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Abstract: This research addresses the challenge of determining the optimal parameters for the
selective laser sintering (SLS) process using thermoplastic polyurethane elastomer (TPU) flexa black
powder to achieve high-quality SLS parts. This study focuses on two key printing process parameters,
namely layer thickness and the laser power ratio, and evaluates their impact on four output responses:
density, hardness, modulus of elasticity, and time required to produce the parts. The primary impacts
and correlations of the input factors on the output responses are evaluated using response surface
methodology (RSM). A particular response optimizer is used to find the optimal settings of input
variables. Additionally, the rationality of the model is verified through an analysis of variance
(ANOVA). The research identifies the optimal combination of process parameters as follows: a
0.11 mm layer thickness and a 1.00 laser power ratio. The corresponding predicted values of the
four responses are 152.63 min, 96.96 Shore-A, 2.09 MPa, and 1.12 g/cm3 for printing time, hardness,
modulus of elasticity, and density, respectively. These responses demonstrate a compatibility of 66.70%
with the objective function. An experimental validation of the predicted values was conducted and the
actual values obtained for printing time, hardness, modulus of elasticity, and density at the predicted
input process parameters are 159.837 min, 100 Shore-A, 2.17 MPa, and 1.153 g/cm3, respectively. The
errors between the predicted and experimental values for each response (time, hardness, modulus of
elasticity, and density) were found to be 4.51%, 3.04%, 3.69%, and 2.69%, respectively. These errors are
all below 5%, indicating the adequacy of the model. This study also comprehensively describes the
influence of process parameters on the responses, which can be helpful for researchers and industry
practitioners in setting process parameters of similar SLS operations.

Keywords: additive manufacturing; selective laser sintering; response surface methodology; flexa
black powder; thermoplastic polyurethane elastomer

1. Introduction

Additive manufacturing (AM), also referred to as rapid prototyping (RP) or 3D print-
ing, is a modern production process that enables the creation of components by the layer-
by-layer transformation of 3D models into physical items [1–3]. Compared to conventional
production processes, additive manufacturing has five major benefits: impact, speed, qual-
ity, innovation, and cost [4]. There are currently various types of materials for which
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AM is available, including plastics (thermoplastics and thermosets), metals, ceramics, and
composite materials (polymer composites, metal composites, and ceramic matrix compos-
ites) [5,6].

At present, a variety of additive manufacturing processes exist. These techniques differ
in their operational procedures, methods of layer deposition for component fabrication,
and the materials used [7]. Among them, selective laser sintering (SLS) is considered one
of the most popular additive manufacturing techniques. SLS technology is widely used
in many industries, and it has several benefits over traditional manufacturing methods,
including a relatively lower time to market, greater part accuracy, the use of low-priced
materials, a greater production rate, versatility, and the ability to create more functionality
in components with a distinctive design and intricate features [8].

The process of SLS involves the solidification of powder material layers successively
on top of one another to produce complex 3D components [9,10]. To start the SLS process, a
detailed CAD model of the intended component is required as a blueprint for the successive
solidification of powder material layers. After a specialized software divides the model
into cross-sections, the model participates directly in the process [11]. Using a CO2 laser
that has a power capacity of 25–50 W, the powder is scanned selectively, which disrupts the
surface tension of the grains and joins them through sintering. The laser power is regulated
to raise the temperature of the specific powder regions to a level that causes the powder
particles to sinter. Once the sintered layer has had enough time to cool, the bed of the
component is lowered by the thickness of one layer to allow for the addition of a new layer
of powder [12]. The quality of a product produced through this method is closely linked to
the quality of each separate layer, and the quality of the layers is determined by the process
parameters. Therefore, identifying the right process parameters and their optimal values is
a significant challenge [11].

Thermoplastic polyurethane elastomer (TPU) is a soft polymer where selective laser
sintering (SLS) is typically employed to create functional and end-use parts that are wear
resistant, durable, and chemical resistant and can withstand a decent degree of stress.
The best tensile strength, abrasion resistance, hydrolytic stability, flexibility, durability,
and corrosion resistance are all qualities of TPU that make it the most popular polymer.
The availability of well-flowing powders, low melt viscosities, and minimal shrinkage
during the hardening process are just a few of the distinctive and adaptable qualities
that make TPU materials a viable material class for laser sintering [13,14]. TPU mainly
consists of soft and hard segments. Polyols are mainly responsible for the soft segment
and isocyanate for the hard segment in TPU. The soft segment provides elastic properties
to the TPU. Because of TPU’s properties, it is used in automotive sectors, medical sectors,
and marine applications, and is also used in cables and wires [14]. There are numerous
process parameters used in the SLS process, including laser power, part bed temperature,
layer thickness, scan speed, scan mode, scan count, hatch spacing, hatch length, and spot
size. Experience and a deeper comprehension of and familiarity with these process factors
are necessary for greater product quality. As a result, the current investigation explores
this issue.

This study aims to determine the optimal values of the fabrication parameters for
achieving superior printing quality. Herein, the SLS parts were fabricated using TPU
flexa black powder. Response surface methodology (RSM) was employed to pinpoint the
optimal values of the two main process parameters, layer thickness and the laser power
ratio, for the best possible values of responses, i.e., time, hardness, modulus of elasticity,
and density. Following this, the accuracy of the optimal values was verified by conducting
a microscopic analysis of the printing quality.

The organization of the paper can be divided into the following parts: Section 2
includes previous research work on different techniques used to optimize the parameters
in SLS. Section 3 outlines the proposed methodology. The methods that were carried out in
this study are also discussed in this section. Section 4 of the paper contains the results and
discussion, while Section 5 includes final remarks.



J. Manuf. Mater. Process. 2023, 7, 144 3 of 26

2. Literature Review

This section provides a literature review of significant research on parameters of SLS
and different methods used to optimize the parameters of SLS. The purpose of this section is
to investigate the progression of various techniques linked to this study’s current research.

Many statistical methods and mathematical models have been applied to determine the
relationship between the inputs to the SLS process and its major outputs. Sharma et al. [15]
utilized CCD and RSM in their experimental study to examine how various process param-
eters, including scan spacing, scan count, laser power, hatch length, and bed temperature,
affect the properties of duraform polyamide prototypes produced through SLS. A dynamic
mechanical analyzer was used to investigate the properties of samples generated through
laser sintering. In another study, Dingal et al. [16] investigated the impact of SLS process
parameters (laser power density, scan speed, layer thickness, and stepping distance) on the
density, porosity, and hardness of parts made from pure iron powder. To evaluate the effect
of these input factors on the output responses, the Taguchi method and an ANOVA were
employed. The analysis of the results indicates that these factors have a notable influence
on the properties.

Negi et al. [17] conducted research which examined the impact of various factors on
the surface roughness of parts made from glass-filled polyamide. RSM was utilized to
analyze the effects of the input parameters. According to the findings, the factor that had
the greatest impact on enhancing surface roughness was scan spacing, with laser power
being the next most important factor. The research of Calignano et al. [18] employed the
Taguchi method to investigate how the surface roughness of aluminum samples produced
through direct metal laser sintering (DMLS) is influenced by scan speed, hatching distance,
and laser power. The research concluded that the surface roughness is mostly affected by
the scan speed. In another study, Sachdeva et al. [19] investigated the surface roughness of
parts produced by the SLS process. They optimized the parameters using a face-centered
CCD with RSM. Laser power was found to be the key factor affecting the surface roughness.

