Machine Learning of Surface Layer Property Prediction for Milling Operations
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. 3MA-II-Sensor Measurements
3.2. Cable Core Converters Measurements
3.3. Relationship of Cutting Parameters, Tool Radius Reduction, and Micromagnetic Measurements
3.4. Adaptive Cutting Processes
3.5. Data-Driven Prediction of Micromagnetic Measurements
4. Discussion
- 3MA-II-sensor needs to be calibrated on SLP such as hardness and residual stresses in the workpiece, considering several MM;
- Conducting experiments with more industrially relevant, coated mills;
- Enabling of wet and ultrasonic assisted cutting processes, using the cooling capacity and ultrasonic amplitude as manipulative values;
- Realization of a prediction of a SLP depth gradient;
- Using white or gray box approaches to improve the model performance;
- Investigations on surface layer emergence during the cutting operation with suitable in situ measurement setup.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Denkena, B.; Tönshoff, H.K. Spanen, 3rd ed.; Springer: Heidelberg, Germany, 2011; pp. 87–212. [Google Scholar]
- Saldana, C.; Swaminathan, S.; Brown, T.L.; Moscoso, W.; Mann, J.B.; Compton, W.D.; Chandrasekar, S. Unusual Applications of Machining: Controlled Nanostructuring of Materials and Surfaces. J. Manuf. Sci. Eng. 2010, 132, 030908. [Google Scholar] [CrossRef]
- M’Saoubi, R.; Outeiro, J.C.; Chandrasekaran, H.O.W.D.; Dillon, O.W., Jr.; Jawahir, I.S. A review of surface integrity in machining and its impact on functional performance and life of machined products. Int. J. Sustain. Manuf. 2008, 1, 203. [Google Scholar] [CrossRef]
- Neubauer, T.; Poll, G.; Denkena, B.; Maiß, O. Untersuchungen einer Lebensdauererhöhung von Zylinderrollenlagern durch eine gezielte Modifikation der Randzone. VDI-B 2013, 2202, 1–14. [Google Scholar]
- Sales, W.F.; Schoop, J.; da Silva, L.R.R.; Machado, Á.R.; Jawahir, I.S. A review of surface integrity in machining of hardened steels. J. Man. Proc. 2020, 58, 136–216. [Google Scholar] [CrossRef]
- Wittel, H.; Jannasch, D.; Muhs, D. Roloff/Matek Maschinenelemente, 19th ed.; Vieweg+Teubner Verlag: Wiesbaden, Germany, 2009; pp. 114–182. [Google Scholar]
- Chi, J.; Cai, Z.; Wan, Z.; Zhang, H.; Chen, Z.; Li, L.; Li, Y.; Peng, P.; Guo, W. Effects of heat treatment combined with laser shock peening on wire and arc additive manufactured Ti17 titanium alloy: Microstructures, residual stress and mechanical properties. Surf. Coat. Technol. 2020, 396, 125908. [Google Scholar] [CrossRef]
- Terres, M.; Ben Mohamed, S.; Sidhom, H. Influence of ion nitriding on fatigue strength of low-alloy (42CrMo4) steel: Experimental characterization and predictive approach. Int. J. Fatigue 2010, 32, 1795–1804. [Google Scholar] [CrossRef]
- Röttger, K.; Wilcke, G.; Mader, S. Festwalzen—eine Technologie für effizienten Leichtbau. Mater. Werkst. 2005, 36, 270–274. [Google Scholar] [CrossRef]
- Lienert, F.; Hoffmeister, J.; Schulze, V. Residual Stress Depth Distribution after Piezo Peening of Quenched and Tempered AISI 4140. Mater. Sci. Forum 2013, 768–769, 526–533. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, H.; Zhu, C.; Chen, D.; Zhou, S. Effects of different shot peening parameters on residual stress, surface roughness and cell size. Surf. Coat. Technol. 2020, 398, 126054. [Google Scholar] [CrossRef]
- Crouch, A.E.; Beuker, T. In-Line Stress Measurement by the Continuous Barkhausen Method. In Proceedings of the IPC, Alberta, AB, Canada, 4–8 September 2004. [Google Scholar] [CrossRef]
- Willcox, M.; Mysak, T. An Introduction to Barkhausen Noise and its Applications. Insight NDT 2004, 12, 1–19. [Google Scholar]
- Le Manh, T.; Pérez Benitez, J.A.; Alberteris, M. Future trend and applications of Barkhausen noise. In Barkhausen Noise for Non-Destructive Testing and Materials Characterization in Low Carbon Steels, 2nd ed.; Le Manh, T., Benitez, P., Alberto, J., Alberteris, M., Eds.; Woodhead Publishing: Duxford, UK, 2020. [Google Scholar] [CrossRef]
