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Abstract: Given the recognized advantages of additive manufacturing (AM) printing systems in
comparison with conventional subtractive manufacturing systems, AM technology has become
increasingly adopted in 3D manufacturing, with usage rates increasing dramatically. This strong
growth has had a significant and direct impact not only on energy consumption but also on manu-
facturing time, which in turn has generated significant costs. As a result, this problem has attracted
the attention of industry actors and the research community, and several studies have focused on
predicting and reducing energy consumption and additive manufacturing time, which has become
one of the main objectives of research in this field. However, there is no effective model yet for
predicting and optimizing energy consumption and printing time in a fused deposition modeling
(FDM) process while taking into account the correct part orientation that minimizes both of these
costs. In this paper, a neural-network-based model has been proposed to solve this problem using
experimental data from isovolumetrically shaped mechanical parts. The data will serve as the basis
for proposing the appropriate model using a specific methodology based on five performance criteria
with the following statistical values: R2-squared > 99%, explained variance > 99%, MAE < 0.99%,
MSE < 0.02% and RMSE < 1.36%. These values show just how effective the proposed model will
be in estimating energy consumption and FDM printing time, taking into account the best choice
of part orientation for the lowest cost. This model provides a global understanding of the primary
energy and time requirements for manufacturing while also improving the system’s cost efficiency.
The results of this work can be extended and applied to other additive manufacturing processes in
future work.

Keywords: additive manufacturing (AM); 3D printing; fused deposition modeling (FDM); multilayer
perceptron network (MLP); energy use; print time

1. Introduction

According to the Wohlers 2023 report, global growth in additive manufacturing prod-
ucts and services is estimated at 18.3%, with double-digit growth recorded over the past
34 years. The statistics from the same report confirm that there is a remarkable growth
in materials, software, 3D printing services and hardware, with this growth rate being
estimated at 23% in 2022 [1]. However, due to the large number of machines and pro-
duction efficiency, the AM process has a low energy efficiency. In particular, for a short
grinding process with long pauses, the energy consumption is higher, and the running time
is more considerable [2]. This is why it has become crucial to design solutions that lead to
optimized energy consumption for AM systems. Moreover, AM systems have a negative
impact on the environment, and their effects can even have detrimental potential [3,4]. The
study of energy consumption is useful for selecting the appropriate strategy and choosing
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the parameters to be adopted in 3D manufacturing. These parameters may be related to
product design or shape accuracy but also to physical, mechanical, electrical, or thermal
parameters [5].

In an additive manufacturing process, parts are formed by creating consecutive layers,
with each layer representing a cross-section of the part. This process is based on CAD
data transmitted to the additive manufacturing printing system [3,6–8]. On the other
hand, there are seven types of additive manufacturing processes, classified on the basis of
machine architecture. In addition, a number of standards are recommended for additive
manufacturing, and to this end, an ASTM F42 committee meets twice a year to publish AM
standards while also presenting work in progress. These standards help manufacturing
specialists and machine manufacturers [9,10]. The seven processes of AM include the
following: The vat photopolymerization (VPP) process uses liquid polymers that react to
radiation by solidifying and ultraviolet light, which solidifies the liquid into layers. Powder
bed fusion (PBF) is considered one of the most versatile manufacturing processes, as it
can be applied to metals and polymers to a lesser extent. This process uses a container
filled with powder that is selectively treated with an energy source, typically a scanning
laser or electron beam. The material jetting process (MJT) generally uses materials in a
viscous state. It consists of selectively placing droplets of raw material on a platform, after
which UV light is applied to create the first layer. This process continues with the creation
of other consecutive layers and stops when the final part is formed. In the binder jetting
(BJT) process, a bed with a layer of fine particles in powder form is used by selectively
depositing a liquid binder to build up the high-value parts. This process is carried out by
creating one layer after another, and at each stage, a cross-section of the part is formed.
Sheet lamination is a process that joins sheets of material together to form a part, and the
manufacturing process is performed by ultrasonic welding. Directed energy deposition
(DED) is a directed process, since the melting of materials is performed by applying thermal
energy. This melting is performed once the material is deposited in the system. Material
extrusion is a technology that typically uses a polymer as the thermoplastic material and a
heated nozzle to build the layers. Material extrusion is a technology that generally uses
a polymer as the thermoplastic material and a heated nozzle to build up the layers. In
this class of extrusion technology, the most popular process is FDM, in which the polymer
is deposited in the system as a filament, and this polymer is liquefied via a reservoir in
a heated state. The filament is deposited by pushing it into the reservoir via a “pinch
roller”, whose role is to generate the pressure that extrudes the material [10–13]. Among
the seven additive manufacturing processes, FDM is commonly used in 3D printing due to
its excellent mechanical properties and a wide choice of materials, including thermoplastic
polymers, ceramics and low-melting metals [10,14].

AM technology has a number of advantages in industry, including being a provider of
sustainability, offering the possibility of creating customized prototypes, producing less
waste and carbon monoxide gas and promoting a circular economy [15]. In comparison
with subtractive manufacturing and bulk forming, a number of studies have been carried
out in this field. Yoon, Lee et al. [16] examined three types of manufacturing: additive
manufacturing, subtractive processes and bulk forming. The comparison showed that
additive manufacturing is 100 times more expensive than bulk forming. This study showed
that subtractive manufacturing processes have intermediate costs between the other two
categories, which vary over a wide range, but the processes also vary in terms of scale.
The authors prove that the specific energy consumption of AM has a negative logarithmic
correlation with productivity and concluded their study by pointing out that AM pro-
cesses require more extensive evaluation of the environmental effect. David Rejeski [17]
highlighted the potential environmental impacts of additive manufacturing, including
waste generation, energy consumption, health risks, and life cycle impacts. In addition,
the authors provided evidence that additive manufacturing technologies consume more
energy than conventional manufacturing technologies. Other research comparing the
energy consumption between AM processes and conventional printing methods has shown
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that the specific energy consumption (SEC) of AM is one to two times higher than that of
conventional methods. Moreover, only part of the environmentally oriented taxonomy
has been documented with regard to AM processes, and most work focuses on energy
consumption [8]. In this sense, the issue of energy consumption in AM has attracted the
attention of many researchers [18–20].

