Binder Jetting Additive Manufacturing: Powder Packing in Shell Printing
Abstract
:1. Introduction
2. Experimental Methods
2.1. Powder Characterization
2.2. Printing with Powders of Different Particle Sizes
2.3. Printing at Different Layer Thicknesses
2.4. Post-Processing
2.5. Density Measurement
2.6. Microstructure Characterization
3. Results
3.1. The Effect of Powder Particle Size on Powder Packing in Shell Printing
3.2. The Effect of Layer Thickness on Powder Packing in Shell Printing
4. Discussion of Powder Packing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ISO/ASTM 52900:2021; Standard Terminology for Additive Manufacturing-General Principles-Terminology. ASTM International: West Conshohocken, PA, USA, 2021.
- Du, W.; Ren, X.; Pei, Z.; Ma, C. Ceramic Binder Jetting Additive Manufacturing: A Literature Review on Density. J. Manuf. Sci. Eng. 2020, 142, 040801. [Google Scholar] [CrossRef]
- Li, M.; Du, W.; Elwany, A.; Pei, Z.; Ma, C. Metal Binder Jetting Additive Manufacturing: A Literature Review. J. Manuf. Sci. Eng. 2020, 142, 090801. [Google Scholar] [CrossRef]
- Mostafaei, A.; Elliott, A.; Barnes, J.; Cramer, C.; Nandwana, P.; Chmielus, M. Binder Jet 3D Printing–Process Parameters, Materials, Properties, and Challenges. Prog. Mater. Sci. 2021, 119, 100707. [Google Scholar] [CrossRef]
- Ziaee, M.; Crane, N. Binder Jetting: A Review of Process, Materials, and Methods. Addit. Manuf. 2019, 28, 781–801. [Google Scholar] [CrossRef]
- Chavez, L.; Ibave, P.; Wilburn, B.; Alexander, D.; Stewart, C.; Wicker, R.; Lin, Y. The Influence of Printing Parameters, Post-Processing, and Testing Conditions on the Properties of Binder Jetting Additive Manufactured Functional Ceramics. Ceramics 2020, 3, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Sachs, E.; Cima, M.; Cornie, J.; Brancazio, D.; Bredt, J.; Curodeau, A.; Fan, T.; Khanuja, S.; Lauder, A.; Lee, J. Three-Dimensional Printing: The Physics and Implications of Additive Manufacturing. CIRP Ann. 1993, 42, 257–260. [Google Scholar] [CrossRef]
- Bourell, D.; Kruth, J.; Leu, M.; Levy, G.; Rosen, D.; Beese, A.; Clare, A. Materials for Additive Manufacturing. CIRP Ann. 2017, 66, 659–681. [Google Scholar] [CrossRef]
- Guo, N.; Leu, M. Additive Manufacturing: Technology, Applications and Research Needs. Front. Mech. Eng. 2013, 8, 215–243. [Google Scholar] [CrossRef]
- Seitz, H.; Rieder, W.; Irsen, S.; Leukers, B.; Tille, C. Three-Dimensional Printing of Porous Ceramic Scaffolds for Bone Tissue Engineering. J. Biomed. Mater. Res. Part B 2005, 74, 782–788. [Google Scholar] [CrossRef]
- Williams, C.; Cochran, J.; Rosen, D. Additive Manufacturing of Metallic Cellular Materials via Three-Dimensional Printing. Int. J. Adv. Manuf. Technol. 2011, 53, 231–239. [Google Scholar] [CrossRef]
- Graybill, B.; Li, M.; Malawey, D.; Ma, C.; Alvarado-Orozco, J.-M.; Martinez-Franco, E. Additive Manufacturing of Nickel-Based Superalloys. In Proceedings of the ASME International Manufacturing Science and Engineering Conference, College Station, TX, USA, 18–22 June 2018. [Google Scholar]
- Zocca, A.; Lima, P.; Günster, J. LSD-Based 3D Printing of Alumina Ceramics. J. Ceram. Sci. Technol. 2017, 8, 141–148. [Google Scholar]
