Rapid Prototyping of 3D Printed, High Aspect Ratio, Low Noise Amplifier for Active Handheld Sensor Devices
Abstract
:1. Introduction
2. Design and Methods
2.1. Circuit Simulation of Redistributed Circuit Layout
2.2. Microstrip Lines
3. Results and Discussion
3.1. Via Holes and Extrusion-Based Syringe Printing
3.2. AJP Trace Printing
3.3. AJP Trace Printing Shielding and Assembly
3.4. Experimental Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zastrow, M. 3D Printing Gets Bigger, Faster and Stronger. Nature 2020, 578, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, E.; Salas, R.; Espalin, D.; Perez, M.; Aguilera, E.; Muse, D.; Wicker, R.B. 3D Printing for the Rapid Prototyping of Structural Electronics. IEEE Access 2014, 2, 234–242. [Google Scholar] [CrossRef]
- Eid, A.; He, X.; Bahr, R.; Lin, T.-H.; Cui, Y.; Adeyeye, A.; Tehrani, B.; Tentzeris, M.M. Inkjet-/3D-/4D-Printed Perpetual Electronics and Modules: RF and Mm-Wave Devices for 5G+, IoT, Smart Agriculture, and Smart Cities Applications. IEEE Microw. Mag. 2020, 21, 87–103. [Google Scholar] [CrossRef]
- Calignano, F.; Manfredi, D.; Ambrosio, E.P.; Biamino, S.; Lombardi, M.; Atzeni, E.; Salmi, A.; Minetola, P.; Iuliano, L.; Fino, P. Overview on Additive Manufacturing Technologies. Proc. IEEE 2017, 105, 593–612. [Google Scholar] [CrossRef]
- Kim, C.; Espalin, D.; Liang, M.; Xin, H.; Cuaron, A.; Varela, I.; Macdonald, E.; Wicker, R.B. 3D Printed Electronics with High Performance, Multi-Layered Electrical Interconnect. IEEE Access 2017, 5, 25286–25294. [Google Scholar] [CrossRef]
- Eshkeiti, A.; Reddy, A.S.G.; Emamian, S.; Narakathu, B.B.; Joyce, M.; Joyce, M.; Fleming, P.D.; Bazuin, B.J.; Atashbar, M.Z. Screen Printing of Multilayered Hybrid Printed Circuit Boards on Different Substrates. IEEE Trans. Comp. Packag. Manuf. Technol. 2015, 5, 415–421. [Google Scholar] [CrossRef]
- Attaran, M. The Rise of 3-D Printing: The Advantages of Additive Manufacturing over Traditional Manufacturing. Bus. Horiz. 2017, 60, 677–688. [Google Scholar] [CrossRef]
- Shin, K.-H.; Nguyen, H.A.D.; Park, J.; Shin, D.; Lee, D. Roll-to-Roll Gravure Printing of Thick-Film Silver Electrode Micropatterns for Flexible Printed Circuit Board. J. Coat. Technol. Res. 2017, 14, 95–106. [Google Scholar] [CrossRef]
- Tavakoli, M.; Malakooti, M.H.; Paisana, H.; Ohm, Y.; Marques, D.G.; Lopes, P.A.; Piedade, A.P.; de Almeida, A.T.; Majidi, C. EGaIn-Assisted Room-Temperature Sintering of Silver Nanoparticles for Stretchable, Inkjet-Printed, Thin-Film Electronics. Adv. Mater. 2018, 30, 1801852. [Google Scholar] [CrossRef]
- Cai, F.; Ulusoy, A.Ç.; Papapolymerou, J. 2.4 GHz Low Cost Low Noise Amplifier on Flexible Organic Substrate. In Proceedings of the 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, Republic of Korea, 5–8 November 2013; pp. 270–272. [Google Scholar] [CrossRef]
- Oakley, C.R. Additive Manufacturing for RF Electronics Packaging; Michigan State University: East Lansing, MI, USA, 2020. [Google Scholar] [CrossRef]
- Oakley, C.; Chahal, P.; Papapolymerou, J.; Albrecht, J.D. Fabrication of X-Band Oscillator on LCP Substrate Using Aerosol Printing. Int. Symp. Microelectron. 2017, 2017, 52–55. [Google Scholar] [CrossRef]
- Mohd Ghazali, M.I.; Karuppuswami, S.; Mondal, S.; Chahal, P. Embedded Active Elements in 3D Printed Structures for the Design of RF Circuits. In Proceedings of the 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 29 May–1 June 2018; pp. 1062–1067. [Google Scholar] [CrossRef]
- Ketterl, T.P.; Vega, Y.; Arnal, N.C.; Stratton, J.W.I.; Rojas-Nastrucci, E.A.; Córdoba-Erazo, M.F.; Abdin, M.M.; Perkowski, C.W.; Deffenbaugh, P.I.; Church, K.H.; et al. A 2.45 GHz Phased Array Antenna Unit Cell Fabricated Using 3-D Multi-Layer Direct Digital Manufacturing. IEEE Trans. Microw. Theory Tech. 2015, 63, 4382–4394. [Google Scholar] [CrossRef]