The technologies of AM could support intellectualization and industrialization; more-
over, AM systems are more complex, with multiple factors (structure, materials with
physical and chemical considerations, cost, etc.); therefore, it is essential to study these
systems based on artificial intelligence and big-data techniques [21]. In this context, several
studies have been carried out to model energy consumption using machine learning [22–24].
However, it should be noted that for an FDM manufacturing process, there is not yet a
model for predicting energy consumption and printing time that provides good results for
optimizing these two costs while taking into account correct part orientation.

In this study, modeling of the experimental results of the energy consumption and
printing time of isovolumetric 3D mechanical parts was carried out by an artificial neural
network (ANN)-based approach. The developed network estimates the FDM energy
consumption and printing time with high accuracy, having an MSE value of 0.018%, an R2
Square value of 99.59%, an MAE value of 0.989%, an explained variance value of 99.60% and
an RMSE value of 1.355%. In this context, this paper is organized as follows. It comprises
several sections that collectively present a comprehensive study on the prediction of energy
consumption and printing time in additive manufacturing. The Section 2 describes 4D
FDM printing, and the Section 3 provides an overview of the existing research conducted in
this field, offering insights into the work carried out thus far. Following that, the Section 4
delves into the description of the experimental data [25] and materials utilized, elucidating
its relevance to the study at hand. Moving on to the Section 5, the paper outlines the
methodology employed in this study, accompanied by a brief exposition on the algorithms
utilized. In the subsequent Section 6, a comparison of the results of the models used in this
study is presented. In the Section 7, the adopted modeling approach is detailed, shedding
light on the techniques and strategies employed. The Section 8 engages in a comprehensive
discussion of the results obtained from the study, analyzing and interpreting the findings.
Finally, the Section 9 encapsulates the main conclusions derived from the research, along
with highlighting potential avenues for future exploration.

2. FDM 4D Printing

With the progress recorded in the development of 4D printing, 4D additive manufac-
turing looks promising for future work [26,27]. This technology can be successfully applied
to expand several composite structures with shape memory, as in the case of 4D printing
with “bi-stable” structures featuring intelligent responses [28]. Shape-memory polymer
materials have additional functional capabilities that enable fourth-dimensional production,
since these polymer-based materials are stimuli-responsive and have the advantage of
modifying their shapes after printing has been complete [29]. In this context, several studies
have investigated the use of these polymers in 4D manufacturing.

Bodaghi et al. [26] used double-layer encapsulated polycaprolactone (PCL) and ther-
moplastic (TPU) shape-memory composite structures 4D-printed for the first time. SME
performance is studied by examining “fixity”, “shape recovery”, “stress recovery” and
“stress relaxation” under flexural and compressive loading modes. On the other hand, the
melting temperature of the PCL material, PCL and TPU influence the transition tempera-
ture, switching and net point, respectively. Taking into account the destruction of PCL, the
dripping of this molten material and its contact with water, TPU encapsulates PCL, and this
encapsulation offers a solution to the interlayer “bond/interface” while surpassing in the
SME performance the bilayer printing of PCL-TPU. Subsequent experiments have shown
that composites manufactured in 4D have a maximum stress recovery that does not change
over time. The modulus of elasticity of TPU at the melting temperature of PCL is 16.5 times
higher than that of PCL, because the latter has not been adapted to resist the release of TPU
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force, since the material has a behavior that is elastic in loading and recovery. Moreover,
in the three bilayer and encapsulated structures, we find that the shape recovery values
are 100%. In the compressive stress shape memory test, the highest temperature yielded a
maximum stress value that did not decrease with time. Compared with extrusion-based
SMP structures, the result of this work solves the problem of poor stress relaxation of
previous SMPs. In [30], an adaptive metamaterial design with performance directly inte-
grated into materials was investigated using FDM technology. The idea is to understand
the thermomechanics of shape-memory polymers and the advantages offered by FDM for
programming metamaterials that are self-folding. In this sense, five parameters that can
influence material adaptation have been studied: “material”, “platform surface”, “relay-
time” for printing each layer, “temperature”, “printing speed” and “liquefier temperature”.
Given that the self-folding characteristic affects the change in shape and programming layer
by layer, experiments have been carried out to determine how printing speed and liquefier
temperature can affect this characteristic. In addition, a finite element (FE) formulation
was used to provide a customized description of the materials in both the manufacturing
and deformation phases. In this context, the combination of FE and FDM solutions was
used to create straight or curved beams as structural primitives with the characteristics of
being self-bending and self-winding. This 4D printing study demonstrated that adaptive
metamaterials can be used to create prototypes capable of transformation in 2D or 3D
and in several fields. This gives the advantage of designing and developing functional
structures that feature “self-folding”, “self-coiling”, “self-conforming” and “self-deploying
features in a controllable manner”. In [31], the parameters influencing 4D printing were
studied, and these parameters mainly concern the design of the structure, the material,
programming during printing and activation. In this context, FDM technology has been
used with thermoplastic polymers as shape-memory materials (SMPs). These SMPs are
printed in temporary shapes and then transformed into permanent forms under the effect
of heat. In addition, material selection depends mainly on the shape-memory behavior
of the filaments, while design is complex because of the freedom of design, and print
programming depends directly on the printing parameters. For polymer activation, there
are various methods, such as Joule or infrared activation, and these depends on the “ampli-
tude”, “duration”, “support of the stimulus” and “stimulus environment”. In addition, it
has been shown that activation parameters influence the transformation process, so a longer
exposure time generates a greater amount of transformation, which reaches its maximum
as the stress relaxes. For the activation temperature, the higher the temperature, the higher
the velocity and the greater the transformation. Finally, the authors confirm that planning,
comparison and presentation of the structured design of experiments offer the presented
4D FDM model advantages in terms of long-term time savings.

