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Abstract: In this work, a semi-continuous functionally graded material (FGM) between an austenitic
and a super duplex stainless steel was obtained. These materials are of great interest for the chemical,
offshore, and oil and gas sectors since the austenitic stainless steel type 316L is common (and not
so expensive) and super duplex stainless steels have better mechanical and corrosion resistance
but are more expensive and complex in their microstructural phases formation and the obtention
of the balance between their main phases. Using directed energy deposition, it was possible to
efficiently combine two powders of different chemical compositions by automated mixing prior to
their delivery into the nozzle, coaxially to the laser beam for melting. A dense material via additive
manufacturing was obtained, with minimum defectology and with a semi-continuous and controlled
chemical compositional gradient in the manufactured part. The evolution of ferrite formation has
been verified and the phase fraction measured. The resulting microstructure, austenite/ferrite ratio,
and hardness variations were evaluated, starting from 100% austenitic stainless-steel composition
and with variants of 5% in wt.% until achieving 100% of super duplex steel at the end of the part.
Finally, the correlation between the increase in hardness of the FGM with the increase in the ferrite
phase area fraction was verified.

Keywords: functionally graded material; metal additive manufacturing; directed energy deposition;
laser metal deposition; austenitic stainless steel; super duplex stainless steel

1. Introduction

Obtaining functionally graded materials (FGMs) has been challenging so far; one of
the pioneers was Soodi et al. [1]. However, with the emergence and industrialization of
metal additive manufacturing (AM) processes such as directed energy deposition (DED)
technologies, it is possible to fabricate complex parts with functional gradients [2]. A major
advantage of DED technology is its ability to produce multi-material components with
key importance in solving long-standing problems in dissimilar metal welding and alloy
development. Some examples of multi-material DED parts are rocket nozzle prototypes
(Nimonic75 + IN718 in outer and Al-bronze for cooling channel and inner sections) [3,4]
and slide bearings for shafts (steel and bronze in one part) [5]. Since some laser-based DED
processes rely on the use of blown powder as raw material (DED-LB/p, also known as laser
metal deposition, LMD), the ability to mix various powders (in a controlled manner) in situ
(i.e., during powder feeding and/or delivery) easily enables the production of complex
functional gradients, multi-material layers, and even composites that can include many
classes or types of materials [6], including the stainless-steel (SS) alloys. This opens a new
horizon for alloy development and innovative industrial applications. Furthermore, in the
research field on FGMs obtained by DED powder-blowing processes, the powder delivery
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flow rate and its stability after the mixture of two chemical compositions is a key parameter
to control the variability of these processes [7].

The automated industrial DED-LB/p process for multimaterial component manufac-
turing is associated with a variety of challenges. These include the material-dependent
powder conveying behavior, the dynamics of the powder-conveying system, and design
and manufacturing strategy integration [8]. Multiple studies and scientific publications
dealing the study of FGMs obtained by DED using austenitic stainless steel [9] as a part
of the combination [10,11] have been recently presented; however, the use of super du-
plex (SD) stainless steels in powder format as a feedstock has not been reported in FGMs
obtained by DED-LB/p (aka LMD). Some studies have presented metal AM DED using
wire as a feedstock and the processing of this type of material [12–15], evidencing its good
processability via laser; however, it was difficult to control the as-built microstructure [14],
oxide inclusions [16], and austenite/ferrite phase balance [17]. The four most-studied
duplex alloy types in DED are (i) the so-called “lean duplex” steel type UNS S32101
(DIN 1.4162) [17], (ii) the standard duplex steel type UNS S32205 (DIN 1.4462 / Sandvik
SAF2205) [12,14,15,17–19], (iii) the duplex stainless steel type 2209 in wire format (EN ISO
14343-A) [12,14,15] and (iv) recently, a third super duplex steel type UNS S32750 (DIN
1.4410/Sandvik SAF2507) [13,17,20] has also received considerable attention as a potential
material for a wide range of applications in the oil and gas and refining sectors [21]. The
combination of austenitic and duplex stainless steels is of high interest in the case of valves,
meters, and other equipment used in the oil and gas industry. In the critical review work
conducted recently by Feenstra et al. [22], the combination of SS 316L and SAF 2507 alloys
was not reported for bimetallic structures and functionally graded materials produced via
directed energy deposition techniques.

With the development of new FGMs, it will be possible to optimize the use of expensive
or strategic materials for Europe in different areas of the part which have more demanding
requirements. There is a lack of knowledge on how the microstructure and solidification
modes evolve with the semi-continuous variation in the proportions of the compositions
that make up the powder mixture and their fusion during the direct laser metal deposition
process for the additive manufacturing of FGMs, and how it impacts the mechanical
properties and performance of the new material.

Advanced multi-material manufacturing reduces the complexity of assembly, increases
functionality, and reduces the costs of optimizing the part geometry and the sizes of
components produced with conventional manufacturing processes in single materials. The
purpose of this research work was to obtain an FGM via the combination of austenitic
stainless steel and super duplex stainless steel in the same component in order to discern
the minimum semi-continuous gradient that can be generated. After phase fraction and
hardness measurements and the microscopy analysis were conducted, it was possible to
evaluate how the microstructure, balance of austenite/ferrite, and hardness evolve in the
functionally graded material obtained by the metal AM process.

