Innovative Process Strategies in Powder-Based Multi-Material Additive Manufacturing
Abstract
:1. Introduction
- Introduction of three successfully utilized experimental multi-material AM technologies: one from the field of hybrid metal-based multi-material AM and two from the field of polymer-based multi-material AM;
- Identification of research-based overlaps and comparable targets of the introduced processes;
- Presentation of experimental shear testing results to characterize the transition area between different materials, which is identified as a common challenge for all three processes.
2. State of Research
2.1. Laser-Based Additive Manufacturing of Multi-Material Metal Parts
2.2. Introduction Technology 1: Hybrid AM and Vibrational Microfeeding in PBF-LB/M to Locally Adapt and Tailor Properties
2.3. Laser-Based Additive Manufacturing of Thermoplastic Multi-Material Polymer Parts
2.4. Introduction Technology 2: Material-Efficient AM of Multi-Material Polymer Parts through Electrophotography
2.5. Multi-Material Additive Manufacturing of Thermoset and Thermoset/Thermoplastic Polymer Parts
2.6. Introduction Technology 3: Implementation of UV-Curable Thermosets within Laser-Based Powder Bed Fusion of Plastics
3. Common Challenge of Multi-Material AM: Mechanical Characterization of the Transition Area between Materials
3.1. Experimental Set-Up: Shear Testing of Multi-Material Parts
3.2. Specimen Design
3.2.1. Metals
3.2.2. Polymers
4. Experimental Results
4.1. Metals
4.2. Polymers
5. Conclusions
- The combination of 316L and DC04 represents a promising candidate for future hybrid AM, while DP600/316L parts demonstrate reduced bonding behavior compared with conventional 316L/316L parts (metals);
- Confirmation of the assumption that the inclusion of photopolymer reinforcements increases the probability of delamination between reinforced and non-reinforced layers (polymers);
- The geometry of the reinforcing polymer influences the quality of the bonding behavior and represents a promising parameter for future process strategies (polymers).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schneck, M.; Horn, M.; Schmitt, M.; Seidel, C.; Schlick, G.; Reinhart, G. Review on additive hybrid- and multi-material-manufacturing of metals by powder bed fusion: State of technology and development potential. Prog. Addit. Manuf. 2021, 6, 881–894. [Google Scholar] [CrossRef]
- Hasanov, S.; Alkunte, S.; Rajeshirke, M.; Gupta, A.; Huseynov, O.; Fidan, I.; Alifui-Segbaya, F.; Rennie, A. Review on Additive Manufacturing of Multi-Material Parts: Progress and Challenges. J. Manuf. Mater. Process. 2022, 6, 4. [Google Scholar] [CrossRef]
- DIN EN ISO/ASTM 52900:2022-03; Additive Fertigung-Grundlagen-Terminologie (ISO/ASTM 52900:2021). Deutsche Fassung EN_ISO/ASTM 52900:2021. Beuth Verlag GmbH: Berlin, Germany, 2021. [CrossRef]
- Feenstra, D.R.; Banerjee, R.; Fraser, H.L.; Huang, A.; Molotnikov, A.; Birbilis, N. Critical review of the state of the art in multi-material fabrication via directed energy deposition. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100924. [Google Scholar] [CrossRef]
- Huber, F.; Bartels, D.; Schmidt, M. In-Situ Alloy Formation of a WMoTaNbV Refractory Metal High Entropy Alloy by Laser Powder Bed Fusion (PBF-LB/M). Materials 2021, 14, 3095. [Google Scholar] [CrossRef]
- Anstaett, C.; Seidel, C.; Reinhart, G. Fabrication of 3D multi-material parts using laser-based powder bed fusion. In Proceedings of the 2017 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 7–9 August 2017. [Google Scholar]
- Wang, D.; Liu, L.; Deng, G.; Deng, C.; Bai, Y.; Yang, Y.; Wu, W.; Chen, J.; Liu, Y.; Wang, Y.; et al. Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion. Virtual Phys. Prototyp. 2022, 17, 329–365. [Google Scholar] [CrossRef]
- Walker, J.; Middendorf, J.R.; Lesko, C.C.C.; Gockel, J. Multi-material laser powder bed fusion additive manufacturing in 3-dimensions. Manuf. Lett. 2022, 31, 74–77. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Hafenecker, J.; Rothfelder, R.; Schmidt, M.; Merklein, M. Stretch Forming of Ti-6Al-4V Hybrid Parts at Elevated Temperatures. Key Eng. Mater. 2021, 883, 135–142. [Google Scholar] [CrossRef]