The 4D FDM printing method is a futuristic technology that offers many advantages
to the manufacturing industry. This type of manufacturing relies primarily on FDM and
the ability of parts to transform their shape using advanced programmable materials. As
a result, this technology needs to be studied closely, particularly in terms of resource
consumption, which necessarily involves understanding the factors that influence the cost of
manufacturing, in particular time and energy. The following section provides an overview
of existing research on energy consumption and manufacturing time in the AM field.

3. Related Works

As research and industry focus on sustainable manufacturing increases, energy con-
sumption in additive manufacturing processes is becoming an intriguing topic in the
research community. In this sense, several studies have focused on modeling and op-
timizing the amount of energy consumed in additive manufacturing [18–20,32–35]. In
the literature, studies of energy consumption have been carried out either using specific
methods or based on machine learning techniques. In the following, several studies will be
proposed on this subject.
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Harding et al. [35] used six approaches to reduce energy and material consumption in
filament fusion manufacturing (FFF). These approaches were studied using commercial
printers, and the results show that energy consumption can be significantly reduced by
insulating the hot end (33.8% to 30.63% reduction) and the sealed enclosure (18% power
reduction). In contrast, 51% of the material was saved by using a type of “lightning in-
fill”. Vidakis et al. [5] examined the parameters that influence three types of energy in 3D
ABS-FFF manufacturing: specific printing energy (SPE), the energy printing consumption
(EPC), and specific printing power (SPP). The authors studied the effect of six parameters
on energy consumption: the infill raster density (ID), raster deposition angle (RDA), nozzle
temperature (NT), fused filament printing speed (PS), layer deposition thickness (LT), and
bed temperature (BT). As a result, PS and LT significantly influence EPC and SPE energy
types. The density (ID), on the other hand, mainly influences SPP energy. In addition,
an increase in layer thickness and printing speed can reduce EPC and SPE energies. This
study uses quadratic regression models (QRM) and six-parameter ANOVA on the three
energy types; however, these models are effective and sufficient for the two energy types
SPE and EPC but not for the SPP energy type. Yang et Liu [36] presented an approach
for predicting the energy consumption with material usage and print time of 3D-printed
parts while relying on the path planning code and intrinsic characteristics of the machine.
The authors proposed a method for predicting and reducing energy consumption in the
prefabrication phase. The model developed in this study is suitable for several machines
and other computer-aided manufacturing processes. Markos Petousis et al. [37] examined
the impact of seven parameters (orientation angle, screen deposition angle, fill density,
layer thickness, nozzle temperature, printing speed and bed temperature) on compres-
sion and energy consumption in a material extrusion process (MEX) using acrylonitrile
butadiene styrene (ABS) as the material. In terms of energy consumption, the results of
this study show that layer thickness and printing speed have the greatest impact. How-
ever, printing time was not included in this study. Helena Monteiro et al. [38] focused
their study by undertaking a systematic literature review of metal additive manufacturing
(MAM) processes in the aerospace and aeronautics sector. This analysis was based on
literature classified according to four life cycle stages to identify efficiency strategies related
to MAM resources. These stages concern “product design”, “materials development and
sourcing”, “process development, control and optimization” and “end-of-life extension
and circular economy”. The authors identify the key factors influencing the energy and
material efficiency of this type of manufacturing. Zhiqiang Yan et al. [34] proposed a model
to predict power consumption and printing time as a function of process parameters and
machine component operating states. This model takes into account “the power of each
component” and “the duration of each process”; however, this model has some limitations.
The prediction of empty travel time, deceleration and acceleration of the nozzle movement
are not supported by the model. Baumers, Tuck et al. [39] proposed a tool capable of
predicting the energy flows that will occur in direct laser sintering of metals. This tool also
estimates the costs of the process. It has been shown that minimizing costs in additive
manufacturing can minimize the energy consumption of the process, thus motivating
improvements in sustainability. Meteyer, Xu et al. [40] developed a model to evaluate the
energy and material consumption for the binder jetting process. Mathematical studies de-
termined the energy consumption depending on the printing parameters and the geometry
of the part. To validate their model, test printing was performed. The resulting energy
consumption model provides a tool for optimizing the geometric design of parts. Verma
et Rai [41] developed an approach to optimize selective laser sintering (SLS) in stages to
minimize energy consumption. In this study, the energy consumption and waste related to
the materials used are reduced both in parts and in layers. The models developed in SLS
can be applied to other AM processes; however, these models do not consider printing time
and part orientation. Ajay et al. [23] proposed a unified FDM approach to optimization
of “power between layers”, “instructions”, “hardware”, “compilers” and “firmware”. In
addition, using the energy profiler, a solution called 3DGates was proposed to optimize
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interlayer energy, combining the instruction set, compiler and firmware. This solution was
evaluated on 338 benchmarks, resulting in an energy reduction of 25%. Yiran Yang in [42]
developed a mathematical model to predict energy consumption in stereolithography pro-
cesses. The obtained results have been verified experimentally. In addition, an assessment
of the impact of different parameters on the total energy consumption was conducted, and
a method to reduce energy consumption was suggested based on an optimal combination
of parameters. Simon et al. [43] conducted their study on the effect of certain printing
parameters on particulate emissions and energy consumption. An energy profile study
shows that maintaining temperature and heating the print bed consumes significant energy
in FDM manufacturing. Luo et al. [44] proposed a method based on free solid forms (FSS) to
evaluate the environmental performance of two manufacturing processes: the first process
is rapid prototyping, while the second process is rapid tooling. In this study, each of the
two processes is divided into several life phases, and each phase is analyzed and evaluated
on the basis of eco-indicators provided by PreConsultants of the Netherlands while using
an “environmental assessment index”. The performance of each process is determined
by combining the effects of each step. Jackson, Arik Van Asten et al. [45] investigated the
benefits of combined additive and subtractive manufacturing processes with respect to
the geometric tolerance of small steel-based volumes. The authors compared the relative
energy consumption of additive and subtractive manufacturing using two materials: wire
and powder. In this context, they proposed a model to study energy consumption and
found that processes using either wire or powder as materials have nearly identical energy
consumption. However, the energy consumption of the wire-based additive process is 85%
higher than that of the powder-based deposition component. In concluding their study,
the authors confirm that the combination of additive and subtractive processes has added
value in manufacturing.