- Seidel, M.W. Schleifbrand und dessen Prüfung. Leitfaden für die Praxis, 1st ed.; Hanser: Munich, Germany, 2020; pp. 25–78. [Google Scholar]
- Heisel, U.; Klocke, F.; Uhlmann, E.; Spur, G. Spanen, 1st ed.; Hanser: Munich, Germany, 2014; p. 535. [Google Scholar]
- Klocke, F. Fertigungsverfahren 1, 9th ed.; Springer+Vieweg: Berlin, Germany, 2018; pp. 325–425. [Google Scholar]
- El-Khabeery, M.; Fattouh, M. Residual stress distribution caused by milling. Int. J. Mach. Tools Manuf. 1989, 29, 391–401. [Google Scholar] [CrossRef]
- Köhler, J.; Grove, T.L.; Mais, O.; Denkena, B. Residual Stresses in Milled Titanium Parts. Procedia CIRP 2012, 2, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Perez, I.; Madariaga, A.; Cuesta, M.; Garay, A.; Arrazola, P.; Ruiz, J.; Rubio, F.; Sanchez, R. Effect of cutting speed on the surface integrity of face milled 7050-T7451 aluminium workpieces. Procedia CIRP 2018, 71, 460–465. [Google Scholar] [CrossRef]
- Javidikia, M.; Sadeghifar, M.; Songmene, V.; Jahazi, M. Effect of turning environments and parameters on surface integrity of AA6061-T6: Experimental analysis, predictive modeling, and multi-criteria optimization. Int. J. Adv. Manuf. Technol. 2020, 110, 2669–2683. [Google Scholar] [CrossRef]
- Wimmer, M.; Hameed, M.Z.S.; Wölfle, C.; Weisbrodt, V.; Zaeh, M.F.; Werner, E.; Krempaszky, C.; Semm, T. The influence of the process parameters on the surface integrity during peripheral milling of Ti-6Al-4V. TM-Tech. Mess. 2020, 87, 721–731. [Google Scholar] [CrossRef]
- Deselaers, L. Spannungen in der Berührungs und Scherzone sowie Aufhärtung der Randzone beim Umfangsfräsen mit Hartmetall. Arch. Eise. 1971, 42, 495–499. [Google Scholar]
- Holmberg, J.; Wretland, A.; Berglund, J.; Beno, T.; Karlsson, A.M. Surface Integrity Investigation to Determine Rough Milling Effects for Assessment of Machining Allowance for Subsequent Finish Milling of Alloy 718. J. Manuf. Mater. Process. 2021, 5, 48. [Google Scholar] [CrossRef]
- Oliveira, G.D.P.; Fonseca, M.C.; Araujo, A.C. Residual stresses and cutting forces in cryogenic milling of Inconel 718. Procedia CIRP 2018, 77, 211–214. [Google Scholar] [CrossRef]
- Ankener, W.; Uebel, J.; Basten, S.; Smaga, M.; Kirsch, B.; Seewig, J.; Aurich, J.C.; Beck, T. Influence of different cooling strategies during hard turning of AISI 52100—part II: Characterization of the surface and near surface microstructure morphology. Procedia CIRP 2020, 87, 119–124. [Google Scholar] [CrossRef]
- Chavan, A.; Sargade, V. Surface Integrity of AISI 52100 Steel during Hard Turning in Different Near-Dry Environments. Adv. Mater. Sci. Eng. 2020, 4256308, 1–13. [Google Scholar] [CrossRef]
- Tong, J.; Zhao, J.; Chen, P.; Zhang, Z.; Zhao, B. Effect of ultrasonic longitudinal–torsional composite milling of the residual stress on the surface of titanium alloy. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 234, 1598–1608. [Google Scholar] [CrossRef]
- Ying, N.; Feng, J.; Bo, Z.; Guofu, G.; Jing-Jing, N. Theoretical investigation of machining-induced residual stresses in longitudinal torsional ultrasonic–assisted milling. Int. J. Adv. Manuf. Technol. 2020, 108, 3689–3705. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, Z.; Pan, Y.; Wan, Y.; Ai, X. The influence of tool flank wear on residual stresses induced by milling aluminum alloy. J. Mater. Process. Technol. 2009, 209, 4502–4508. [Google Scholar] [CrossRef]
- Holmberg, J.; Wretland, A.; Berglund, J.; Beno, T. A detailed investigation of residual stresses after milling Inconel 718 using typical production parameters for assessment of affected depth. Mater. Today Commun. 2020, 24, 100958. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z.; Chen, L.; Hao, G.; Wang, B.; Cai, Y.; Song, Q. Tool wear induced modifications of plastic flow and deformed material depth in new generated surfaces during turning Ti-6Al-4V. J. Mater. Res. Technol. 2020, 9, 10782–10795. [Google Scholar] [CrossRef]