- Peters, M.; Leyens, C. (Eds.) Titan und Titanlegierungen; Wiley-VCH: Weinheim, Germany, 2003; p. 546. [Google Scholar] [CrossRef]
- Huber, F.; Papke, T.; Kerkien, M.; Tost, F.; Geyer, G.; Merklein, M.; Schmidt, M. Customized exposure strategies for manufacturing hybrid parts by combining laser beam melting and sheet metal forming. J. Laser Appl. 2019, 31, 022318. [Google Scholar] [CrossRef]
- Huber, F.; Papke, T.; Kauffmann, C.; Rothfelder, R.; Krakhmalev, P.; Merklein, M.; Schmidt, M. Systematic exploration of the L-PBF processing behavior and resulting properties of β-stabilized Ti-alloys prepared by in-situ alloy formation. Mater. Sci. Eng. A 2021, 818, 141374. [Google Scholar] [CrossRef]
- Rothfelder, R.; Lanzl, L.; Selzam, J.; Drummer, D.; Schmidt, M. Vibrational Microfeeding of Polymer and Metal Powders for Locally Graded Properties in Powder-Based Additive Manufacturing. J. Mater. Eng. Perform. 2021, 30, 8798–8809. [Google Scholar] [CrossRef]
- Rothfelder, R.; Huber, F.; Schmidt, M. Influence of beam shape on spatter formation during PBF-LB/M of Ti6Al4V and tungsten powder. Procedia CIRP 2022, 111, 14–17. [Google Scholar] [CrossRef]
- Laumer, T. Realization of Multi-material Polymer Parts by Simultaneous Laser Beam Melting. J. Laser Micro/Nanoeng. 2015, 10, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Laumer, T.; Stichel, T.; Amend, P.; Schmidt, M. Simultaneous laser beam melting of multimaterial polymer parts. J. Laser Appl. 2015, 27, S29204. [Google Scholar] [CrossRef] [Green Version]
- Stichel, T.; Laumer, T.; Baumüller, T.; Amend, P.; Roth, S. Powder Layer Preparation Using Vibration-controlled Capillary Steel Nozzles for Additive Manufacturing. Phys. Procedia 2014, 56, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Li, L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual Phys. Prototyp. 2021, 16, 347–371. [Google Scholar] [CrossRef]
- Chen, X.; Seyfang, K.; Steckel, H. Development of a micro dosing system for fine powder using a vibrating capillary. Part 1: The investigation of factors influencing on the dosing performance. Int. J. Pharm. 2012, 433, 34–41. [Google Scholar] [CrossRef]
- Jiang, Y.; Matsusaka, S.; Masuda, H.; Qian, Y. Development of measurement system for powder flowability based on vibrating capillary method. Powder Technol. 2009, 188, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Seidel, C.; Anstaett, C. Next Step in Laser-Based Powder Bed Fusion—Multi Material Processing. Laser Tech. J. 2016, 13, 21. [Google Scholar] [CrossRef]
- Glasschroeder, J.; Prager, E.; Zaeh, M.F. Powder-bed-based 3D-printing of function integrated parts. Rapid Prototyp. J. 2015, 21, 207–215. [Google Scholar] [CrossRef]
- Wei, C.; Gu, H.; Sun, Z.; Cheng, D.; Chueh, Y.-H.; Zhang, X.; Huang, Y.; Li, L. Ultrasonic material dispensing-based selective laser melting for 3D printing of metallic components and the effect of powder compression. Addit. Manuf. 2019, 29, 100818. [Google Scholar] [CrossRef]
- Kumar, A.V.; Dutta, A.; Fay, J.E. Electrophotographic printing of part and binder powders. Rapid Prototyp. J. 2004, 10, 7–13. [Google Scholar] [CrossRef]
- Stichel, T.; Brachmann, C.; Raths, M.; Dechet, M.A.; Schmidt, J.; Peukert, W.; Frick, T.; Roth, S. Electrophotographic Multilayer Powder Pattern Deposition for Additive Manufacturing. JOM 2019, 72, 1366–1375. [Google Scholar] [CrossRef]
- Kopp, S.-P.; Stichel, T.; Roth, S.; Schmidt, M. Investigation of the electrophotographic powder deposition through a transfer grid for efficient additive manufacturing. Procedia CIRP 2020, 94, 122–127. [Google Scholar] [CrossRef]
- Pai, D.M.; Springett, B.E. Physics of electrophotography. Rev. Mod. Phys. 1993, 65, 163–211. [Google Scholar] [CrossRef]
- Shahin, M.M. Mass-Spectrometric Studies of Corona Discharges in Air at Atmospheric Pressures. J. Chem. Phys. 1966, 45, 2600–2605. [Google Scholar] [CrossRef]