Machine learning techniques offer an effective means to solve problems encountered
in additive manufacturing, such as process optimization, quality control, manufacturing
system modeling and energy cost management [46]. These ML techniques use data to
reveal information that is not being exploited to provide a means of decision support
that is also aimed at improving environmental performance, significant cost savings and
operational opportunities [47]. In this context, several research projects have been car-
ried out for energy prediction and optimization based on machine learning algorithms.
Fu Hu et al. [48] proposed a CNN-LSTM data fusion method based on the long-term mem-
ory model (LSTM) and a convolutional neural network (CNN) with the aim of estimating
the energy consumption of the AM process. The results obtained in this study show that
the model introduced based on the CNN-LSTM did not provide an accurate estimate of
the SLS system (RMSE of 8.143 Watt/g in prediction tested on 3129 samples), which can
be explained by a considerable loss of information associated with convolutional feature
extraction. Jian Qin et al. [22] developed a hybrid approach based on neural networks
and clustering techniques to enable the integration of multi-source data extracted from the
Internet of Things (IoT). The aim of this study is to propose a model for predicting and
estimating the energy consumed by an SLS process. To this effect, the authors studied the
performance of the proposed model on 20 clusters. To validate their work, a comparison
was made, and the best performance was found using four clusters with MCC = 0.694
and low RMSE = 32.306 W h/g. Rishi Kumar et al. [47] proposed an algorithm based on
long-term memory (LSTM) to characterize and predict energy consumption throughout the
various stages of 3D manufacturing (standby, preheating and printing). The study involved
three types of material (PLA, PETG and ABS), and each measurement of energy consump-
tion relative to each stage was carried out on the basis of Simpson’s rule. However, the
results of this research show that the error in predicting energy consumption is considerable
and varies according to the type of material and each of the three manufacturing stages:
PLA (standby: 11.31%; preheating: 8.11%; printing: 5.51%), PETG (standby: 7.50%; pre-
heating: 2.31%; printing: 2.31%) and ABS (standby: 13.37%; preheating: 18.88%; printing:
9.37%). Yiran Yang et al. [23] studied the geometric parameters that influence the energy
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cost at each printing layer in a stereolithography process with mask image projection. To
this end, the authors used three machine learning models (progressive regression, shallow
neural network (SNN) and stacked autoencoders (SAE)). These models provide an estimate
of energy consumption, taking into account the geometries of each printed layer. Based
on a comparison of the models’ overall performance, the shallow neural network proved
to be the best model, with a root mean square error value of 0.75% for test and training
evaluations, while the SAE showed good test accuracy, with a root mean square error value
of 0.85%. However, printing time was not studied in this study.

Murphy et al. [49] proposed an approach for designers and AM users to create complex
geometries by leveraging voxelized object files. An autoencoder was used to represent
parts with low dimensionality and attributes related to design for additive manufacturing
(DfAM). The developed model has a limited accuracy, with coefficients of determination
of 46.8%, 30.1% and 22.5% for part mass, support material mass and construction time,
respectively. El youbi El idrissi et al. [50] proposed a prediction of the energy consumed in
the FDM manufacturing process while using twelve machine learning algorithms. This
study qualifies the Gaussian Process Regressor (GPR) as the algorithm giving the best result.
However, this study did not take into account print time estimation and optimization.

Based on the aforementioned work, it is clear that many studies have been conducted
to estimate and optimize the energy consumption of 3D printing processes. However, no
research could be found on the prediction of energy consumption and printing time in the
FDM process based on part orientation. In this paper, an efficient neural-network-based
model has been developed for the prediction and minimization of these two costs while
taking into account the correct and optimal orientation of the part.

4. Design of Experiment

The benchmark r3DiM dataset was collected using a setup with four types of hardware: “a
Raspberry Pi 4 Model B board with touch screen”, “a Prusa i3 MK3S 3D printer”, “an Arduino
wifi MKR 1010” and “four Adafruit INA260 sensors”. This device is used to capture the energy
in the electric current per layer during the FDM process while using Adafruit’s four sensors,
with which the output electric current is measured at four points, two of which measure
consumption in relation to the heating current of the extruder and print bed, while the other
two record the total energy consumption in the current. Data from these sensors are collected
using the Arduino WiFi and read by the Raspberry Pi running Linux [51]. The material used
in the experiment was polyethylene terephthalate glycol (PET-G), which is increasingly used
in 3D printing, given its strength and ability to accommodate most layers in addition to its
low shrinkage [52]. In experiment [51], the parameters incorporated during the experiment
were as follows: 20% fill, layer height 0.15 mm, seven solid layers on top and five solid
layers underneath. The temperature of the printing bed was 80 degrees for the first layer and
90 degrees for the other layers, and the filament had a diameter of 1.75 mm ± 0.02 mm. Several
studies have examined the effect of nozzle temperature on the PETG-based manufacturing
process, with the results revealing that PETG yarn must be printed at a temperature above
230 ◦C; otherwise, the material will not bond to the platform [53,54]. The nozzle temperature
was fixed at 250 ◦C throughout the printing process.