Negi et al. [20] employed an artificial neural network (ANN) and RSM to examine the
influence of process parameters on the shrinkage of laser-sintered PA 3200GF parts and
made a comparison between the results acquired through RSM and the ANN. Scan spacing,
scan speed, and part bed temperature were found to be the primary factors contributing
to shrinkage. Enzi and Mynderse [21] developed a mathematical model for minimizing
surface roughness and crack width in SLS. A genetic algorithm (GA) and RSM were used
to identify an optimal set of parameters that affect target defects. The study’s results
confirm the impact of these variables on target defects, and an optimal set of parameters
was identified.

Singh et al. [22] conducted research examining how different process parameters
affected the density and hardness of polyamide parts produced using laser sintering. To
determine the optimal laser sintering parameters, a face-centered CCD was used, and the
ideal working conditions were identified through the RSM approach. The findings showed
that scan spacing was the most critical parameter, affecting both density and hardness.
Singh et al. [23] conducted a study which investigated how input parameters of SLS
influence dimensional accuracy. The factors examined in this research were temperature,
laser power, scan spacing, and scan count. The results showed that scan spacing had
the most significant impact, with an increase in scan spacing leading to a decrease in
dimensional accuracy.

Sohrabpoor et al. [24] investigated the optimal working conditions for SLS with a
glass-filled polyamide material by adjusting the process parameters to achieve the desired
ultimate tensile strength and elongation of the specimen. Two methodologies were em-
ployed to achieve multi-objective optimization: an adaptive neuro-fuzzy inference system
(ANFIS) was used with the simulated annealing (SA) algorithm to model tensile strength
and elongation, while a grey relational analysis (GRA) was the basis for the second method.
The resulting outcomes from these methods were compared and the ANFIS-SA approach
demonstrated superior performance to the GRA in identifying the optimal solutions for
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the SLS process. Zhuang et al. [25] employed an SLS experiment where the impact of
layer thickness, scan spacing, and laser power on the tensile strength of TPU/CNT parts
was investigated. A well-fitting model for tensile strength was obtained using the Box–
Behnken design (BBD) method. The model was evaluated using an ANOVA, and the results
indicated that it was highly significant.

An experimental analysis was performed by Sharma et al. [26] to analyze the effect of
input parameters on different mechanical properties of polyamide specimens. Using RSM,
mathematical models were established to predict the responses and suggest the optimum
parameters. Scan spacing was identified as the most important input parameter that impacts
all the responses. The research of Idriss et al. [25] examined how preheating temperature,
scanning speed, and laser power influence the mechanical properties and dimensional
accuracy of sisal fiber/poly-(ether sulfone) (PES) composite parts manufactured through
SLM. The study determined the best range of process parameters, and it was found that
applying these optimal parameters in the SLS process significantly improved the quality of
the SFPC parts. Oyesola et al. [26] conducted research to examine how the surface hardness
and roughness of the top and side surfaces of Ti6Al4V metal specimens fabricated through
SLM are affected by varying the laser power and scanning speed parameters. The research
identified the optimal range of process parameters, and the findings indicated that higher
laser power resulted in increased surface hardness, while reducing the roughness of both
the top and side surfaces.

In a recent study, Zhou et al. [27] investigated the impact of three parameters (laser
power, laser scanning speed, and scanning space) on the compactness of CuSn10 powder
parts produced through SLM. A mathematical model was constructed using RSM to
understand the relationship between these parameters and the response. The findings
revealed that among the three factors, both laser power and scanning speed had comparable
and more significant influences on the compactness compared to scanning space. The
research of Cuesta et al. [28] investigated the impact of laser speed, laser power, and hatch
spacing on various mechanical properties of C300 steel parts manufactured through SLM.
They determined the potential optimal values for the printing parameters to achieve the
desired mechanical properties in the parts. After the comprehensive literature review, all
the relevant research along with their analysis methodologies are summarized in Table 1.

Table 1. Overview of the literature review.

Optimized Parameters Optimized Output Technique Used Ref.

Bed temperature, scan spacing, laser power,
scan count, and hatch length

Damping parameter, glass
transition temperature, storage
modulus, and loss modulus

CCD, RSM [15]

Laser pulse on time, scan speed, laser power
density, layer thickness, interval–spot, powder
size, and stepping distance

Density, porosity, and hardness Taguchi method, ANOVA [16]

Bed temperature, laser power, scan spacing,
scan length, and scan speed Surface roughness CCD, RSM, and ANOVA [17]

Laser power, hatching distance, and scan speed Surface roughness Taguchi method, ANOVA [18]

Bed temperature, scan spacing, scan count,
laser power, and hatch length Surface roughness CCD, RSM, and ANOVA [19]

Bed temperature, laser power, scan spacing,
scan length, and scan speed Shrinkage CCD, RSM, ANN, and

ANOVA [20]

Layer depth, speed, forward step, side step,
and platform temperature Crack width and surface roughness RSM, GA [21]

Bed temperature, laser power, scan count, scan
spacing, and hatch length Density, hardness CCD, RSM, and ANOVA [22]
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Table 1. Cont.

Optimized Parameters Optimized Output Technique Used Ref.

Bed temperature, laser power, scan spacing,
and scan count Dimensional accuracy CCD, RSM, and ANOVA [23]

Laser power, bed temperature, scan length,
scan spacing, and scan velocity Elongation, tensile strength ANFIS, SA algorithm, and

GRA [24]

Layer thickness, scan spacing, and laser power Tensile strength Box–Behnken design (BBD),
ANOVA [25]

Bed temperature, laser power, layer thickness,
orientation, and scan spacing

Elongation, yield strength, ultimate
tensile strength, and young’s
modulus

CCD, RSM, and ANOVA [26]

Preheating temperature, scanning speed, and
laser power

Mechanical properties and
dimensional accuracy

Synthesis weighted scoring
method [27]

Laser speed and scan speed Surface hardness, top surface, and
side surface roughness ANOVA, RSM [26]

Laser scanning speed, scanning space, and
laser power Compactness ANOVA, RSM [27]

Laser speed, laser power, and hatch spacing
Elongation, ultimate stress, yield
strength, and area under the
stress–strain curve

RSM [28]

Tool path Integrity of structure Deep learning [28]

Laser power, laser travel speed, hatch spacing,
and laser defocusing Fatigue life DOE, RSM [29]

Hatch spacing, layer thickness, exposure time,
and point distance Porosity DOE, RSM [30]

Laser power and scanning speeds Dimensional accuracy, mechanical
strength, and surface properties

ANOVA,
comparative analysis [31]