- Frykholm, R.; Takeda, Y.; Andersson, B.; Carlström, R. Solid State Sintered 3-D printing Component by Using Inkjet (Binder) Method. J. Jpn. Soc. Powder Powder Metall. 2016, 63, 421–426. [Google Scholar] [CrossRef]
- Miao, G.; Du, W.; Pei, Z.; Ma, C. A Literature Review on Powder Spreading in Additive Manufacturing. Addit. Manuf. 2022, 58, 103029. [Google Scholar] [CrossRef]
- Miao, G.; Du, W.; Moghadasi, M.; Pei, Z.; Ma, C. Ceramic Binder Jetting Additive Manufacturing: Effects of Granulation on Properties of Feedstock Powder and Printed and Sintered Parts. Addit. Manuf. 2020, 36, 101542. [Google Scholar] [CrossRef]
- Du, W.; Roa, J.; Hong, J.; Liu, Y.; Pei, Z.; Ma, C. Binder Jetting Additive Manufacturing: Effect of Particle Size Distribution on Density. J. Manuf. Sci. Eng. 2021, 143, 091002. [Google Scholar] [CrossRef]
- Li, M.; Miao, G.; Moghadasi, M.; Pei, Z.; Ma, C. Ceramic Binder Jetting Additive Manufacturing: Relationships Among Powder Properties, Feed Region Density, and Powder Bed Density. Ceram. Int. 2021, 47, 25147–25151. [Google Scholar] [CrossRef]
- Mariani, M.; Beltrami, R.; Brusa, P.; Galassi, C.; Ardito, R.; Lecis, N. 3D Printing of Fine Alumina Powders by Binder Jetting. J. Eur. Ceram. Soc. 2021, 41, 5307–5315. [Google Scholar] [CrossRef]
- ISO 18754:2020; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-Determination of Density and Apparent Porosity. International Organization for Standardization: Vernier, Geneva, Switzerland, 2020.
- Li, M.; Miao, G.; Du, W.; Pei, Z.; Ma, C. Difference between Powder Bed Density and Green Density for a Free-Flowing Powder in Binder Jetting Additive Manufacturing. J. Manuf. Process. 2022, 84, 448–456. [Google Scholar] [CrossRef]
- Bai, Y.; Wall, C.; Pham, H.; Esker, A.; Williams, C. Characterizing Binder–Powder Interaction in Binder Jetting Additive Manufacturing via Sessile Drop Goniometry. J. Manuf. Sci. Eng. 2019, 141, 011005. [Google Scholar] [CrossRef]
- Cima, M.; Lauder, A.; Khanuja, S.; Sachs, E. Microstructural Elements of Components Derived from 3D Printing; International Solid Freeform Fabrication Symposium: Austin, TX, USA, 1992. [Google Scholar]
- Haeri, S.; Wang, Y.; Ghita, O.; Sun, J. Discrete Element Simulation and Experimental Study of Powder Spreading Process in Additive Manufacturing. Powder Technol. 2017, 306, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Tan, Y.; Bao, T.; Xu, Y.; Xiao, X.; Jiang, S. Discrete Element Simulation of the Effect of Roller-Spreading Parameters on Powder-Bed Density in Additive Manufacturing. Materials 2020, 13, 2285. [Google Scholar] [CrossRef] [PubMed]
- Budding, A.; Vaneker, T. New Strategies for Powder Compaction in Powder-Based Rapid Prototyping Techniques. Procedia CIRP 2013, 6, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Nan, W.; Pasha, M.; Ghadiri, M. Numerical Simulation of Particle Flow and Segregation During Roller Spreading Process in Additive Manufacturing. Powder Technol. 2020, 364, 811–821. [Google Scholar] [CrossRef]
- Du, W.; Miao, G.; Pei, Z.; Ma, C. Comparison of Flowability and Sinterability among Different Binder Jetting Feedstock Powders: Granulated Powder, Micropowder, and Nanopowder. J. Micro Nano-Manuf. 2021, 9, 021008. [Google Scholar] [CrossRef]
