Manufacturing of High Conductivity, High Strength Pure Copper with Ultrafine Grain Structure
Abstract
:1. Introduction
2. Materials and Experimental Procedures
3. Results
3.1. Cryo-Milling of Powders
3.2. Microstructural Analysis of Powder Particles
3.3. Cold Isostatic Pressing of Cryo-Milled Powders
3.4. C-ECAP Processing of CIPed Cu Sample
3.5. Characterization of C-ECAPed Sample
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callister, W.D., Jr.; Rethwisch, D.G. Materials Science and Engineering: An Introduction, 10th ed.; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Hall, E.O. The deformation and ageing of mild steel: III Discussion of results. Proc. Phys. Soc. Sect. B 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Petch, N.J. The Cleavage Strength of Polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Chokshi, A.; Rosen, A.; Karch, J.; Gleiter, H. On the Validity of the Hall—Petch Relationship In Nanocrystalline Materials. Scr. Met. 1989, 23, 1679–1683. [Google Scholar] [CrossRef] [Green Version]
- Magee, A.C.; Ladani, L. Deformation and Failure of an Al-Mg Alloy Investigated Through Multiscale Microstructural Models. In Light Metals; Springer: Cham, Switzerland, 2015; pp. 245–249. [Google Scholar]
- Magee, A.C.; Ladani, L.J. Temperature Effects in Al 5083 with a Bimodal Grain Size. MRS Proc. 2013, 1513, 5. [Google Scholar] [CrossRef]
- Magee, A.C.; Ladani, L. Representation of a microstructure with bimodal grain size distribution through crystal plasticity and cohesive interface modeling. Mech. Mater. 2015, 82, 1–12. [Google Scholar] [CrossRef]
- Nelson, S.; Ladani, L.; Topping, T.; Lavernia, E. Fatigue and monotonic loading crack nucleation and propagation in bimodal grain size aluminum alloy. Acta Mater. 2011, 59, 3550–3570. [Google Scholar] [CrossRef]
- Ladani, L.; Nelson, S. Transition of crack propagation path under varied levels of load in bimodal grain size Al-Mg alloy. J. Eng. Mater. Technol. 2011, 133, 7–12. [Google Scholar] [CrossRef]
- Morozova, A.; Kaibyshev, R. Grain refinement and strengthening of a Cu–0.1Cr–0.06Zr alloy subjected to equal channel angular pressing. Philos. Mag. 2017, 97, 2053–2076. [Google Scholar] [CrossRef]
- Wen, H.; Topping, T.D.; Isheim, D.; Seidman, D.N.; Lavernia, E.J. Strengthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering. Acta Mater. 2013, 61, 2769–2782. [Google Scholar] [CrossRef]
- Shangina, D.; Bochvar, N.; Morozova, A.; Belyakov, A.; Kaibyshev, R.; Dobatkin, S. Effect of chromium and zirconium content on structure, strength and electrical conductivity of Cu-Cr-Zr alloys after high pressure torsion. Mater. Lett. 2017, 199, 46–49. [Google Scholar] [CrossRef]
- Dobatkin, S.; Gubicza, J.; Shangina, D.; Bochvar, N.; Tabachkova, N. High strength and good electrical conductivity in Cu-Cr alloys processed by severe plastic deformation. Mater. Lett. 2015, 153, 5–9. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, R.; Li, Y.; Zhao, L. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryogenic friction stir processing and subsequent annealing treatment. Mater. Sci. Eng. A 2019, 755, 166–169. [Google Scholar] [CrossRef]
- Vinogradov, A.; Patlan, V.; Suzuki, Y.; Kitagawa, K.; Kopylov, V. Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing. Acta Mater. 2002, 50, 1639–1651. [Google Scholar] [CrossRef]
- Nayak, S.; Wollgarten, M.; Banhart, J.; Pabi, S.; Murty, B. Nanocomposites and an extremely hard nanocrystalline intermetallic of Al-Fe alloys prepared by mechanical alloying. Mater. Sci. Eng. A 2010, 527, 2370–2378. [Google Scholar] [CrossRef]