- Oliveira, A.R.F.; da Silva, L.R.R.; Baldin, V.; Fonseca, M.P.C.; Silva, R.B.; Machado, A.R. Effect of tool wear on the surface integrity of Inconel 718 in face milling with cemented carbide tools. Wear 2020, 86, 203752–203759. [Google Scholar] [CrossRef]
- González, G.; Plogmeyer, M.; Zanger, F.; Biehl, S.; Bräuer, G.; Schulze, V. Effect of tool coatings on surface grain refinement in orthogonal cutting of AISI 4140 steel. Procedia CIRP 2020, 87, 176–180. [Google Scholar] [CrossRef]
- Junge, T.; Liborius, H.; Mehner, T.; Nestler, A.; Schubert, A.; Lampke, T. Method for process monitoring of surface layer changes in turning of aluminium alloys using tools with a flank face chamfer. Procedia CIRP 2020, 87, 432–437. [Google Scholar] [CrossRef]
- Denkena, B.; Breidenstein, B.; Dittrich, M.-A.; Nguyen, H.N.; Fricke, L.V.; Maier, H.J.; Zaremba, D. Effects on the deformation-induced martensitic transformation in AISI 304 in external longitudinal turning. Adv. Ind. Manuf. Eng. 2021, 2, 100044. [Google Scholar] [CrossRef]
- Kundrák, J.; Mamalis, A.G.; Szabó, G.; Pálmai, Z.; Gyáni, K. Numerical examination of residual stresses developing during hard turning at different rake angles. Int. J. Adv. Manuf. Technol. 2016, 89, 1989–1999. [Google Scholar] [CrossRef]
- Roeder, M. Spanbildung und Werkzeugverschleiß bei der Zerspanung partikelverstärkter Titanmatrix-Verbundwerkstoffe. Master’s Thesis, Technical University Berlin, Berlin, Germany, 2013. [Google Scholar]
- Lebsanft, M.; Tiffe, M.; Zabel, A.; Zinn, W.; Biermann, D.; Scholtes, B. Residual Stresses in Different Heat Treated Workpieces after Turning. Adv. Mater. Res. 2014, 996, 652–657. [Google Scholar] [CrossRef] [Green Version]
- Uebel, J.; Ströer, F.; Basten, S.; Ankener, W.; Hotz, H.; Heberger, L.; Stelzer, G.; Kirsch, B.; Smaga, M.; Seewig, J.; et al. Approach for the observation of surface conditions in-process by soft sensors during cryogenic hard turning. Procedia CIRP 2019, 81, 1260–1265. [Google Scholar] [CrossRef]
- Zahoor, S.; Mufti, N.A.; Saleem, M.Q.; Shehzad, A. An investigation into surface integrity of AISI P20 machined under the influence of spindle forced vibrations. Int. J. Adv. Manuf. Technol. 2018, 96, 3565–3574. [Google Scholar] [CrossRef]
- Zagórski, I.; Korpysa, J.; Weremczuk, A. Influence of Tool Holder Types on Vibration in Rough Milling of AZ91D Magnesium Alloy. Materials 2021, 14, 2517. [Google Scholar] [CrossRef] [PubMed]
- Ulutan, D.; Ozel, T. Machining induced surface integrity in titanium and nickel alloys: A review. Int. J. Mach. Tools Manuf. 2011, 51, 250–280. [Google Scholar] [CrossRef]
- El-Axir, M. A method of modeling residual stress distribution in turning for different materials. Int. J. Mach. Tools Manuf. 2002, 42, 1055–1063. [Google Scholar] [CrossRef]
- Wang, S.Y.; Ai, X.; Zhao, J.; Lv, Z. FEM Simulation of the Residual Stress in the Machined Surface Layer for High-Speed Machining. Key Eng. Mater. 2006, 315–316, 140–144. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, S.; Zhang, G.; Yen, D. Modeling of Residual Stress Profile in Finish Hard Turning. Mater. Manuf. Process. 2006, 21, 39–45. [Google Scholar] [CrossRef]
- Umbrello, D.; Ambrogio, G.; Filice, L.; Shivpuri, R. An ANN approach for predicting subsurface residual stresses and the desired cutting conditions during hard turning. J. Mater. Process. Technol. 2007, 189, 143–152. [Google Scholar] [CrossRef]
- Umbrello, D.; Ambrogio, G.; Filice, L.; Shivpuri, R. A hybrid finite element method–artificial neural network approach for predicting residual stresses and the optimal cutting conditions during hard turning of AISI 52100 bearing steel. Mater. Des. 2008, 29, 873–883. [Google Scholar] [CrossRef]