- Du, W.; Miao, G.; Liu, L.; Ma, C.; Pei, Z. Binder Jetting Additive Manufacturing of Ceramics: Feedstock Powder Preparation by Spray Freeze Granulation. In Proceedings of the ASME International Manufacturing Science and Engineering Conference, Erie, PA, USA, 10–14 June 2019. [Google Scholar]
- Du, W.; Miao, G.; Liu, L.; Ma, C.; Pei, Z. Binder Jetting Additive Manufacturing of Ceramics: Comparison of Flowability and Sinterability between Raw and Granulated Powders. In Proceedings of the ASME International Manufacturing Science and Engineering Conference, Erie, PA, USA, 10–14 June 2019. [Google Scholar]
- Du, W.; Ren, X.; Chen, Y.; Ma, C.; Radovic, M.; Pei, Z. Model Guided Mixing of Ceramic Powders with Graded Particle Sizes in Binder Jetting Additive Manufacturing. In Proceedings of the ASME International Manufacturing Science and Engineering Conference, College Station, TX, USA, 18–22 June 2018. [Google Scholar]
- Moghadasi, M.; Miao, G.; Li, M.; Pei, Z.; Ma, C. Combining Powder Bed Compaction and Nanopowder to Improve Density in Ceramic Binder Jetting Additive Manufacturing. Ceram. Int. 2021, 47, 35348–35355. [Google Scholar] [CrossRef]
- Porter, Q.; Pei, Z.; Ma, C. Binder Jetting and Infiltration of Metal Matrix Nanocomposites. J. Manuf. Sci. Eng. 2022, 144, 074502. [Google Scholar] [CrossRef]
- Yin, X.; Travitzky, N.; Melcher, R.; Greil, P. Three-dimensional Printing of TiAl3/Al2O3 Composites. Int. J. Mater. Res. 2006, 97, 492–498. [Google Scholar] [CrossRef]
- Maleksaeedi, S.; Eng, H.; Wiria, F.; Ha, T.; He, Z. Property Enhancement of 3D-Printed Alumina Ceramics Using Vacuum Infiltration. J. Mater. Process. Technol. 2014, 214, 1301–1306. [Google Scholar] [CrossRef]
Nominal Particle Size (µm) | Supplier | Item Number |
---|---|---|
10 | Denka | DAM-10 |
20 | Denka | DAM20-S |
70 | Inframat Advanced Materials | 26R8S70 |
Powder Particle Size (µm) | Layer Thickness (µm) | Ratio of Layer Thickness to Powder Particle Size | Core Density Compared with Shell Density | Core Microstructure |
---|---|---|---|---|
10 | 200 | 20 | Lower | Layered |
20 | 200 | 10 | Lower | Layered |
70 | 200 | 2.9 | Higher | Homogeneous |
20 | 70 | 3.5 | Higher | Homogeneous |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, G.; Moghadasi, M.; Li, M.; Pei, Z.; Ma, C. Binder Jetting Additive Manufacturing: Powder Packing in Shell Printing. J. Manuf. Mater. Process. 2023, 7, 4. https://doi.org/10.3390/jmmp7010004
Miao G, Moghadasi M, Li M, Pei Z, Ma C. Binder Jetting Additive Manufacturing: Powder Packing in Shell Printing. Journal of Manufacturing and Materials Processing. 2023; 7(1):4. https://doi.org/10.3390/jmmp7010004
Chicago/Turabian StyleMiao, Guanxiong, Mohammadamin Moghadasi, Ming Li, Zhijian Pei, and Chao Ma. 2023. "Binder Jetting Additive Manufacturing: Powder Packing in Shell Printing" Journal of Manufacturing and Materials Processing 7, no. 1: 4. https://doi.org/10.3390/jmmp7010004
APA StyleMiao, G., Moghadasi, M., Li, M., Pei, Z., & Ma, C. (2023). Binder Jetting Additive Manufacturing: Powder Packing in Shell Printing. Journal of Manufacturing and Materials Processing, 7(1), 4. https://doi.org/10.3390/jmmp7010004