The literature suggests that the process parameters exert a considerable impact on the
surface roughness, tensile strength, density, and hardness of the parts produced, which
in turn influence the surface quality and surface finish of the final parts. Several studies
have been conducted to optimize the process parameters in SLS. As far as the authors are
aware, no prior research has been conducted to explore the optimization of SLS process
parameters using TPU flexa black powder. Additionally, most of the prior research has
emphasized surface roughness and various mechanical properties as the primary output
responses, but none of these studies have taken into account the time needed for the
construction of the parts. Additionally, very few research studies are focused on the
multi-response optimization of contradictory process outputs for SLS products. Le, Duong
et al. investigated the mechanical properties of a TPU material with the commercial name
eSUN Flexible filament 95A, and a maximum tensile strength value of 16.79 MPa was
reported [32]. Yuan, Y. and Sung, C. explored the mechanical properties of a 3D-printed
grid pattern structure with TPU and controlled the density of the grid lattice as well as the
bulk elastic modulus of the structure by changing the pattern’s cell size and wall thickness
parameters. They reported that the elastic moduli of the resulting samples span from
0.36 MPa to 64.31 MPa [33]. The SLS for TPU process parameters was optimized by Ruiqi
Pan et al., and they found that the ideal SLS processing parameters are a laser power of
25 W, a laser speed of 3500 mm s−1, and a layer thickness of 0.1 mm. The tensile strength
and exceptional toughness of TPU samples produced with SLS could reach up to 20.02 MPa
and 26,631 J mm−3 for TPU powders (bulk density of 1.2 g cm−1) [34].

The motivation behind this study comes from a real-life problem in the light engineer-
ing industry in Bangladesh. Currently, patterns for casting in this industry are made by
carpenters, which is time consuming and imprecise for complex shapes. The researchers
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propose using selective laser sintering (SLS) to 3D print patterns with higher accuracy
and faster production. This could be a valuable substitute for conventional patterns and
beneficial for light engineering entrepreneurs in Bangladesh. To ensure quality molds from
the 3D-printed patterns, the hardness, modulus of elasticity, density, and printing time
need to be optimized. Maximum hardness, modulus of elasticity, and density are desired to
prevent pattern distortion during mold making, while minimizing printing time is essential
for achieving higher productivity from the sinterit lisa pro 3D printer.

In this study, we optimize the density, hardness, modulus of elasticity, and time
to produce the parts and find their corresponding process parameter values, i.e., layer
thickness and the laser power ratio, during the selective laser sintering of TPU flexa black
powder using RSM. Hence, the main contributions of this research can be summarized
as follows:

I. This study experimentally examines the effect of process parameters (layer thickness and
the laser power ratio) on four distinct responses (density, hardness, modulus of elasticity,
and time to create the parts) during the SLS process of TPU flexa black powder.

II. Empirical equations were formulated for every response using experimental data.
III. The optimization of responses (maximum density, maximum hardness, maximum

modulus of elasticity, and minimum time) was achieved using RSM.
IV. A comparative analysis of the surface morphology of the SLS product was performed

using optical microscope and scanning electron microscope images.

3. Methodology

This section provides a comprehensive description of the materials and methods
used in the study, which will enable others to replicate and expand upon the results.
The methodology employed in this research involves the use of RSM as the solution
approach. The outline of this research is presented in the form of a flowchart (Figure 1)
for comprehensive understanding. More information on the materials and instruments,
experimental setup, and the RSM method are described in the subsequent sub-section.
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3.1. Materials and Instruments

SolidWorks Design: In this study, we utilized SolidWorks, which is a software for
solid modeling, computer-aided design (CAD), and computer-aided engineering (CAE),
to design a hinge, a product for our experimental investigation of process parameters
on its output responses. We aimed to evaluate the responses of the hinge to various
predetermined factors using this software. The dimension of the sample design is given
in Table 2.

Table 2. Dimension of the designed specimen.

Length Width Thickness

50 mm 12.50 mm 9 mm

The sample designed in this study (Figure 2) can serve as a hinge joint, such as a door
hinge. A hinge connection allows for rotation around the point of connection between
two members.
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Printing Powder: In this study, the thermoplastic polyurethane elastomer (TPU)
material flexa black powder by sinterit was used for 3D printing. TPU is a highly versatile
material that possesses a unique combination of properties, including elasticity, flexibility,
and durability. These characteristics make it particularly suitable for applications that
involve chemical reagents. The material’s behavior is similar to rubber, and it displays
excellent molding properties, being able to restore its initial shape after deformation.
Furthermore, TPU is known to be resistant to impact and abrasion, making it an ideal
choice for creating prototypes and flexible parts. The granulation level of this powder is in
between 20 µm to 105 µm. Additionally, it features a 0% material refreshing ratio, which
allows for the efficient use of leftover powder without the need for additional processing.
Key characteristics of flexa black powder are mentioned in Table 3 below.

Table 3. Major characteristics of the printing powder.

Properties Value

Material type TPU

Tensile strength 3.7 MPa

Elongation at break 137%

Melting point 160 ◦C

Granulation 20–105 µm

Material refreshing ratio 0%

Hit’s suppressing 100%

Abrasion resistance 63%

Young’s modulus 47.2 MPa

Hardness 80/90 (A Shore scale)

Experimental Setup: Experimentation was performed a on sinterit lisa pro 3D printer
using thermoplastic polyurethane elastomer (TPU) flexa black powder. The experimental
setup and its printing mechanism are illustrated at Figure 3. The sinterit lisa pro 3D printer
uses the selective laser sintering (SLS) process to build objects layer by layer using a laser
and fine powder. The process involves preparing the 3D model of the object in an STL file
format, slicing it into layers using specific software, loading the appropriate powder into
the printer, printing the object layer by layer, removing and cleaning the printed object,
and post-processing for final touch. The entire process can take a few hours to several days
depending on the complexity of the model and the size of the object being printed. In this
particular case, the object to be manufactured is comparatively simpler in design, and hence
it takes several hours for the product to be manufactured for a particular combination of
process parameters. The experimentation was conducted for 24 distinct combinations of
process parameters and for each combination three experimental runs were performed.

The design’s STL file was sliced using the sinterit studio software to generate the
SCODE for use with the SLS 3D printer. The SCODE contains all the necessary information
for the 3D printing process to take place and is essential for the successful execution of the
print. Major information of the printing parameters of SCODE is summarized in Table 4.

Measurement Instruments: In this study, various measurement instruments were
utilized to gather data and analyze the samples. These instruments play a crucial role
in obtaining accurate and reliable measurements for the study’s objectives. A Mitutoyo
811-330 Shore A urometer was used to quantitatively measure the hardness of the printed
samples. A BestScope BS-5062TTR Trinocular Polariz-ing Microscope (OM) was used to
observe and analyze the samples at a microscopic level using visible light and a ZEISS
FE-SEM (Sigma 300 VP Zeiss Gemini) scanning electron microscope (SEM) was used to
analyze the surface morphology of the samples at a very high resolution.
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printer process.

Table 4. Approximate value found from the SCODE.