- Cook, B.S.; Tehrani, B.; Cooper, J.R.; Tentzeris, M.M. Multilayer Inkjet Printing of Millimeter-Wave Proximity-Fed Patch Arrays on Flexible Substrates. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1351–1354. [Google Scholar] [CrossRef]
- Friel, R.J.; Gerling-Gerdin, M.; Nilsson, E.; Andreasson, B.P. 3D Printed Radar Lenses with Anti-Reflective Structures. Designs 2019, 3, 28. [Google Scholar] [CrossRef]
- Deffenbaugh, P.I.; Weller, T.M.; Church, K.H. Fabrication and Microwave Characterization of 3-D Printed Transmission Lines. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 823–825. [Google Scholar] [CrossRef]
- Williams, C.C.; Wickramasinghe, H.K. Scanning Thermal Profiler. Appl. Phys. Lett. 1986, 49, 1587. [Google Scholar] [CrossRef]
- Li, G.; Pommerenke, D.; Min, J. A Low Frequency Electric Field Probe for Near-Field Measurement in EMC Applications. In Proceedings of the 2017 IEEE International Symposium on Electromagnetic Compatibility Signal/Power Integrity (EMCSI), Washington DC, USA, 7–11 August 2017; pp. 498–503. [Google Scholar] [CrossRef]
- Wang, J.; Yan, Z.; Liu, W.; Su, D.; Yan, X. A Novel Tangential Electric-Field Sensor Based on Electric Dipole and Integrated Balun for the Near-Field Measurement Covering GPS Band. Sensors 2019, 19, 1970. [Google Scholar] [CrossRef]
- Shaeffer, D.K.; Lee, T.H. A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier. IEEE J. Solid-State Circuits 1997, 32, 745–759. [Google Scholar] [CrossRef]
- Zhou, N.; Liu, C.; Lewis, J.A.; Ham, D. Gigahertz Electromagnetic Structures via Direct Ink Writing for Radio-Frequency Oscillator and Transmitter Applications. Adv. Mater. 2017, 29, 1605198. [Google Scholar] [CrossRef]
- Paolella, A.C.; Silva-Saez, D.; Kozlovski, D.; Even, R. 3-D Printed RF Amplifier for Wireless Systems. In Proceedings of the 2019 IEEE Radio and Wireless Symposium (RWS), Orlando, FL, USA, 20–23 January 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Mini-Circuits®. Available online: https://www.minicircuits.com/pdfs/ZFL-1000LN+.pdf (accessed on 15 November 2022).
- Available online: https://rogerscorp.com/advanced-connectivity-solutions/ro4000-series-laminates/ro4350b-laminates (accessed on 15 November 2022).
- Pozar, D.M. Microwave Engineering, 4th ed.; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-470-63155-3. [Google Scholar]
- Gu, Y.; Hines, D.R.; Yun, V.; Antoniak, M.; Das, S. Aerosol-Jet Printed Fillets for Well-Formed Electrical Connections between Different Leveled Surfaces. Adv. Mater. Technol. 2017, 2, 1700178. [Google Scholar] [CrossRef]
- Djordjevic, A.R.; Biljie, R.M.; Likar-Smiljanic, V.D.; Sarkar, T.K. Wideband Frequency-Domain Characterization of FR-4 and Time-Domain Causality. IEEE Trans. Electromagn. Compat. 2001, 43, 662–667. [Google Scholar] [CrossRef]
- El Gibari, M.; Li, H. A Comparative Study between Via-Hole and Via-Free Grounded Coplanar Waveguide to Microstrip Transitions on Thin Polymer Substrate. Available online: https://www.hindawi.com/journals/ijap/2015/481768/ (accessed on 19 October 2020).
- HAAS CNC. Available online: https://www.haascnc.com/machines/vertical-mills.html (accessed on 15 November 2022).
- Gupta, A.A.; Soer, M.C.M.; Taherzadeh-Sani, M.; Cloutier, S.G.; Izquierdo, R. Aerosol-Jet Printed Transmission Lines for Microwave Packaging Applications. IEEE Trans. Comp. Packag. Manuf. Technol. 2019, 9, 2482–2489. [Google Scholar] [CrossRef]
- Qayyum, J.A.; Abt, M.; Roch, A.; Ulusoy, A.C.; Papapolymerou, J. Ultra Wideband 3D Interconnects Using Aerosol Jet Printing up to 110 GHz. In Proceedings of the 2017 47th European Microwave Conference (EuMC), Nuremberg, Germany, 10–12 October 2017; pp. 1112–1115. [Google Scholar] [CrossRef]
- King, B.; Renn, M. Aerosol Jet® Direct Write Printing for Mil-Aero Electronic Applications. Available online: https://www.optomec.com/wp-content/uploads/2014/04/Optomec_Aerosol_Jet_Direct_Write_Printing_for_Mil_Aero_Electronic_Apps.pdf (accessed on 15 November 2022).