The data used in this article were obtained from [51], in which the authors printed
68 separate isovolumetric mechanical components from the Mechanical Components Bench-
mark (MCB) using a Prusa i3 MK3S 3D printer. The MCB classification covered iso-
volumetric parts of various types, such as articulations, eyelets and other articulated
joints, bearing accessories, bushes, cap nuts and castle nuts. The MCB contained almost
58,000 components divided into 68 classes, and 1 component from each class was selected
to build the “r3Dim” dataset. This classification took into account the representability of
the model in the MCB classification, the diversity of shapes included in the dataset, and
the ability to adapt the file representing the 3D part in a readable format by “Solidworks
2020” to have unique volumes of 5 cm3. Each file in the 68-sheet class was scaled to 5 cm3

using a scaling function included in Solidworks, and then, each model was printed by
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rotating it twice 90 degrees along the Y axis. The authors used several sensors to collect
information on energy consumption and printing time. In this study, twelve input param-
eters were used for modeling FDM printing energy and time using the experiment [51]
and dataset [25]. These data are described in the following table, in which several machine
learning algorithms were used to model energy consumption and FDM printing time.

In this study, the dataset of experiment [51] includes 184 instances of the isovolumetric
parts, of which each piece of recorded data has intrinsic attributes according to each part.
The set of features includes 12 entries that are described below with the correlations that
exist between them:

• INP1: the view taken into consideration for printing according to the vertical axis.
• INP2: the surface of the object according to the orientation.
• INP3: the calculation of the facets of the object according to the orientation.
• INP4: length of the maximum segment of the object cut along the horizontal axis.
• INP5: length of the maximum segment of the object cut along the vertical axis.
• INP6: length of the maximum segment of the object cut along the Z-axis.
• INP7: The calculated volume of the object that is sliced regardless of the support material.
• INP8: the volume of the sliced object, taking into account the support material.
• INP9: the weight of the filament consumed from the sliced object printing, taking into

account the support material.
• INP10: the weight associated with the support filament consumed in printing the

cut object.
• INP11: the expected printing time of the STL object.
• INP12: the number referring to the layers of the STL object.

As shown in Figures 1 and 2 of the two correlation matrices, the total energy and
print time have a very significant relationship with the “Sliced volume including support”,
“Total Filament”, “Support Filament”, “Expected print time” and “Number of layers”. The
other parameters have more or less moderate relationships with total energy and print
time. In this study, all input parameters were kept, as they may have an impact on the FDM
manufacturing process.J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 9 of 26 
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In this study, several machine learning algorithms were used to model energy con-
sumption and FDM printing time. These algorithms were chosen not only for their perfor-
mance and importance in prediction but also for their ability to train data.

5. Methodology

In this section, the algorithms used are briefly introduced, including Multilayer Per-
ceptron (MLP), EXtreme Gradient Boosting (XGBoost), Random Forest (RF) and Support
Vector Machines (SVM). These algorithms use data from the experiment cited in article [51]
to create each model. Prior to this, several processing operations were carried out on the
database to prepare the data for training. This processing mainly concerns the elimination
of information that was not relevant to this study (in particular, constant values that had
no influence on the modeling result or the appropriateness of values that had to be in a
format acceptable to the machine). As a result, 12 inputs in the first column of Table 1 were
taken into account in this study. Next, the training to be carried out by each algorithm was
based on the distribution applied to the database, with 70% allocated to training data and
30% to test data.

For each algorithm, the best model was chosen by selecting the optimal parameters
intrinsic to it (Figure 3). Then, the best approach was chosen by making a statistical
comparison of the models selected. These statistical measures concern the MSE, MAE,
RMSE, R2 squared and variance explained.
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Table 1. The values of the input parameters according to their ranges.

Input Order Input Parameters FDM Intervals of Values

INP1 “Orientation” [degree] 0; 90; 180

INP2 “Stl surface area” [mm2] [1533.85–10,850.92]

INP3 “Number of facets” [40–9368]

INP4 “Sliced X” [mm] [3.23–153.87]

INP5 “Sliced Y” [mm] [8.45–67.27]

INP6 “Sliced Z” [mm] [3.23–153.87]

INP7 “Sliced volume” [mm3] [2142.39–5852.08]

INP8 “Sliced volume including support” [mm3] [2171.28–11,376.59]

INP9 “Total Filament” [g] [2.76–14.45]

INP10 “Support Filament” [g] [0–8.13]

INP11 “Expected print time” [h] [0.4166–4.033]

INP12 “Number of layers” [integer] [21–1629]
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5.1. Multilayer Perceptron (MLP)

This type of network belongs to the “feed-forward” class of networks [55–57]. The
perceptron is increasingly used in many fields of application, such as engineering, medicine,
industry and, in particular, additive manufacturing, which has become an increasingly
popular technology [23,55,56].