SCODE File 10.SCODE

Material Flexa Black (More Flexible)

Layer height 0.20 mm

Laser power multiplier 1

Surface temperature offset 0 ◦C

Total model layer count 68

Model volume 4.44 cm3

Estimated powder needed in feed bed (height) 3.6 cm

Estimated powder needed in feed bed (volume) 1.46 L

Total print height 1.90 cm

Refresh powder needed after print (volume) 0.00 L

Estimated total print time 1 h 56 min

Estimated warm-up time 0 h 24 min

Estimated active print time 0 h 55 min

Estimated cool-down time 0 h 35 min



J. Manuf. Mater. Process. 2023, 7, 144 10 of 26

3.2. Experimental Design

Factors and Responses: The sinterit lisa pro 3D printer has five input parameters, with
three being fixed (Table 5) and two being variable (Table 6). In this study, those two variable
factors (input parameters) were selected to determine the value of four responses (output
value). The goal of the study is to find the values of the two factors that result in the optimal
values of the four responses. The value of the laser power ratio and layer thickness were
set at three and four levels, respectively (Table 6). A full factorial design was performed to
find out the desired experimental run for further investigation, as shown in Figure 4.

Table 5. Input parameters that are fixed and their values.

SI. No. Input Parameters Fixed Value

1 Grain size 0.065 mm

2 Scan spacing 0.075 mm

3 Scan rate 80 mm/h

Table 6. Input parameters that are variable and their levels.

SI. No. Input Parameters Level 1 Level 2 Level 3 Level 4

1 Laser power ratio, lpr 1 1.5 2 -

2 Layer thickness, d 0.075 mm 0.125 mm 0.150 mm 0.200 mm
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Figure 4. A schematic diagram illustrating the design of experiment (DOE) conducted for this
research work: (a) high and low levels of the parameters and (b) the parameters used to print
12 samples using sinterit lisa pro 3D printer.

3.3. Response Surface Methodology for Optimization

Design of experiment (DOE) is a widely used methodology for investigating the rela-
tionship between input variables and output responses in various fields, including additive
manufacturing’s process parameter optimization. The objective of DOE is to systematically
identify an optimal set of input variables with minimal trials, effort, and time. One of
the most widely used DOE methods is response surface methodology (RSM). RSM is an
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empirical model development approach that utilizes mathematical and statistical analysis,
specifically regression analysis, to optimize an output response, which is influenced by
several input parameters [35].

In this study, a full factorial design (FFD) is performed before RSM to understand the
main effects and interactions of the input variables on the output response. This approach
can simplify the RSM model and make the optimization process more efficient. The use
of RSM in DOE allows for a systematic and efficient optimization of the output response
while considering the impact of multiple input variables.

The RSM models use mathematical techniques to demonstrate how two or more inde-
pendent factors control the output of a system or process and identify the best combination
of these factors. By using ANOVA, the significant factors that have an impact on the output
are distinguished from those that do not [36]. Figure 5 shows the flowchart of the RSM
methodology that was used in this work.
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3.4. Response Optimizer

Response optimizer is a powerful tool for determining the optimal input variable
settings that result in the best output response. It is widely used in the field of experimental
design and optimization and is commonly available in software such as Minitab. In order
to use response optimizer, a mathematical model that describes the relationship between
the input variables and the output response must first be developed using techniques
such as regression analysis. Once this model has been established, response optimizer
can be used to find the input variable settings that result in the best output response
using various optimization algorithms such as Nelder–Mead Simplex, Powell’s method,
Hooke–Jeeves, Box–Behnken, Central composite design, and genetic algorithm. The use of
response optimizer can significantly reduce the number of experiments needed to identify
the optimal input variable settings and can also help to identify regions of input variable
space that are not optimal, enabling researchers to focus on the most promising regions [37].
In this research, Central Composite Design (CCD) was used to find the optimal settings
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of input variables in order to maximize the output response. For two factors and four
responses, four second-order polynomial equations were constructed.

y1 = β0 + β1x1 + β2x2 + β11 (x 1)
2 + β22 (x 2)

2 + β12x1x2 + ε (1)

y2 = β3 + β4x1 + β5x2 + β33 (x 1)
2 + β44 (x 2)

2 + β35x1x2 + ε (2)

y3 = β6 + β7x1 + β8x2 + β66 (x 1)
2 + β77 (x 2)

2 + β78x1x2 + ε (3)

y4 = β9 + β10x1 + β11x2 + β99 (x 1)
2 + β1010 (x 2)

2 + β1111x1x2 + ε (4)

where input factors are represented by the variables “x1” and “x2” and the four re-
sponses are represented by the variables “y1”, “y2”, “y3”, and “y4”; β0, β1, β2, β3, β4,
β5, β6, β7, β8, β9, β10,β11, β22, β33, β44, β55, β66, β77, β88, β99, β1010, β1111 are the coefficients
of the equation and ε is the residual term.

This equation includes the main effects of the input factors x1 and x2, as well as the
interaction between the two factors, represented by the term x1 × x2. It also includes the
quadratic terms of the input factors, represented by the terms x1

2 and x2
2, which account

for the curvature of the response surface.

4. Results and Discussion
4.1. Experimental Results Obtained for the Designed Dataset

For analyzing the result of four responses against the factors, we imported all the
data into Minitab where general full factorial design was conducted to make the data
more accessible for analyzing. The design was performed by inputting the factor values
of 12 samples with times two replications of similar design. By setting these parameters
and following the previous instructions, we obtained the data shown in the Table 7 with
24 unique sets of values.

Table 7. Experimental results obtained for different deposition parameters.

Serial Layer Thickness
(mm)

Laser Power
Ratio Time (min) Hardness

(Shore A)
Modulus of

Elasticity (MPa)
Density
(g/cm3)

1 0.075 1 193 97.5 2.15 1.1504

2 0.075 1.5 195 97 2.09 1.1284

3 0.075 2 206 96 2.03 1.1064

4 0.125 1 138 97 2.09 1.1113

5 0.125 1.5 152 95.5 1.97 1.109

6 0.125 2 170 94 1.86 1.0966

7 0.15 1 128 100 2.32 1.0423

8 0.15 1.5 144 95 2.02 1.0645

9 0.15 2 162 91 1.78 1.0866

10 0.2 1 116 93.5 1.94 1.0244

11 0.2 1.5 134 95.5 1.97 1.0087

12 0.2 2 151 97 2.09 0.993

13 0.075 1 190 97 2.09 1.1645

14 0.075 1.5 197 95.5 1.97 1.1367

15 0.075 2 202 94 1.86 1.1089

16 0.125 1 132 97.5 2.15 1.1109

17 0.125 1.5 145 95 2.02 1.1041

18 0.125 2 162 93.5 1.94 1.0971
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Table 7. Cont.

Serial Layer Thickness
(mm)

Laser Power
Ratio Time (min) Hardness

(Shore A)
Modulus of

Elasticity (MPa)
Density
(g/cm3)

19 0.15 1 122 95 2.02 1.0511

20 0.15 1.5 140 92.5 1.91 1.0655

21 0.15 2 155 90 1.76 1.0798

22 0.2 1 110 94.5 1.88 1.0219

23 0.2 1.5 128 94 1.86 1.0057

24 0.2 2 144 93 1.83 0.9869

The results for the four different responses were obtained through the follow-
ing procedures:

Time: Printing time was measured manually using a stopwatch. It is basically the total
time for heating the print bed, the deposition time of the powder, and then cooling the
print bed (the goal is to minimize this response).

Hardness: The hardness of the printed sample is measured through the Shore-A
hardness tester machine by applying an initial and major force to create an indentation
on the material’s surface and then recording the depth of the indentation to obtain the
numerical Shore-A hardness value (the goal is to maximize this response).