- Xie, H.-B.; Yang, H.-Y.; Yu, J.; Gao, M.-Y.; Shou, J.-D.; Fang, Y.-T.; Liu, J.-B.; Wang, H.-T. Research progress on advanced rail materials for electromagnetic railgun technology. Def. Technol. 2020, 17, 429–439. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Q.; Zheng, M.; Zhu, J.; Li, J.; Huang, M.; Jia, Q.; Du, Z. Microstructure and properties of ultra-fine grain Cu-Cr alloy prepared by equal-channel angular pressing. Mater. Sci. Eng. A 2007, 459, 303–308. [Google Scholar] [CrossRef]
- Islamgaliev, R.K.; Nesterov, K.M.; Bourgon, J.; Champion, Y.; Valiev, R.Z. Nanostructured Cu-Cr alloy with high strength and electrical conductivity. J. Appl. Phys. 2014, 115, 194301. [Google Scholar] [CrossRef]
- Huang, J.Y.; Liao, X.Z.; Zhu, Y.T.; Zhou, F.; Lavernia, E.J. Grain boundary structure of nanocrystalline Cu processed by cryomilling. Philos. Mag. 2003, 83, 1407–1419. [Google Scholar] [CrossRef]
- Attia, U.M. Cold-isostatic pressing of metal powders: A review of the technology and recent developments. Crit. Rev. Solid State Mater. Sci. 2021, 46, 587–610. [Google Scholar] [CrossRef]
- Ka, U.B.; Panemangalore, D.B.; Bhat, S. Advanced Welding and Deforming: Equal channel angular processing-a modern deforming technique for quality products. In Handbooks in Advanced Manufacturing; Elsevier: Amsterdam, The Netherlands, 2021; Chapter 14; pp. 381–423. [Google Scholar] [CrossRef]
- Murashkin, M.Y.; Sabirov, I.; Kazykhanov, V.U.; Bobruk, E.V.; Dubravina, A.A.; Valiev, R.Z. Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC. J. Mater. Sci. 2013, 48, 4501–4509. [Google Scholar] [CrossRef]
- Shuai, G.; Li, Z.; Zhang, D.; Tong, Y.; Li, L. The mechanical property and electrical conductivity evolution of Al–Fe alloy between room temperature and elevated temperature ECAP. Vacuum 2020, 183, 109813. [Google Scholar] [CrossRef]
- Magee, A. Mechanical Properties and Microstructural Characteristics of an Al-Mg Alloy with Bimodal Grain Size at Room and Elevated Temperatures; Institutional Repository, University of Alabama: Tuscaloosa, AL, USA, 2012. [Google Scholar]
- Youssef, K.; Sakaliyska, M.; Bahmanpour, H.; Scattergood, R.; Koch, C. Effect of stacking fault energy on mechanical behavior of bulk nanocrystalline Cu and Cu alloys. Acta Mater. 2011, 59, 5758–5764. [Google Scholar] [CrossRef]
- Langdon, T.G. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 2013, 61, 7035–7059. [Google Scholar] [CrossRef]
- Sasaki, T.; Ohkubo, T.; Hono, K. Microstructure and mechanical properties of bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Acta Mater. 2009, 57, 3529–3538. [Google Scholar] [CrossRef]
- Botcharova, E.; Freudenberger, J.; Schultz, L. Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys. Acta Mater. 2006, 54, 3333–3341. [Google Scholar] [CrossRef]
- Sabirov, I.; Murashkin, M.; Valiev, R. Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development. Mater. Sci. Eng. A 2013, 560, 1–24. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Langdon, T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006, 51, 881–981. [Google Scholar] [CrossRef]
- Wei, K.X.; Wei, W.; Wang, F.; Du, Q.B.; Alexandrov, I.V.; Hu, J. Microstructure, mechanical properties and electrical conductivity of industrial Cu-0.5%Cr alloy processed by severe plastic deformation. Mater. Sci. Eng. A 2011, 528, 1478–1484. [Google Scholar] [CrossRef]
- Zhao, Y.; Topping, T.; Li, Y.; Lavernia, E.J. Strength and ductility of bi-modal Cu. Adv. Eng. Mater. 2011, 13, 865–871. [Google Scholar] [CrossRef]