The first mathematical and computer model of the biological neuron was introduced
in 1943 by McCulloch and Pitts, who remain the pioneers of modeling and design of
neurons [57,58]. Their studies were based on the neuronal properties of the human brain,
but they found an analogy between these characteristics and those of computing machines.
A multilayer perceptron network is a feed-forward network [59] that consists of three main
components: the first element is a layer containing the input features of the network, the
second component wraps one or more interconnected hidden layers, and another layer is
used for the network output. The constituents of a multilayer perceptron network are the
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input layer, one or more hidden layers and an output layer with several interconnections
that can exist between the neurons of each layer, each interconnection having a synaptic
weight carried by a value and the neurons being activated by a differentiable function [60].

The structure of an artificial neuron j is mainly characterized first by a summation
function Sj of the signals Xi(i = 1, . . . , m) of the input layer, weighted by the values of the
synaptic weights linked to the connections wji(i = 1, . . . , m) according to Equation (1), and
second by the activation function f , yielding the output value yj.

• The formula for the weighted sum of neuron j is

Sj =
m

∑
i=1

wji × xi (1)

• The output yj is obtained by applying the activation function f according to the
following formula:

yj = f

(
m

∑
i=1

(wjixi) + bj

)
(2)

bj refers to the bias of neuron j.

The activation function f ( ) is a transfer function that can be a “linear function”,
“hyperbolic tangent”, “sigmoid”, “radial basis function”, “hyperbolic tangent function” or
“ReLU function” [61].

Frequently in a training process, the MLP model uses the backpropagation algorithm
to adjust the values of the weights to form the network architecture [60]. The principle of
backpropagation is to define an error function and apply gradient descent to calculate the
weights that optimize the performance of the model. This training process passes through
two essential stages, the forward stage and the backward stage, which are described
as follows:

Forward stage: In this stage, the input signal passes through the layers while fixing
the values of the synaptic weights until the signal arrives in the output layer [58,62]. The
values of the weights are modified by the activation functions and depend closely on the
network outputs.

Backward stage: After executing the previous step, an error signal is generated, and
then, the required output is compared with the model output. The propagation of this
error is directed this time in the opposite direction, and several adjustments are made
successively to adapt the values obtained to the weights of the network. This adjustment
process is difficult in the hidden layers, but it is simple in the output layer [59,62–64].

Backpropagation algorithms are of several types, and the most commonly used are
the “Levenberg-Marquardt algorithm”, “gradient descent algorithm”, “scaled conjugate
gradient” and “resilient back-propagation one one-step secant algorithm” [58,65,66].

5.2. XGBoost

Chen and Guestrin were the first creators of the XGBoost algorithm [67]. XGBoost
is based on tree boosting, an improved machine learning method with a high learning
capacity [68]. This algorithm is based on GBDT decision trees with a boosted gradient, and
its distinguishing trait is the use of second-order derivatives, unlike conventional decision
trees, which only use first-order derivatives. At this stage, XGBoost is more efficient while
having a fast calculation, and its formula is expressed by

ŷi =
K

∑
k=1

fk(xi)with : fk ∈ F, D = {(xi, yi)}n
i=1 (|D|= n, xi ∈ Rm, yi ∈ R ) (3)

where ŷi is the prediction of the sample, yi is the actual value, F is the whole constituting
the K trees, and fk(xi) is the function associated with the k-th tree. The function “objective”
of XGBoost is expressed as
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Obj =
n

∑
i=1

l(yi, ŷi) +
K

∑
i=1

Ω( fi) (4)

where
n
∑

i=1
l(yi, ŷi) is the loss function, allowing us to have the capacity that the prediction

model represents.
K
∑

i=1
Ω( fi) is the function with the advantage of regularizing the XGBoost

model. The principle of the algorithm is to have a minimized loss function; in other words,
the idea of the algorithm is to start from an initial model and to improve it by steps starting
from ŷ (0)

i with a null value, which looks like

ŷ(1)i = f1(xi) = ŷ(0)i + f1(xi)

ŷ(2)i = f1(xi) + f2(xi) = ŷ(1)i + f2(xi)
. . . . . .

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + ft(xi)

(5)

where ft(xi) represents the function that gives us the new prediction and ŷ(t−1)
i and ŷ(t)i rep-

resent the respective values of the prediction of the data by the model in iteration (t − 1) and
in iteration t. Therefore, the function Obj() can be represented with the following formula:

Obj(t) =
n
∑

i=1
l
(

yi, ŷ(t)i

)
+

t
∑

i=1
Ω( fi) =

n
∑

i=1
l
(

yi, ŷ(t−1)
i + ft(xi)

)
+

t−1
∑

i=1
Ω( fi) + Ω( ft)

(6)

where l(yi, ŷ(t−1)
i ) and ŷ(t−1)

i are two constant values. Then, the Taylor expansion of order
2 is used to obtain an equivalence of the function Obj(). For this, given the two values
hi = ∂2

ŷ(t−1)
i

l(yi, ŷ(t−1)
i ) and gi = ∂

ŷ(t−1)
i

l(yi, ŷ(t−1)
i ), eliminating the contiguous ones, the

objective function becomes

Obj(t) =
n

∑
i=1

[
(gi × ft(xi)) + (

1
2
× hi × f 2

t (xi))

]
+ Ω( ft) (7)

With Ij = { i|q(xi) = j } is the sample on the jth leaf node, and wj is the weight of the
jth node, given that Hj = ∑

i∈Ij

hi, Gj = ∑
i∈Ij

gi, and T reflects the number of leaf nodes, the

objective function represents:

Obj(t) =
T

∑
j=1

[
Gjwj +

1
2
(

Hj + λ
)
w2

j

]
+ γT (8)

The optimization of the function Obj(t) gives us

Objoptimal = −1
2

T

∑
j=1

(
G2

j

Hj + λ

)
+ γT (9)

The XGBoost algorithm calculates the gain according to the following expression:

Gain =
1
2
×
[
(

G2
R

HR + λ
) + (

G2
L

HL + λ
)− (

(GL + GR)
2

HL + HR + λ
)

]
− γ (10)

where (
G2

R
HR+λ ), (

G2
L

HL+λ ) and ( (GL+GR)
2

HL+HR+λ ) correspond to the scores of the right and left
subtrees and of the node that is not split, respectively.
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5.3. Random Forest Regression

This type of algorithm is a combination of statistical learning theory and decision
trees. It was first introduced by Breiman (2001) [69]. The RF algorithm has been widely
used in regression because of the precision it brings in terms of performance. Random
Forest uses decision trees, and an original bootstrap sample of data is associated with each
tree. The vote prediction is calculated based on the calculated predictions of each tree.
In other words, the algorithm aims to determine the regression result while combining
the decision trees that are weak in a strong tree with more precision. RFR has several
advantages compared to other algorithms, including that it is stable and that there is no
overfitting problem [70]. In addition, this algorithm does not require several configuration
parameters and is easy to use. The formula for the RFR regression predictor is:

F̂K
r f (x) =

1
k
×

K

∑
u=1

Tu(x) (11)

where k is the number of decision trees and Tu is the prediction of the u th decision tree.

5.4. Support Vector Machines (SVM)

On a training space X of size N, where X ∈ Rn, let (x1, y1), . . . , (xN , yN) be input
elements, with xi ∈ X, yi ∈ R. The desired objective is to find an SVM function for the
regression of the data, whose mathematical form usually takes the form of the following
equation [71,72]:

f (x) = (w× ϕ(x)) + b (12)

φ : X → Ω is a function whose output is the feature space, and b ∈ R.
The objective is to find w and b while minimizing the following function:

R( f ) = C
N

∑
j=1

Γ
(

f
(
xj
)
− yj

)
+

1
2
(w× w) (13)

Γ( f (x)− y) =
{

0, if val < ε
val− ε, otherwise

(14)

where C is a predefined value, Γ is the cost function measuring the empirical risk, ε is a
cost-insensitive function and val =|y− f (x)| .

6. Model Comparison and Validation

In this study, the MLP, XGBoost, RF Regressor and SVM Regressor algorithms were
used to build predictive models of energy consumption and time used in the FDM process,
based on the dataset cited in Table 1 and following the methodology described in the
Section 5. A statistical comparison of the algorithms used, based on the five performance
criteria (MAE, MSE, RMSE, R2 squared and variance explained), clearly shows that the
MLP-based model has higher performance measures than the other models. The following
table illustrates the statistical values obtained:

Figures 4 and 5 illustrate the relative representations of the energy consumption and
printing time of the models used. The neural algorithm developed corresponds well to the
experimental values, which is also justified by the statistical performance values.

From the statistical measurements recorded in Table 2 and the representations of the
two figures of energy consumption and FDM printing time, it is clear that the proposed
neural model outperforms the other models. In these figures, it can be seen that the
experimental values for 184 parts (x-axis) and the predicted values of the proposed model
(y-axis) are closer together than in the other models. In the following section, details of the
strategy followed to obtain the adopted model will be presented.
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Table 2. Performance of the used models.

Model. MAE MSE RMSE R-Squared Explained Variance

XGBoost 2.57167085 31.7460321 5.63436173 98.4415807 98.4661312

Random Forest 2.46675634 35.1311636 5.92715476 97.9773199 97.9841714

Support Vector Regression 1.42252208 7.39417652 2.71922351 99.0687064 99.0862437

Proposed model (MLP) 0.989 0.018 1.355 99.59 99.6

7. Adopted Model

In the case of this study, there are twelve inputs and two outputs, so automatically, the
input layer must have twelve neurons, and two neurons must be assigned to the output
layer. To prove the structure of the hidden layers, 156 networks were developed with the
following architectures using the Keras library:

One hidden layer: 12-i-2, such as 2 ≤ i ≤ 13.
Two hidden layers: 12-i-j-2, such as 2 ≤ i,j ≤ 13.
For each architecture, to find the best model, different activation functions were used,

such as exponential, elu, selu, tanh, softsing, softplus, softmax, sigmoid and ReLU.
As a first step, before proceeding with the training of each architecture, the dataset

was divided into two parts, 30% for testing and 70% for training, and then normalized
using the MinMaxScaler function.

Five performance criteria were calculated for each architecture: R2 Square, Ex-plained-
Variance, MAE, MSE and RMSE. According to the results, using the sigmoid activation
function to activate the hidden layers and activating the output layer using the ReLU
function yielded good performance; however, using the other activation functions yielded
less accuracy. Table 3 shows some of the architectures that performed well.

Table 3. Performance of the selected networks.

MLP Network R2 Square Explained-Variance MAE MSE RMSE

12-2-2 99.34% 99.56% 1.248% 0.03% 1.72%

12-6-2 97.55% 97.73% 2.004% 0.11% 3.314%

12-8-2 97.81% 97.95% 1.88% 0.098% 3.131%

12-12-2 97.94% 98.11% 1.908% 0.092% 3.036%

12-2-4-2 99.59% 99.6% 0.989% 0.018% 1.355%

12-2-11-2 99.4% 99.44% 1.133% 0.027% 1.638%

12-2-12-2 98.83% 98.84% 1.377% 0.052% 2.289%

12-3-2-2 99.51% 99.51% 0.973% 0.022% 1.479%

12-3-6-2 98.25% 98.25% 1.466% 0.079% 2.802%

12-3-8-2 96.96% 96.99% 1.595% 0.136% 3.691%

12-4-4-2 97.21% 97.41% 1.765% 0.125% 3.535%

12-6-13-2 98.25% 98.38% 1.887% 0.078% 2.801%

12-9-6-2 98.17% 98.3% 1.706% 0.082% 2.864%

According to the results reported in Table 3, the optimal architecture corresponds
to two hidden layers. The first two hidden layers are activated by the sigmoid function,
and they have four neurons and two neurons. The output layer is activated by the ReLU
function, and two neurons are used in this layer (Figure 6). This architecture provides
the following performance: R2 = 99.59%, explained variance = 99.60%, MAE = 0.989%,
MSE = 0.018% and RMSE = 1.355%.
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At epoch 1523, successful training was achieved with an MSE value equal to 0.018%
(Figure 7). The weights and biases of the optimized model are shown in Tables 4–6.
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Table 4. Weights and biases for the first hidden layer.