Modulus of Elasticity: The modulus of elasticity (in MPa) was estimated using the
Shore-A hardness value obtained from the Shore-A hardness tester using the following
equation [38]:

Modulus of Elasticity (MPa) = e(((Shore A Hardness) ∗ 0.0235)−0.6403) (5)

This equation utilizes the hardness value from the Shore-A durometer to calculate an
estimation of the material’s modulus of elasticity, providing an indirect measure of its
stiffness and resistance to deformation under stress (the goal is to maximize this response).

Density: Density was measured by taking the mass and volume of the samples. It was
calculated using the following equation:

Density (ρ) =
Mass (m)

Volume (V)
(6)

In our research, we measured the mass of our specimen in grams (g) and its volume in
cubic centimeters (cm3) (the goal is to maximize this response).

4.2. Response Surface Regression—Time vs. Layer Thickness and Laser Power Ratio

To investigate the influence of time in the RSM method we chose time as the response
against the two process parameters. Here, from the analysis of variance we found the
significant factors and interactions against the response, and this is shown in Table 8. We
also observed the changes in the response against the various values of two factors. Our
goal was to minimize the time, which is why we analyzed the 3D surface plot and contour
plot to find out the value of two factors against the minimal amount of time.

According to the results of the ANOVA, the significance of the components’ layer
thickness and laser power ratio is indicated by their p values being less than 0.05. The
layer thickness and laser power ratio interaction has a p value of 0.03, which denotes the
importance of the interaction. The model’s p value is less than 0.05, indicating that it is
significant, and the interaction between lack-of-fit and the laser power ratio has a p value
bigger than 0.05, indicating insignificance. The R2 value is 98.07%, which is larger than
80% and indicates that the factors’ model response is good.
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Table 8. Analysis of variance: time versus layer thickness and laser power ratio.

Source DF Adj SS Adj MS F-Value p-Value

Model 5 18,741.3 3748.3 183.30 <0.0001
Linear 2 16,551.3 8275.7 404.70 <0.0001
Layer Thickness 1 13,443.3 13,443.3 657.41 <0.0001
Laser Power Ratio 1 3108.1 3108.1 151.99 <0.0001
Square 2 1946.5 973.3 47.59 <0.0001
Layer Thickness × Layer Thickness 1 1944.0 1944.0 95.07 <0.0001
Laser Power × Laser Power Ratio 1 2.5 2.5 0.12 0.7300
2-Way Interaction 1 243.4 243.4 11.90 0.0030
Layer Thickness × Laser Power Ratio 1 243.4 243.4 11.90 0.0030
Error 18 368.1 20.4
Lack-of-Fit 6 168.1 28.0 1.68 0.2090
Pure Error 12 200.0 16.7
Total 23 19,109.3

Model Summary S R-sq R-sq (adj) R-sq (pred)
4.52204 98.07% 97.54% 96.61%

A regression equation, Equation (7), was formulated to find the influence of process
parameters on the response. The equation indicates that layer thickness has the most
significant impact on the time to manufacture the product as expected. This equation can
be further used to predict the response and it was found that the predicted and the actual
experimental value are quite analogous. The mean error of response (time) is less than 5%,
which indicates the model adequacy and that the experiment was conducted in the right
way along with representing the lower uncertainty in the input parameters.

Time = 307.7 − 2105 Layer Thickness − 4.2 Laser Power Ratio + 4800 Layer Thickness × Layer Thickness +
2.75 Laser Power Ratio × Laser Power Ratio + 173.1 Layer Thickness × Laser Power Ratio

(7)

According to the 3D surface plot in Figure 6a, we should use a layer thickness of about
0.20 and a laser power ratio of about 1.0 to achieve a reduced time of around 100 min.
The goal is to reduce time; hence, the light green region of the contour plot in Figure 6b is
preferred. Here, the minimum operating time ranges from 0.16 mm to 0.20 mm for layer
thickness and from 1 to 1.2 for the laser power ratio. In general, the graph shows that
printing times shorten as laser power ratios fall, while layer thicknesses rise.
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4.3. Response Surface Regression—Hardness vs. Layer Thickness and Laser Power Ratio

The response to the two process parameters for this RSM approach is hardness. The
relevant factors and interactions against the response are discovered here via the analysis
of variance. As the values of the two components varied, we also saw changes in the
reaction. In order to identify the value of two factors in relation to the maximum amount
of hardness, we examined the 3D surface plot and contour plot. Our objective was to
maximize the hardness.

From the ANOVA shown in Table 9, we found that the factor laser power ratio has a p
value less than 0.05, which indicates the significance of this factor. The model has p value
less than 0.05, which indicates that the model is significant. The lack-of-fit has a p value
greater than 0.05, which indicates insignificance. The R2 value is 44.55%, which indicates
the 44.55% fit of the general model. There are several data points that are the outliers of the
dataset, and hence the R2 value is quite lower than the previous case.

Table 9. Analysis of variance: hardness versus layer thickness and laser power ratio.

Source DF Adj SS Adj MS F-Value p Value

Model 5 50.889 10.1778 2.89 0.0440
Linear 2 44.747 22.3736 6.36 0.0082
Layer Thickness 1 10.232 10.2316 2.91 0.1052
Laser Power Ratio 1 34.516 34.5156 9.81 0.0061
Square 2 3.016 1.5078 0.43 0.6584
Layer Thickness × Layer Thickness 1 3.010 3.0104 0.86 0.3673
Laser Power × Laser Power Ratio 1 0.005 0.0052 0.004 0.9701
2-Way Interaction 1 3.126 3.1262 0.89 0.3582
Layer Thickness × Laser Power 1 3.126 3.1262 0.89 0.3582
Error 18 63.351 3.5195
Lack-of-Fit 6 33.976 5.6626 2.31 0.1021
Pure Error 12 29.375 2.4479
Total 23 114.240

Model Summary S R-sq R-sq (adj) R-sq (pred)
1.87603 44.55% 29.14% 0.002%

Here, in similar fashion a regression equation, Equation (8), was formed to predict
the response (hardness), and the equation indicates that the layer thickness dominates
most other process parameters as the coefficient of layer thickness is larger than that of any
other parameters.

Hardness = 113.91 − 95.9 Layer Thickness − 6.0 Laser Power Ratio + 189 Layer Thickness × Layer
Thickness + 0.12 Laser Power Ratio × Laser Power Ratio + 19.6 Layer Thickness × Laser Power Ratio

(8)

From the 3D surface plot in Figure 7a, we found that, for obtaining higher hardness,
which is 100 Shore-A (SA), we should take a layer thickness close to 0.10 mm or lower
than 0.10 mm and a laser power ratio close to 1.0. In the contour plot in Figure 7b, the
deep green region is most desired as the goal is to maximize hardness. Here, the highest
hardness needed after operation has a layer thickness value between 0.06 mm and 0.09 mm,
and for the laser power ratio it is in between 1 and 1.1. The influence of process parameters
on the response can be concluded from Figure 7a,b, where it is shown that the hardness of
the product increases with decreasing both layer thickness and the laser power ratio.
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4.4. Response Surface Regression—Modulus of Elasticity vs. Layer Thickness and Laser Power

The modulus of elasticity was selected as the response against the two process param-
eters for this RSM analysis. Here, from the analysis of variance we found the significant
factors and interactions against the response. We also observed the changes in the response
against the various values of two factors. Our goal was to maximize the modulus of
elasticity, which is why we analyzed the 3D surface plot and contour plot in a way to find
out the value of two factors against the maximal amount of the modulus of elasticity.