- Ma, K.; Wen, H.; Hu, T.; Topping, T.D.; Isheim, D.; Seidman, D.N.; Lavernia, E.J.; Schoenung, J.M. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014, 62, 141–155. [Google Scholar] [CrossRef]
- Milligan, J.; Vintila, R.; Brochu, M. Nanocrystalline eutectic Al-Si alloy produced by cryomilling. Mater. Sci. Eng. A 2009, 508, 43–49. [Google Scholar] [CrossRef]
- Harrell, T.J.; Topping, T.D.; Wen, H.; Hu, T.; Schoenung, J.M.; Lavernia, E.J. Microstructure and Strengthening Mechanisms in an Ultrafine Grained Al-Mg-Sc Alloy Produced by Powder Metallurgy. Met. Mater. Trans. A 2014, 45, 6329–6343. [Google Scholar] [CrossRef]
- Witkin, D.; Lavernia, E. Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog. Mater. Sci. 2006, 51, 1–60. [Google Scholar] [CrossRef]
- Fecht, H.-J. Nanostructure formation by mechanical attrition. Nanostructured Mater. 1995, 6, 33–42. [Google Scholar] [CrossRef]
- Bahmanpour, H.; Youssef, K.M.; Scattergood, R.O.; Koch, C.C. Mechanical behavior of bulk nanocrystalline copper alloys produced by high energy ball milling. J. Mater. Sci. 2011, 46, 6316–6322. [Google Scholar] [CrossRef]
- Vogt, R.; Zhang, Z.; Topping, T.; Lavernia, E.; Schoenung, J. Cryomilled aluminum alloy and boron carbide nano-composite plate. J. Mater. Process. Technol. 2009, 209, 5046–5053. [Google Scholar] [CrossRef]
- Maisano, A.J. Cryomilling of Aluminum-Based and Magnesium-Based Metal Powders; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2006. [Google Scholar]
- Hanna, W.M. Behavior and Microstructure in Cryomilled Aluminum alloy Containing Diamondoids Nanoparticles; University of California Irvine: Irvine, CA, USA, 2013. [Google Scholar]
- Ferrasse, S.; Hartwig, K.T.; Goforth, R.E.; Segal, V.M. Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion. Met. Mater. Trans. A 1997, 28, 1047–1057. [Google Scholar] [CrossRef]
- Tao, X. An EBSD Study on Mapping of Small Orientation Differences in Lattice Mismatched Heterostructures; Lehigh University: Bethlehem, PA, USA, 2003. [Google Scholar]
- Alihosseini, H.; Zaeem, M.A.; Dehghani, K.; Faraji, G. Producing high strength aluminum alloy by combination of equal channel angular pressing and bake hardening. Mater. Lett. 2015, 140, 196–199. [Google Scholar] [CrossRef]
- Stoica, G.M. Equal-Channel-Angular Processing (ECAP) of Materials: Experiment and Theory; University of Tennessee: Knoxville, TN, USA, 2007. [Google Scholar]
- Hockauf, M.; Meyer, L.; Zillmann, B.; Hietschold, M.; Schulze, S.; Krüger, L. Simultaneous improvement of strength and ductility of Al-Mg-Si alloys by combining equal-channel angular extrusion with subsequent high-temperature short-time aging. Mater. Sci. Eng. A 2009, 503, 167–171. [Google Scholar] [CrossRef]
- Matsuki, K.; Aida, T.; Takeuchi, T.; Kusui, J.; Yokoe, K. Microstructural characteristics and superplastic-like behavior in aluminum powder alloy consolidated by equal-channel angular pressing. Acta Mater. 2000, 48, 2625–2632. [Google Scholar] [CrossRef]
- Bongale, A.M.; Kumar, S. Equal channel angular pressing of powder processed Al6061/SiC nano metal matrix composites and study of its wear properties. Mater. Res. Express 2018, 5, 035002. [Google Scholar] [CrossRef]
- Alawadhi, M.Y.; Sabbaghianrad, S.; Wang, Y.C.; Huang, Y.; Langdon, T.G. Characteristics of grain refinement in oxygen-free copper processed by equal-channel angular pressing and dynamic testing. Mater. Sci. Eng. A 2020, 775, 138985. [Google Scholar] [CrossRef]