- Saini, S.; Ahuja, I.S.; Sharma, V.S. Modelling the effects of cutting parameters on residual stresses in hard turning of AISI H11 tool steel. Int. J. Adv. Manuf. Technol. 2012, 65, 667–678. [Google Scholar] [CrossRef]
- Ulutan, D.; Arisoy, Y.M.; Özel, T.; Mears, L. Empirical Modeling of Residual Stress Profile in Machining Nickel-based Superalloys Using the Sinusoidal Decay Function. Procedia CIRP 2014, 13, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, D.; Wu, B.; Luo, M. Numerical and Empirical Modelling of Machining-induced Residual Stresses in Ball end Milling of Inconel 718. Procedia CIRP 2017, 58, 7–12. [Google Scholar] [CrossRef]
- Schulze, V.; Uhlmann, E.; Mahnken, R.; Menzel, A.; Biermann, D.; Zabel, A.; Bollig, P.; Ivanov, I.M.; Cheng, C.; Holtermann, R.; et al. Evaluation of different approaches for modeling phase transformations in machining simulation. Prod. Eng. 2015, 9, 437–449. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, X.; Ding, H. An Enhanced Analytical Model of Residual Stress for Peripheral Milling. Procedia CIRP 2017, 58, 387–392. [Google Scholar] [CrossRef]
- Yang, D.; Xiao, X.; Liang, X. Analytical modeling of residual stress in orthogonal cutting considering tool edge radius effect. Int. J. Adv. Manuf. Technol. 2019, 103, 2965–2976. [Google Scholar] [CrossRef]
- Uhlmann, E.; Mahnken, R.; Ivanov, I.; Cheng, C. FEM modeling of hard turning with consideration of viscoplastic asymmetry and phase transformation. J. Mach. Eng. 2013, 13, 80–92. [Google Scholar]
- Stampfer, B.; Böttger, D.; Gauder, D.; Zanger, F.; Häfner, B.; Straß, B.; Wolter, B.; Lanza, G.; Schulze, V. Experimental identification of a surface integrity model for turning of AISI4140. Procedia CIRP 2020, 87, 83–88. [Google Scholar] [CrossRef]
- Meurer, M.; Tekkaya, B.; Augspurger, T.; Pullen, T.; Schraknepper, D.; Bergs, T.; Münstermann, S. Cutting force based surface integrity soft-sensor when hard machining AISI 4140. Tm Tech. Mess. 2020, 87, 683–693. [Google Scholar] [CrossRef]
- Fricke, L.V.; Barton, S.; Nguyen, H.N.; Breidenstein, B.; Zaremba, D. Integration von Wirbelstromsensoren in eine Drehmaschine als Grundlage für eine prozessbegleitende Regelung—Eine Übersicht über resultierende Störeinflüsse. DACH Jahr 2019, 1, 1–9. [Google Scholar]
- Fricke, L.V.; Nguyen, H.N.; Breidenstein, B.; Zaremba, D.; Maier, H.J. Eddy Current Detection of the Martensitic Transformation in AISI304 Induced upon Cryogenic Cutting. Steel Res. Int. 2020, 92. [Google Scholar] [CrossRef]
- Fricke, L.V.; Nguyen, H.N.; Breidenstein, B.; Denkena, B.; Dittrich, M.-A.; Maier, H.J.; Zaremba, D. Generation of tailored subsurface zones in steels containing metastable austenite by adaptive machining and validation by eddy current testing. Tm Tech. Mess. 2020, 87, 704–713. [Google Scholar] [CrossRef]
- Altpeter, I.; Boller, C.; Kopp, M.; Wolter, B.; Fernath, R.; Hirninger, B.; Werner, S. Zerstörungsfreie Detektion von Schleifbrand mittels elektromagnetischer Prüftechniken. Proc. DGZfP-Jahrestag. 2011, 30, 1–10. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uhlmann, E.; Holznagel, T.; Schehl, P.; Bode, Y. Machine Learning of Surface Layer Property Prediction for Milling Operations. J. Manuf. Mater. Process. 2021, 5, 104. https://doi.org/10.3390/jmmp5040104
Uhlmann E, Holznagel T, Schehl P, Bode Y. Machine Learning of Surface Layer Property Prediction for Milling Operations. Journal of Manufacturing and Materials Processing. 2021; 5(4):104. https://doi.org/10.3390/jmmp5040104
Chicago/Turabian StyleUhlmann, Eckart, Tobias Holznagel, Philipp Schehl, and Yannick Bode. 2021. "Machine Learning of Surface Layer Property Prediction for Milling Operations" Journal of Manufacturing and Materials Processing 5, no. 4: 104. https://doi.org/10.3390/jmmp5040104
APA StyleUhlmann, E., Holznagel, T., Schehl, P., & Bode, Y. (2021). Machine Learning of Surface Layer Property Prediction for Milling Operations. Journal of Manufacturing and Materials Processing, 5(4), 104. https://doi.org/10.3390/jmmp5040104