From the ANOVA shown in Table 10, we found that the factor laser power ratio has
a p value less than 0.05, which indicates the significance of this factor. The model has a p
value less than 0.05, which indicates that the model is significant. Lack-of-fit has a p value
greater than 0.05, which indicates insignificance. The R2 value is 44.45%, which indicates
the 44.45% fit of general model. Likewise, in the previous case the R2 value for this dataset
is relatively low, as several data points are outliers.

Table 10. Analysis of variance: modulus of elasticity versus layer thickness and laser power ratio.

Source DF Adj SS Adj MS F-Value p Value

Model 5 0.85163 0.170327 2.88 0.0441
Linear 2 0.75314 0.376572 6.37 0.0082
Layer Thickness 1 0.17174 0.171738 2.90 0.1063
Laser Power Ratio 1 0.58141 0.581406 9.83 0.0061
Square 2 0.04259 0.021293 0.36 0.7024
Layer Thickness × Layer Thickness 1 0.04167 0.041667 0.70 0.4121
Laser Power ratio × Laser Power Ratio 1 0.00092 0.000919 0.02 0.9023
2-Way Interaction 1 0.05590 0.055904 0.95 0.3442
Layer Thickness × Laser Power ratio 1 0.05590 0.055904 0.95 0.3442
Error 18 1.06422 0.059123
Lack-of-Fit 6 0.54682 0.091136 2.11 0.1271
Pure Error 12 0.51740 0.043117
Total 23 1.91585

Model Summary S R-sq R-sq (adj) R-sq (pred)
0.243152 44.45% 29.02% 0.001%

To predict the response (modulus of elasticity), an empirical equation, Equation (9),
was formulated by a regression analysis, and the equation depicts that layer thickness most
influences the output response.

Modulus of Elasticity = 7.39 − 11.92 Layer Thickness − 0.90 Laser Power Ratio + 22.2 Layer Thickness × Layer
Thickness + 0.052 Laser Power Ratio × Laser Power Ratio + 2.62 Layer Thickness × Laser Power Ratio

(9)
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From the 3D surface plot in Figure 8a we found that to obtain a higher modulus of
elasticity, which is 2.3 MPa, we should take a layer thickness close to 0.10 mm or lower than
0.10 mm and a laser power ratio close to 1.0. From the contour plot in Figure 8b, the deep
green region is most desired, as the goal is to maximize modulus of elasticity. Here, the
highest modulus of elasticity needed after operation has a layer thickness value in between
0.06 mm and 0.09 mm. For the laser power ratio it is in between 1 and 1.1, and the deep
blue region indicates the lower modulus of elasticity, which is undesirable. The graph in
Figure 8a, and Figure 8b shows that the modulus of elasticity is inversely proportional to
layer thickness and the laser power ratio.
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Figure 8. (a) Three-dimensional surface plot of RSM for modulus of elasticity versus layer thickness
and laser power ratio. (b) Contour plot of RSM for modulus of elasticity versus layer thickness and
laser power ratio.

4.5. Response Surface Regression—Density vs. Layer Thickness and Laser Power

Density was selected as the response against the two factors to analyze the impact
of process parameters on the response. Here, from the analysis of variance, we found the
significant factors and interactions against the response. We also observed the changes
in the response against the various values of two factors. Our goal was to maximize the
density, which is why we analyzed the 3D surface plot and contour plot to find out the
value of two factors against the maximal amount of density.

From the ANOVA shown in Table 11, we found that the factor layer thickness has a
p value less than 0.05, which indicates the significance of this factor. The model has a p
value less than 0.05, which indicates that the model is significant. Lack-of-fit has a p value
greater than 0.05, which indicates insignificance. The R2 value is 92.00%, which indicates
the 92.00% fit of the general model.

To predict this particular response (density), a regression equation, Equation (10),
was formulated, which can be further used for local optimization. If this equation along
with the equations obtained in the previous sections are considered separately, individual
responses’ optimal values can be obtained, but if these equations are considered all together
the global optimized value of these four responses can be obtained. Equation (10) shows
that layer thickness, similar to what was previously shown, has dominance in the response
compared to other process parameters.

Density = 1.2086 − 0.220 Layer Thickness − 0.0337 Laser Power Ratio − 4.06 Layer Thickness × Layer
Thickness − 0.0033 Laser Power Ratio × Laser Power Ratio + 0.206 Layer Thickness × Laser Power Ratio

(10)

From the 3D surface plot in Figure 9a, we found that for obtaining higher density,
which is 1.15 (g/cm3), we should take a layer thickness close to 0.10 mm or lower than
0.10 mm and a laser power ratio close to 1.0. In the contour plot in Figure 9b, the deep
green region is most desired, as the goal is to maximize density. Here, the highest density
needed after operation has a layer thickness value in between 0.06 mm and 0.09 mm, and
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for the laser power ratio it is in between 1 and 1.3. The deep blue region indicates the lower
density, which is undesirable. The general relationship outlined from Figure 9a,b is that if
layer thickness and the laser power ratio decrease, density will increase, as expected.

Table 11. Analysis of variance: density versus layer thickness and laser power ratio.

Source DF Adj SS Adj MS F-Value p Value

Model 5 0.054272 0.010854 41.41 0.0001
Linear 2 0.052531 0.026265 100.19 0.0001
Layer Thickness 1 0.051608 0.051608 196.87 0.0001
Laser Power Ratio 1 0.000923 0.000923 3.52 0.0772
Square 2 0.001397 0.000699 2.67 0.0973
Layer Thickness × Layer Thickness 1 0.001394 0.001394 5.32 0.0331
Laser Power ratio × Laser Power Ratio 1 0.000004 0.000004 0.01 0.9084
2-Way Interaction 1 0.000344 0.000344 1.31 0.2672
Layer Thickness × Laser Power ratio 1 0.000344 0.000344 1.31 0.2672
Error 18 0.004719 0.000262
Lack-of-Fit 6 0.004481 0.000747 37.69 0.0745
Pure Error 12 0.000238 0.000020
Total 23 0.058991

Model Summary S R-sq R-sq (adj) R-sq (pred)
0.0161911 92.00% 89.78% 85.51%
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4.6. Response Optimizer—Time, Hardness, Modulus of Elasticity, and Density vs. Layer Thickness
and Laser Power Ratio

The response optimizer in Minitab is a tool that allows users to explore how various
input variable settings affect the predicted output responses for a previously developed
mathematical model. It utilizes optimization algorithms to determine the optimal input
variable settings that result in the best output response. In this study, the Central Composite
Design (CCD) method was utilized as the optimization algorithm to find the optimal input
variable settings that result in the best output response.