- Torre, F.H.D.; Gazder, A.A.; Gu, C.F.; Davies, C.H.; Pereloma, E.V. Grain size, misorientation, and texture evolution of copper processed by equal channel angular extrusion and the validity of the Hall-Petch relationship. Met. Mater. Trans. A 2007, 38, 1080–1095. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Li, S.; Zhang, Z. General relationship between strength and hardness. Mater. Sci. Eng. A 2011, 529, 62–73. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, S.; Chen, Q.; Feng, B.; Shu, D.; Huang, Z. Microstructure and Mechanical Properties of Copper Billets Fabricated by the Repetitive Extrusion and Free Forging Process. J. Mater. Eng. Perform. 2019, 28, 2063–2070. [Google Scholar] [CrossRef] [Green Version]
- Ellingsen, D.A.G.G.; Horn, N.; Aaseth, J.A.N. Copper. In Handbook on the Toxicology of Metals, 5th ed.; Academic Press: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Alemour, B.; Badran, O.; Hassan, M.R. A review of using conductive composite materials in solving lightening strike and ice accumulation problems in aviation. J. Aerosp. Technol. Manag. 2019, 11, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Wang, T.; Liao, X.; Qie, B.; Yang, P.; Chen, M.; Wang, X.; Srinivasan, A.; Cheng, Q.; Ye, Q.; et al. Accordion-like stretchable Li-ion batteries with high energy density. Energy Storage Mater. 2018, 17, 136–142. [Google Scholar] [CrossRef]
Component | Weight Percentage (wt%) |
---|---|
Pb | 0.01 |
Bi | 0.01 |
Sn | 0.01 |
Ni | 0.002 |
Fe | 0.01 |
As | 0.005 |
Zn | 0.01 |
Sb | 0.001 |
S | 0.005 |
O | 0.08 |
Cu | Balance |
Ball Size (mm) | Ball: Powder (Weight Ratio) | Speed (rpm) | Time (Hours) | Results | |
---|---|---|---|---|---|
Run 1 | 6.35 | 32:1 | 190 | 4 | No significant change in particle size |
Run 2 | 6.35 | 1.6:1 | 310 | 4 | Particle size increased from 55 microns to 81 microns |
Run 3 | 6.35 | 2:1 | 600 | 3 | No significant changes observed |
6.35 replaced by 3.75 | 4 | After 3 h of grinding with 1/4 balls, the balls were replaced with 1/8 balls and grinding continued for another 4 h. Resulted in Bi-modal particle size. | |||
Run 4 | 3.75 | 2:1 | 600 | 7.5 | Flattening of particles occurred |
3.175 replaced by 3.175 + 6.35 (1:1) | 4 | Further flattening of the particles and fracture into smaller pieces resulting in bi-modal particle sizes with a large difference in average particle size in two large and small modes |
Pass 1 | Pass 2 | Pass 3 | Pass 4 | |
---|---|---|---|---|
Feed rate (mm/sec) | 6.3 | 6.3 | 6.3 | 6.3 |
ECAP Temp (°C) | 130 | 130 | 140 | 140 |
Exit Channel Gap | 11.79 | 11.65 | 11.85 | 11.71 |
Lubrication | None | None | None | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladani, L.; Razmi, J.; Lowe, T.C. Manufacturing of High Conductivity, High Strength Pure Copper with Ultrafine Grain Structure. J. Manuf. Mater. Process. 2023, 7, 137. https://doi.org/10.3390/jmmp7040137
Ladani L, Razmi J, Lowe TC. Manufacturing of High Conductivity, High Strength Pure Copper with Ultrafine Grain Structure. Journal of Manufacturing and Materials Processing. 2023; 7(4):137. https://doi.org/10.3390/jmmp7040137
Chicago/Turabian StyleLadani, Leila, Jafar Razmi, and Terry C. Lowe. 2023. "Manufacturing of High Conductivity, High Strength Pure Copper with Ultrafine Grain Structure" Journal of Manufacturing and Materials Processing 7, no. 4: 137. https://doi.org/10.3390/jmmp7040137
APA StyleLadani, L., Razmi, J., & Lowe, T. C. (2023). Manufacturing of High Conductivity, High Strength Pure Copper with Ultrafine Grain Structure. Journal of Manufacturing and Materials Processing, 7(4), 137. https://doi.org/10.3390/jmmp7040137