- Matsusaka, S.; Masuda, H. Electrostatics of particles. Adv. Powder Technol. 2003, 14, 143–166. [Google Scholar] [CrossRef]
- Düsenberg, B.; Kopp, S.-P.; Tischer, F.; Schrüfer, S.; Roth, S.; Schmidt, J.; Schmidt, M.; Schubert, D.W.; Peukert, W.; Bück, A. Enhancing Photoelectric Powder Deposition of Polymers by Charge Control Substances. Polymers 2022, 14, 1332. [Google Scholar] [CrossRef]
- Kopp, S.-P.; Medvedev, V.; Frick, T.; Roth, S. Expanding the capabilities of laser-based powder bed fusion of polymers through the use of electrophotographic powder application. J. Laser Appl. 2022, 34, 042032. [Google Scholar] [CrossRef]
- Kopp, S.-P.; Düsenberg, B.; Eshun, P.M.; Schmidt, J.; Bück, A.; Roth, S.; Schmidt, M. Enabling triboelectric charging as a powder charging method for electrophotographic powder application in laser-based powder bed fusion of polymers by triboelectric charge control. Addit. Manuf. 2023, 68, 103531. [Google Scholar] [CrossRef]
- Stichel, T.; Geißler, B.; Jander, J.; Laumer, T.; Frick, T.; Roth, S. Electrophotographic multi-material powder deposition for additive manufacturing. J. Laser Appl. 2018, 30, 032306. [Google Scholar] [CrossRef]
- Kopp, S.-P.; Medvedev, V.; Roth, S. Targeted vibration excitation for increasing the powder deposition efficiency in electrophotographic powder application for Laser-based Powder Bed Fusion of polymers. Procedia CIRP 2022, 111, 55–60. [Google Scholar] [CrossRef]
- Tan, L.J.; Zhu, W.; Sagar, K.; Zhou, K. Comparative study on the selective laser sintering of polypropylene homopolymer and copolymer: Processability, crystallization kinetics, crystal phases and mechanical properties. Addit. Manuf. 2021, 37, 101610. [Google Scholar] [CrossRef]
- García-Collado, A.; Blanco, J.M.; Gupta, M.K.; Dorado-Vicente, R. Advances in polymers based Multi-Material Additive-Manufacturing Techniques: State-of-art review on properties and applications. Addit. Manuf. 2022, 50, 102577. [Google Scholar] [CrossRef]
- Khondoker, M.; Asad, A.; Sameoto, D. Printing with mechanically interlocked extrudates using a custom bi-extruder for fused deposition modelling. Rapid Prototyp. J. 2018, 24, 921–934. [Google Scholar] [CrossRef]
- Ali, M.H.; Mir-Nasiri, N.; Ko, W.L. Multi-nozzle extrusion system for 3D printer and its control mechanism. Int. J. Adv. Manuf. Technol. 2016, 86, 999–1010. [Google Scholar] [CrossRef]
- Choi, J.-W.; Kim, H.-C.; Wicker, R. Multi-material stereolithography. J. Mater. Process. Technol. 2011, 211, 318–328. [Google Scholar] [CrossRef]
- Sakhaei, A.H.; Kaijima, S.; Lee, T.L.; Tan, Y.Y.; Dunn, M.L. Design and investigation of a multi-material compliant ratchet-like mechanism. Mech. Mach. Theory 2018, 121, 184–197. [Google Scholar] [CrossRef]
- Bartlett, N.W.; Tolley, M.T.; Overvelde, J.T.B.; Weaver, J.C.; Mosadegh, B.; Bertoldi, K.; Whitesides, G.M.; Wood, R.J. A 3D-printed, functionally graded soft robot powered by combustion. Science 2015, 349, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Rajendra Boopathy, V.; Sriraman, A. Energy absorbing capability of additive manufactured multi-material honeycomb structure. Rapid Prototyp. J. 2019, 25, 623–629. [Google Scholar] [CrossRef]
- Moore, J.P.; Williams, C.B. Fatigue properties of parts printed by PolyJet material jetting. Rapid Prototyp. J. 2015, 21, 675–685. [Google Scholar] [CrossRef]
- Dorigato, A.; Rigotti, D.; Pegoretti, A. Novel Poly(Caprolactone)/Epoxy Blends by Additive Manufacturing. Materials 2020, 13, 819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wudy, K.; Drummer, D. Infiltration Behavior of Thermosets for Use in a Combined Selective Laser Sintering Process of Polymers. JOM 2019, 71, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Setter, R.; Schmölzer, S.; Rudolph, N.; Moukhina, E.; Wudy, K. Modeling of the curing kinetics of acrylate photopolymers for additive manufacturing. Polym. Eng. Sci. 2023, 63, 2149–2168. [Google Scholar] [CrossRef]