The optimal values for factors were obtained by optimizing responses in Minitab,
and the predictions of responses were optimized if the optimal values of factors are used.
The optimization goals of the responses were set based on the desired characteristics of
the product such that density, modulus of elasticity, and hardness would be maximum
while time to manufacture is required to be minimum. For maximizing the responses’
lower bound the target value was selected for that parameter, and for minimizing the
scheme upper bound the target value was selected (Table 12). The lower and upper bounds
were obtained from the experimental runs. The target values of the parameters were also



J. Manuf. Mater. Process. 2023, 7, 144 19 of 26

selected from the experimental dataset, as this study focused on the finding best possible
combination of responses for a particular (optimal) process parameter presently employed
in experimentation.

Table 12. Stetted goals for the responses.

Response Goal Lower Target Upper Weight Importance

Density Maximum 0.9869 1.165 1 1

Modulus of Elasticity Maximum 1.76 2.32 1 1

Hardness Maximum 90 100 1 1

Time Minimum 110 206 1 1

From Table 13, it is obvious that the optimal value of layer thickness is 0.109 mm ≈ 0.11 mm
and the laser power ratio is 1.00. If we use these optimal values for these two factors rather than
the default settings of the SLS 3D printer, we can obtain optimal density, modulus of elasticity,
hardness, and time.

Table 13. Optimal values obtained for the factors and predicted values of responses.

Layer Thickness
(mm)

Laser Power
Ratio

Density Fit
(g/cm3)

Elasticity Fit
(MPa)

Hardness Fit
(HA)

Time Fit
(min)

Composite
Desirability

0.109 1.00 1.122 2.09 96.96 152.63 0.67

From Figure 10, we can see the red line and blue line, which represent the optimal
settings of the input process factors and responses, respectively, for the current level of
the factor. As the graph indicates, the individual desirability values for density, modulus
of elasticity, hardness, and time are 0.75917, 0.67375, 0.69590, and 0.55598, respectively.
The corresponding optimal values for density, modulus of elasticity, hardness, and time
are 1.1217, 2.0925 MPa, 96.9590 Shore-A (SA), and 152.6259 g/cm3, respectively, for a
process parameter layer thickness of 0.109091 and a laser power ratio of 1. Here, the
highest individual desirability (d) was obtained for density (0.75917) and the lowest for
time (0.55598). The overall optimal composite desirability (D) for the full model is 0.6670,
which represents that this optimal value can obtain 66.70% of its goal by minimizing time
and maximizing density, hardness, and modulus of elasticity.
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Figure 10. Response optimizer plot of time, hardness, modulus of elasticity, and density versus layer
thickness and laser power ratio.
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4.7. Model Validation

Testing the validity of the optimal set of expected responses obtained from the math-
ematical model with a genuine experimental run, or the confirmation test of optimized
parameters, was conducted. Here, the actual responses’ deviation is contrasted with the pre-
dicted responses for the optimal process parameters, i.e., a layer thickness of 0.11 mm and a
laser power ratio of 1.00. The optimal process parameters obtained from the mathematical
model are 0.11 mm and 1.0 for layer thickness and the laser power ratio, respectively, and
the corresponding optimal responses for density, modulus of elasticity, hardness, and time
to manufacture are 1.122 g/cm3, 2.09 MPa, 96.96 Shore-A (SA), and 152.626 min, respec-
tively. On the other hand, the responses obtained from the experimental run for the same
process parameters as in the mathematical model are 1.153 g/cm3, 2.17 MPa, 100 Shore-A
(SA), and 159.837 min for density, modulus of elasticity, hardness, and time to manufacture,
respectively. The error in the predicted value of the response compared to the actual value
was calculated and is shown in Table 14. The table depicts that errors of all responses are
within 5%, which is marginal. As the predicted responses and the actual experimental
outputs are quite similar, the mathematical model in this study is fair enough to predict the
responses, i.e., density, modulus of elasticity, hardness, and time to manufacture.

Table 14. Comparison of predicted and experimental responses.

Optimal Printing
Parameters

Optimal Responses
Absolute Error (%)

Experimental Value Predicted Value

Layer
Thickness

(mm)

Laser
Power
Ratio

Density
(g/cm3)

Elasticity
(MPa)

Hardness
(SA)

Time
(min)

Density
(g/cm3)

Elasticity
(MPa)

Hardness
(SA)

Time
(min)

Density
(g/cm3)

Elasticity
(MPa)

Hardness
(SA)

Time
(min)

0.11 1.00 1.153 2.17 100 159.84 1.122 2.09 96.96 152.63 2.69 3.69 3.04 4.51

4.8. Microscopic Analysis of the Samples

The goal of our research was to balance in-process parameters with post-process
parameters in order to meet the requirements for the good overall quality of components
and better efficiency with minimum time and effort. To be more precise with the data,
we selected eight samples within the range of the high and low values of the factors
that we obtained from the response optimizer plot. Then, we took pictures of these eight
samples with an optical microscope to see the porosity level. The optimal value for the layer
thickness (0.11 mm) is in between the high value (0.200 mm) and the low value (0.075 mm)
of it. This is why we selected all four levels for the layer thickness. For the laser power ratio,
the optimal value (1.00) is the low value of it. However, we chose two levels for the laser
power ratio to give the analysis more tolerance. Table 15 summarizes the experimental
dataset obtained from the various characterization results.

Table 15. Experimental data for eight selected samples.

Sample No. Layer Thickness
(mm)

Laser Power
Ratio

Time
(Min)

Hardness
(SA)

Modulus of Elasticity
(MPa)

Density
(gm/cm3)

