zinc titanate (ZnTiO3).

5. Conclusions

The article presents the first comprehensive and exhaustive study of the process of electrical
discharge machining of the ceramic nanocomposite in two working fluids (water and mineral oil)
with the developed electrical discharge factors, estimation of the wire tool behavior under pulses,
evaluation of the tool material and medium influence and chemical changes that occur in surface and
subsurface layers, and estimation of the discharge gap. The principal ability of fine quality surface
formation with the Ra of 1.87 µm in water by a single pass of wire tool and precision cut for ceramic
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nanocomposite Al2O3 + 30%TiC was demonstrated when the roughness of the samples produced in
oil stays under required level (Ra of 4 µm).

Monitoring of the signals showed that it is possible to solve a number of applied problems of
changing the parameters of signals and there is a prospect of creating a multiparameter system for
controlling the processes of electrical discharge processing using control of vibroacoustic signals and
discharge current, which is more effective in comparison with similar systems based only on measuring
electrical parameters that showed their ineffectiveness in the case of machining in oil.

Chemical analyses of the surface and subsurface layers of the samples showed nanomodification
by adsorption of newly created components in the nanoframe of the heat-resistant matrix, pellets
of solid solutions and plaques of the secondary order under conditions of low-temperature plasma,
and the presence of components of the working medium and wire tool at a depth of up to 2.5–4 µm.
The compositions are different for each working fluid and following the chemical interactions between
elements that occurred in the presence of plasma heat and pressure.

It should be noted that the surface and subsurface layers of Al2O3 + 30%TiC machined in water
contain 3.8 times more aluminum, 8.5 times more titanium compounds (TiN), 1.35 times more traces of
atmospheric carbon contaminations, and 1.5 times more oxides (probably partly involved in the bonds
with aluminum and titanium). In addition, these samples can be characterized by finer aluminum
oxide film (up to 1.5–2.0 µm) that has a presence of plaques (width of 25–30 µm) on the main eroded
material and carbon saturated sublayer, with the thickness of 0.5–1.5 µm.

At the same time, the nanocomposite samples machined in oil contain the presence of carbon
bonding in graphite and carbides, bonded nitrogen, calcium carbonate, traces of the organic silicon,
and silicates that correspond to the chemical content of the hydrocarbon oil. The reduced volume
of aluminum can be consumed on the formation of pyrotechnical aluminum carbide from alumina
(×2) and carbon (×9) at 1800 ◦C with CO↑ (×6). The aluminum oxide film is thicker (3.5–5.0 µm) but
has a non-homogeneous microstructure (the plaque of 8–10 µm in width) when the carbon saturated
sublayer is pronounced and of about 3–5 µm.

The obtained data allows conclusions to be drawn regarding nanomodification of the surface and
subsurface layer in the case of oxide nanocomposite machining by using different components of the
machining processes and controlling it by choosing the working fluid and material of the electrode tool.
It can promote the formation of a fragile sublayer for easier mechanical or electrochemical removal
of the products where the recast layer is undesired or, on the contrary, the formation of a stronger
sublayer to improve wear resistance of the responsible working surfaces of the product.

The obtained knowledge has a fundamental character and can be used as a recommendation for
industrial applications, in terms of the more proper choice of the electrode tool material for electrical
discharge machining design for developing technology using newly created conductive ceramic
nanocomposites, in the context not only of structural requirements addressed to the working and
auxiliary surfaces of the final product, but also of functionality in the exploitation conditions.

6. Patents

1. Kozochkin, M.P.; Grigoriev, S.N.; Porvatov, A.N., Okunkova, A.A. The method of controlling the
electrical discharge machining of parts on an automated cutting machine with a system of CNC;
RU 2598022.

2. Kozochkin, M.P.; Khoteenkov, K.E.; Porvatov, A.N., Grigoriev, S.N. The method of EDM cutting
of products; RU 2638607.

3. Grigoriev, S.N.; Kozochkin, M.P.; Okunkova, A.A. The method of positioning the wire electrode
on the EDM cutting machines; RU 2572678.
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