- Hung, K.-Y.; Chang, Y.-T.; Chien, C.-H.; Ding, C.-F.; Tsai, M.-C.; Young, H.-T. Investigation of Ink Modification for Aerosol Jet Printing Process on FR-4 Substrate. Int. J. Adv. Manuf. Technol. 2020, 111, 1147–1156. [Google Scholar] [CrossRef]
- Dalal, N.; Gu, Y.; Chen, G.; Hines, D.R.; Dasgupta, A.; Das, S. Effect of Gas Flow Rates on Quality of Aerosol Jet Printed Traces with Nanoparticle Conducting Ink. J. Electron. Packag. 2019, 142, 011012. [Google Scholar] [CrossRef]
- Dalal, N.; Gu, Y.; Hines, D.R.; Dasgupta, A.; Das, S. Cracks in the 3D-Printed Conductive Traces of Silver Nanoparticle Ink. J. Micromech. Microeng. 2019, 29, 097001. [Google Scholar] [CrossRef]
- Gu, Y.; Gutierrez, D.; Das, S.; Hines, D.R. Inkwells for On-Demand Deposition Rate Measurement in Aerosol-Jet Based 3D Printing. J. Micromech. Microeng. 2017, 27, 097001. [Google Scholar] [CrossRef]
- Gu, Y.; Park, D.; Gonya, S.; Jendrisak, J.; Das, S.; Hines, D.R. Direct-Write Printed Broadband Inductors. Addit. Manuf. 2019, 30, 100843. [Google Scholar] [CrossRef]
- Bolger, J.; Lantz, L.; Lewis, R.; Trudeau, R.; Hines, D. Multi-Layer PC Boards Fabricated Using Aerosol-Jet Printing. Int. Symp. Microelectron. 2013, 2013, 921–926. [Google Scholar] [CrossRef]
- Friis, H.T. Noise Figures of Radio Receivers. Proc. IRE 1944, 32, 419–422. [Google Scholar] [CrossRef]
Type | AM 1 Method | Performance/Information | Frequency (GHz) |
---|---|---|---|
LNA [10] | AJP 1 | G = 12 dB | 2.4 |
Oscillator [11,12] | AJP | BW = 0.3 GHz | 10 |
T-line resonator [13] | SLA 1 | Varactor used | 4.5–6.5 |
Phased array antenna [14] | FDM 1 | G = −11 dBi | 2.45 |
Patch antenna [15] | Inkjet | BW = 0.8 GHz | 24.5 |
RF lens [16] | FDM | Broadband | 60 |
Transmission line [17] | Syringe | Broadband | 10 |
Parameters | Unit | Value |
---|---|---|
Thickness of substrate | mm | 0.5 |
Circuitization width | mm | 1.1 |
Diameter of via | μm | 700 |
Deposition rate of ink stream | mm3/s | 0.0005 |
Print speed | mm/s | 1–2 |
Fill pitch between printed traces | μm | 50 |
Printed trace width | μm | 75 |
Thickness of circuitization | μm | 10 |
Stand-off distance (AJP) | mm | 3–5 |
Curing temp. of DOWA | °C | 150 |
Curing time of DOWA | hours | 3 |
Curing temp. of chip bonder | °C | 100 |
Curing time of chip bonder | hours | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clough-Paez, A.; Yi, C.; Park, D.; Elsaesser, D.; Ketchum, D.; Hines, D.R. Rapid Prototyping of 3D Printed, High Aspect Ratio, Low Noise Amplifier for Active Handheld Sensor Devices. J. Manuf. Mater. Process. 2023, 7, 83. https://doi.org/10.3390/jmmp7030083
Clough-Paez A, Yi C, Park D, Elsaesser D, Ketchum D, Hines DR. Rapid Prototyping of 3D Printed, High Aspect Ratio, Low Noise Amplifier for Active Handheld Sensor Devices. Journal of Manufacturing and Materials Processing. 2023; 7(3):83. https://doi.org/10.3390/jmmp7030083
Chicago/Turabian StyleClough-Paez, Aaron, Chenglin Yi, Donghun Park, David Elsaesser, Douglas Ketchum, and Daniel R. Hines. 2023. "Rapid Prototyping of 3D Printed, High Aspect Ratio, Low Noise Amplifier for Active Handheld Sensor Devices" Journal of Manufacturing and Materials Processing 7, no. 3: 83. https://doi.org/10.3390/jmmp7030083
APA StyleClough-Paez, A., Yi, C., Park, D., Elsaesser, D., Ketchum, D., & Hines, D. R. (2023). Rapid Prototyping of 3D Printed, High Aspect Ratio, Low Noise Amplifier for Active Handheld Sensor Devices. Journal of Manufacturing and Materials Processing, 7(3), 83. https://doi.org/10.3390/jmmp7030083