1 0.075 1 193 97.5 2.15 1.1504

5 0.075 2 206 96 2.03 1.1064

2 0.125 1 138 97 2.09 1.1113

6 0.125 2 170 94 1.86 1.0966

3 0.15 1 128 100 2.32 1.0423

7 0.15 2 162 91 1.78 1.0866

4 0.2 1 116 93.5 1.94 1.0244

8 0.2 2 151 97 2.09 0.993
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The optical microscope images of the samples were obtained at 5× optical zoom.
Although the images are not clear due to the samples being black, we can clearly observe
the distribution of bright and dark regions in the samples. The bright regions correspond to
the free spaces, whereas the dark regions correspond to the particle phase. From the optical
microscope image shown in Figure 11, it is obvious that the as-deposited layers are almost
continuous at the macroscale. The effect of laser power can be realized by comparing
the agglomerated particle size. At a higher laser power ratio (Figure 11b,d), the sintered
particle size is bigger and the surface coverage is higher. The density values for samples 1
and 5 are quite impressive, and prove that they are not very porous objects. This can be
attributed to the slow deposition of the TPU block copolymer. It can be said that uniform
or well-sorted grain (approximately all one size) materials have higher porosities than
similarly sized poorly sorted materials (where smaller particles fill the gaps between larger
particles). However, the porosity of sample 5 is much higher than sample 1, because the
white area in sample 5 is quite well sorted, whereas in sample 1 the white area is poorly
sorted. Again, sample 5 has higher surface roughness than sample 1. Figure 11c,d show
the microscopic views of sample 2 and sample 6 with a layer thickness of 0.125 mm, and it
is observed that the grain sizes are bigger for sample 6 but non-uniform or poorly sorted.
It can be said that sample 6 has a higher porosity than sample 2, which can be realized
from the higher density of sample 2 compared to sample 6. The porosity of a TPU material
depends on many factors, including the TPU type and how the grains of the TPU are
arranged. For example, here Figure 11c has a very low porosity since the only pore spaces
are the tiny, thin cracks between the individual grains. On the other hand, sample 6 has
higher surface roughness than sample 2 because of the poorly sorted grains. Thus, sample 2
shows excellent quality and lower time consumption (138 min) during formation.
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Figure 11. Optical microscope images of (a) sample 1, (b) sample 5, (c) sample 2, and (d) sample 6
obtained at 5× optical zoom show surface morphology. Samples 1 and 5 were fabricated with
0.075 mm layer thickness at the laser power ratios of 1 and 2, respectively. Samples 2 and 6 were
fabricated with layer thickness of 0.125 at the laser power ratios of 1 and 2, respectively.
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The microscopic views of sample 3 and sample 7 are shown in Figure 12a,b with a
layer thickness of 0.150 mm. According to the surface morphology of sample 7, the grain
sizes are bigger but non-uniform or poorly sorted. In this case, sample 7 has a higher
porosity than sample 3. However, the density of sample 7 is larger than sample 3, and
this can be attributed to the random orientation of the larger grain boundaries, which are
also non-uniform. Hence, the roughness for sample 7 is increased compared to sample 3.
On the other hand, sample 3 shows excellent quality with all the relevant parameters
and lower time consumption (128 min) compared to sample 7 (162 min). Sample 4 and
sample 8 fabricated with a layer thickness of 0.20 mm show that the grain sizes are bigger
and non-uniform for sample 8 (Figure 12d). Due to the presence of a large number of
white regions, sample 8 has a higher porosity than sample 4. The density of sample 4 is
1.024 g/cm3, which is significantly higher that sample 8 (0.993 g/cm3). Also, the roughness
of sample 8 is higher than sample 4.
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Figure 12. Optical microscope images of (a) sample 3, (b) sample 7, (c) sample 4, and (d) sample 8
obtained at 5× optical zoom show surface morphology. Samples 3 and 7 are fabricated with 0.15 mm
layer thickness at the laser power ratios of 1 and 2, respectively. Samples 4 and 8 are fabricated with
0.2 mm layer thickness at the laser power ratios of 1 and 2, respectively.

4.9. Scanning Electron Microscope (SEM) Analysis of the Samples

The scanning electron microscope analysis of the as-synthesized samples depicts the
surface morphology, porosity or the presence of voids, and their size distribution. Figure 13
shows the EDX spectra of the TPU powder for chemical content characterization. The
sample contains C (56%), N (24.57%), and O (20.43%), along with H. The SEM images
of surfaces (Figure 14) show that the top of the surface is covered by the discontinuous
particles before forming a continuous layer. These particles are formed from the nanometer-
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sized particles (160 ± 45 nm) shown in Figure 14f. Based on the experimental data shown
in Table 15, the density of the samples varies with the variation in the laser power ratio and
the deposition layer thickness. At a smaller deposition layer thickness, a more uniform and
densely packed structure can be obtained. As shown in Figure 14a, the size of the particles
for samples 1 lies in the range of 61 ± 30 µm, and the density is higher. For sample 5
(Figure 14b), fabricated with a laser power ratio of 2, the size of the particle lies in the range
of 62 ± 19 µm but the void is higher compared to sample 1 (Figure 14a). Due to the time
dependency of the sintering process of the powder material, a void was formed.
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For sample 3 (Figure 14c) and sample 4 (Figure 14d), the size of the particle lies in
the range of 70 ± 20 µm and 71 ± 25 µm, respectively. These particles are bigger in size
compared to sample 1, and this can be attributed to the higher deposition layer thickness
(0.2 mm). However, the porosity of the samples can be expressed only in qualitative terms
due to the lack of particle differentiation in the layers. Below the undeposited layer of the
sample, there exist significant amounts of voids. Figure 14e shows the presence of voids
inside sample 1 that can affect the quality of the 3D-printed parts.

Sample 1 shows higher density and contains fewer voids or less porosity than any
other sample. However, the presence of discontinuous sintered particle phases is the real
threat for a fully dense deposition with good surface roughness, and these particles are also
responsible for void formation as well as porosity. Therefore, for a good sinteration and an
optimum level of surface roughness with less porosity or void formation, the grain size of
the powder, layer thickness, and laser power ratio should be selected with an optimum
combination. In this case, according to Table 15, sample 1 shows the optimum combination.

5. Conclusions

This study aimed to find the best process parameters in the SLS process using TPU
flexa black powder to produce high-quality SLS parts. It focuses on two key printing
process parameters, layer thickness and the laser power ratio, evaluating their impact on
four output responses: density, hardness, modulus of elasticity, and production time. RSM
was employed to assess the primary impacts and correlations of the input factors on the
output responses and mathematical models were developed using RSM regression analysis
based on experimental data. The study comprehensively illustrates the influence of process
parameters on the output responses through 3D surface plots and contour plots.

The graphs show that printing time decreases with a lower laser power ratio and
higher layer thickness, while hardness, modulus of elasticity, and density increase with
decreasing both layer thickness and the laser power ratio. To achieve optimal responses,
the laser power ratio should be set to the minimum value, and a trade-off is necessary
in choosing the layer thickness due to its opposing effects on time and hardness. The
response optimizer determined the optimal values of layer thickness (0.11) and the laser
power ratio (1.0), resulting in desirable printing time (152.63 min), hardness (96.96 SA),
modulus of elasticity (2.09 MPa), and density (1.22 g/cm3). To validate these findings, an
experimental run was conducted, and the test run showed that there was little deviation of
the predicted value from the actual value. The errors for response time, hardness, modulus
of elasticity, and density are 4.51%, 3.04%, 3.69%, and 2.69%, respectively, and the error
below 5% indicates the authenticity of the prediction model.

To further corroborate the result of RSM, we selected eight samples to analyze under
the lenses of an optical microscope. Here, we found that a 0.125 mm layer thickness and
1.00 laser power ratio were responsible for the very low porosity and thin cracks between
the individual grains. A layer thickness of 0.125 mm and laser power ratio of 1.00 are close
to our optimal response value. It is proved that if we set the values of layer thickness and
laser power ratio as 0.11 mm and 1.00, respectively, we can gain the most optimal and
efficient response value for the printed sample.

The study’s strengths lie in accurate measurements of the modulus of elasticity and
hardness using high-tech automatic machines. Time and density were directly measured
and calculated, ensuring precise output responses. Only two parameters were analyzed,
indicating the importance of keeping the laser power ratio low and optimizing the layer
thickness for optimal results. The mathematical model provided the best outcome for the
input parameters influencing the antagonist responses. The study visualized the effects of
input parameters on responses comprehensively, making it valuable for researchers and
industrial practitioners, regardless of the printing powder used, with potential applicability
to other machines and processes.

However, the study has limitations, including only two replicates for measuring re-
sponses due to technical and resource constraints. The analysis of optimum layer thickness
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was conducted within a narrow range; there are potential benefits of a wider range and
narrower step sizes for increased accuracy. This study only considered two input process
parameters due to printer limitations, and exploring more parameters would enhance
comprehensiveness. Future work could involve machine learning algorithms to better
predict responses using additional experimental data for improved accuracy.
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