Neurons of First Hidden Layer

1 2

Neurons of input layer

1 −0.01860396 0.01651467

2 −0.39869556 0.02904175

3 0.06080785 −0.15600291

4 0.00827086 −0.07250348

5 −0.08958101 0.08917017

6 0.24706206 −0.14367856

7 0.0626247 0.09804111

8 0.0649894 0.09762235

9 −0.02316719 0.12844889

10 −0.12178944 −0.03211394

11 4.598817 2.9437175

12 0.01480456 0.01575648

biases −0.42479023 −3.8425364
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Table 5. Weights and bias of the second hidden layer.

Neurons of Second Hidden Layer

1 2 3 4

Neurons of
first hidden

layer

1 1.7487305 1.1139799 −0.8182974 1.1671507

2 0.9893758 2.1798441 −2.780944 7.2701535

biases −0.72620803 −1.2299542 1.136458 −0.7672453

Table 6. Weights and biases for the output layer.

Neurons of Output Layer

1 2

Neurons of second
hidden layer

1 0.13126287 1.0074766

2 0.21024154 0.90955585

3 −0.7737203 −1.1061413

4 1.271458 0.0429178

biases −0.1821677 −0.05179993

To demonstrate the effectiveness of the model obtained, the predicted values and the
experimental values are compared in Figures 8 and 9, thus representing the trend between
the actual values and those given by the proposed model according to energy consumption
and FDM printing time.
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8. Discussion

The current investigation aims to simultaneously predict energy consumption and
printing time by providing the correct orientation that optimizes both costs. To validate
this model, Figures 10 and 11 illustrate the trends in experimental values compared with
the predicted values of the proposed model. Thus, the “part number” designating the parts
according to their order in the database are shown on the x-axis, while the predicted values
(energy in Figure 10 and printing time in Figure 11) are marked on the y-axis.
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According to both representations, there is harmony between the experimental and
predicted values. Moreover, both curves behave in a similar way to the actual values, which
is justified by the quasi-juxtaposition of each curve with the experimental values. The result
clearly shows the effectiveness of the proposed model.

From the dataset [25], four parts were randomly selected to evaluate the effectiveness
of the proposed approach. Table 7 shows the experimental and predicted values of FDM
printing energy and time for each of the four parts.

Table 7. Some use cases, with comparison between the two real and predicted values.

Part Orientation
(Degree)

Predicted
Energy
(Watt)

Actual
Energy
(Watt)

Error of
Prediction
(Energy)

Predicted
Print Time

(Hour)

Actual Print
Time (Hour)

Error of
Prediction

(Print Time)
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This test takes into account the three orientations (0, 90 and 180) and then calculates
the prediction error for each orientation (15):

Error of prediction =
| Predict value − Experimental value |

Experimental value
(15)

• Part 1 must be printed in direction 90; if printing is done in another direction, a loss of
0 h 20 min in terms of time and 25 Watt in terms of energy will occur.

• Part 2 should be printed in direction 90; if printing is done in another direction, a loss
of 0 h 20 min in terms of time and 40 Watt in terms of energy will occur.

• Part 3 should be printed in direction 0; if printing is done in another direction, a loss
of 1 h 30 min in terms of time and 250 Watt in terms of energy will occur.

• Part 4 should be printed in direction 0; if printing is done in another direction, a loss
of 0 h 15 min in terms of time and 23 Watt in terms of energy will occur.

On the basis of the results presented in Table 7, it is clear that the proposed model can
be used effectively to select the correct part orientation, while energy consumption and
printing time can be achieved at optimum cost.

9. Conclusions

In this research, a model was proposed to predict energy consumption and FDM
printing time based on experience extracted from [25]. In this sense, four machine learning
algorithms were used, given their performance in prediction and training. A comparative
study was carried out, clearly showing that the proposed neural network model performed
significantly better than the other models used. Calculation of the model’s overall perfor-
mance yielded the following statistical values: 0.018% for the MSE value, 99.60% for the
explained variance value, 0.989% for the MAE value, 99.59% for the R-squared value and
1.355% for the RMSE value.

Using this model, the energy consumption and printing time for different part orienta-
tions were estimated efficiently. In addition, the proposed approach offers the possibility
of choosing the optimal orientation that minimizes both the energy and time costs in
FDM printing.

This study remains useful for understanding the energy and time consumption of 3D
manufacturing, which could provide a decision support tool for practicians to improve
energy and time inefficiency factors. This can be extended to other computer-aided manu-
facturing processes that could benefit from the applicability of the current research results.

For future work, a study of additive manufacturing is envisaged to predict and
optimize other resources related to the manufacture of 3D-printed parts, taking into account
the effect of other parameters that influence this process. In addition, this paper could
provide a basis for studying the energy consumption and print time of parts manufactured
in 4D, while taking advantage of the benefits provided by this technology. Finally, this
work will represent a benchmark that could be improved by taking into account the
environmental aspect while studying possible disciplines related to additive manufacturing.
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