- Setter, R.; Schmölzer, S.; Rudolph, N.; Moukhina, E.; Wudy, K. Thermal stability and curing behavior of acrylate photopolymers for additive manufacturing. Polym. Eng. Sci. 2023, 63, 2180–2192. [Google Scholar] [CrossRef]
- Setter, R.; Riedel, F.; Peukert, W.; Schmidt, J.; Wudy, K. Infiltration behavior of liquid thermosets in thermoplastic powders for additive manufacturing of polymer composite parts in a combined powder bed fusion process. Polym. Compos. 2021, 42, 5265–5279. [Google Scholar] [CrossRef]
- Washburn, E.W. The dynamics of capillary flow. Phys. Rev. 1921, 17, 273. [Google Scholar] [CrossRef] [Green Version]
- Setter, R.; Stichel, T.; Schuffenhauer, T.; Kopp, S.-P.; Roth, S.; Wudy, K. Additive Manufacturing of Multi-material Polymer Parts Within the Collaborative Research Center 814. In Enhanced Material, Parts Optimization and Process Intensification; Reisgen, U., Drummer, D., Marschall, H., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 142–152. [Google Scholar]
- Setter, R.; Wudy, K. Simultaneous processing of thermosets and thermoplastics in additive manufacturing of multi-material polymer parts. In Proceedings of the Annual Technical Conference–ANTEC, Conference Proceedings, Denver, CO, USA, 27–30 March 2023. [Google Scholar]
- Watschke, H.; Waalkes, L.; Schumacher, C.; Vietor, T. Development of Novel Test Specimens for Characterization of Multi-Material Parts Manufactured by Material Extrusion. Appl. Sci. 2018, 8, 1220. [Google Scholar] [CrossRef] [Green Version]
- Schaub, A.; Juechter, V.; Singer, R.F.; Merklein, M. Characterization of Hybrid Components Consisting of SEBM Additive Structures and Sheet Metal of Alloy Ti-6Al-4V. Key Eng. Mater. 2014, 611–612, 609–614. [Google Scholar] [CrossRef]
- EOS-GmbH. TPU 1301 Technical Datasheet; EOS-GmbH: Krailling, Germany, 2022. [Google Scholar]
- Photocentric-Group. UV DLP Hard Safety Datasheet; Photocentric-Group: Peterborough, PE, USA, 2022. [Google Scholar]
Acrylate Photopolymer | TPU | |
---|---|---|
Tensile strength/MPa | 15 | 7 |
Elongation at break/% | 4 | 250 |
Young’s modulus/MPa | 2060 | 60 |
Melting point/°C | - | 138 |
Viscosity/mPas | 230 | - |
Density/g/cm3 | 1.19 | 1.11 |
General Process Parameters | PBF-LB/P-Related Process Parameters | BJT-Related Parameters | |||
---|---|---|---|---|---|
Layer height/mm | 0.1 | Scanning speed/mm/s | 2500 | Resin temperature/°C | 55–60 |
Laser power/W | 15 | Print head pressure/bar | 2 | ||
Process sequence/- | BJT→PBF | Laser hatch distance/µm | 250 | Nozzle-opening time/µs | 190–210 |
Laser hatch strategy/- | 0°/90° | Nozzle frequency/Hz | 200–220 | ||
Number of specimens per geometry/- | 4 | Building chamber temperature/°C | 105 | Print head speed/m/min | 3.8 |
Building surface temperature/°C | 136 | Geometrical layer infill/% | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setter, R.; Hafenecker, J.; Rothfelder, R.; Kopp, S.-P.; Roth, S.; Schmidt, M.; Merklein, M.; Wudy, K. Innovative Process Strategies in Powder-Based Multi-Material Additive Manufacturing. J. Manuf. Mater. Process. 2023, 7, 133. https://doi.org/10.3390/jmmp7040133
Setter R, Hafenecker J, Rothfelder R, Kopp S-P, Roth S, Schmidt M, Merklein M, Wudy K. Innovative Process Strategies in Powder-Based Multi-Material Additive Manufacturing. Journal of Manufacturing and Materials Processing. 2023; 7(4):133. https://doi.org/10.3390/jmmp7040133
Chicago/Turabian StyleSetter, Robert, Jan Hafenecker, Richard Rothfelder, Sebastian-Paul Kopp, Stephan Roth, Michael Schmidt, Marion Merklein, and Katrin Wudy. 2023. "Innovative Process Strategies in Powder-Based Multi-Material Additive Manufacturing" Journal of Manufacturing and Materials Processing 7, no. 4: 133. https://doi.org/10.3390/jmmp7040133
APA StyleSetter, R., Hafenecker, J., Rothfelder, R., Kopp, S. -P., Roth, S., Schmidt, M., Merklein, M., & Wudy, K. (2023). Innovative Process Strategies in Powder-Based Multi-Material Additive Manufacturing. Journal of Manufacturing and Materials Processing, 7(4), 133. https://doi.org/10.3390/jmmp7040133