2. Materials and Methods

This section summarizes all feedstock materials, microstructural characterization
procedures, hardness testing equipment, laser material processing equipment, and methods
that were used in this work.

2.1. Materials Characterization—Equipment and Methods

The macro and microstructural analysis was carried out using light optical microscopy
(LOM) at different magnifications (from 100× to 1000×) with an Olympus GX51 optical
microscope with an image acquisition system via digital camera. The chemical etching was
carried out via different methods: electrolytic etching with KOH or oxalic solution and
manual etching with Beraha’s reagent (20 mL HCl + 100 mL H2O + 1g K2S2O5) for 12 s. The
best results for phase identification were achieved with the use of different reagents and
considering the chemical composition of the material in different zones of the FGM, similar
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to that reported by Fedorov, et al. [23]. For more advanced studies in the microstructure,
a field emission scanning electron microscope (FESEM) Zeiss Ultra Plus model equipped
with an X-ray detector from Oxford instruments (X-Max) was also used.

The area fraction of the main phases (in percentage) was quantified by making mea-
surements via image analysis from the micrographs. In this case, 5 LOM images were taken
at 200× magnification of different areas of the central part of the layers manufactured with
each powder mixture ratio, and then the images were binarized to contrast each phase, and
the area represented by each phase was thereafter measured to calculate the percentage it
represented. Microhardness Vickers measurements were taken in an EmcoTest DuraScan
durometer using a load of 100 g (HV0.1 scale).

2.2. Feedstock Powders Characterization

In this work, two commercial gas-atomized powders were used. One was the austenitic
stainless steel type 316L (AISI 316L or UNS S31603) manufactured by Flame Spray Tech-
nologies B.V. and the other was super duplex stainless steel type SAF 2507 (UNS S32750)
manufactured by Sandvik Osprey®. Both powders are inert and gas-atomized and commer-
cially available with different granulometries. In the case of the super duplex stainless steel,
a vacuum induction melting and inert gas atomization (VIGA) process was used. SS316L
powder was obtained by a single gas-atomization process with argon as the inert gas.

Both powders were sieved to achieve a particle size of +45 − 106 µm and +45 − 90 µm
for SS 316L and SAF 2507 alloys, respectively, according to the technical specifications
provided by manufacturers. The plates used as substrates (10 mm thickness) were manu-
factured with an austenitic stainless steel type SS 310 (UNS S31000) and provided in a soft
condition (hot-rolled and annealed). The chemical compositions reported by the powder
manufacturers are shown in Table 1.

Table 1. Chemical composition for each powder batch of SS 316L and SAF 2507 commercial powders
used in this work (data obtained from the quality certificates of each provider).

Powder
Chemical Composition (wt.%)

Cr Ni Mo Mn Si Ti Al C P S N Fe Rest

SS 316L 17.1 13.0 2.59 1.2 0.56 --- --- 0.03 0.010 0.010 0.06 65.37 0.04
SAF 2507 24.8 7.1 3.92 0.8 0.50 0.009 0.015 0.02 0.008 0.006 0.30 62.42 0.10

As a feedstock material quality check procedure, the powder particle batches were
characterized and analyzed using LOM and FESEM images. Both powders had adequate
flowability and particle size distribution for the LMD process with a coaxial nozzle. The
particles’ morphology is shown in the FESEM micrographs of Figure 1a,b, and the calculated
particle size distributions (PSD curves) are shown in Figure 1c,d. It was confirmed that the
SS 316L powder particles had a particle size distribution with a higher quantity of large
particles but of a smaller average size than those of the SAF 2507 powder. In any case, the
particle size range of both powders was quite similar.

The austenitic stainless-steel particles have a less spherical (lower circularity) and more
irregular morphology than those of super duplex and with the presence of more satellites
adhered to the particles after their gas atomization process manufacturing. Super duplex
powder particles are observed to be more spherical in morphology and with fewer satellites
but also present some elongated particles. After measurements, the flowability, apparent
density, and circularity of super duplex particles are better than austenitic stainless-steel
particles, but with a higher level of internal porosity, which can be detrimental, as trapped
gas can remain after solidification of the metal following the melting and DED process. The
comparative measurements of both powders are compiled in Table 2.
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Figure 1. Micrographs of powder particles by FESEM (200× and BSE mode): (a) SS 316L powder and
(b) SAF 2507 powder. Histograms of the PSD: (c) SS 316L powder and (d) SAF 2507 powder.

Table 2. Results of measurements for austenitic and super duplex stainless-steel powders.

Powders
Flowability

(s/50 g @ 22 ◦C)
(ASTM B213)

Apparent Density
(g/cc3)

(ASTM B212)

Particle Size Parameters (µm) Particles
Circularity

(%)

Internal
Porosity

(%)D10 D50 D90

SS 316L 25.96 ± 0.07 4.02 ± 0.05 55.15 75.40 108.84 ~46 0.27 ± 0.21

SAF 2507 17.19 ± 0.04 4.14 ± 0.05 58.80 82.24 101.55 ~60 0.49 ± 0.28

2.3. Laser Metal Deposition Equipment and Set-Up

The system used for the DED-LB/p process (also known as LMD) was a four-axis
Cartesian kinematic station equipped with a classical CNC table/system (FAGOR 8070,
Arrasate, Spain) and a solid-state 5 kW disc laser source (Trumpf TruDisk 6002, Ditzingen,
Germany) operated in continuous wave mode with a wavelength of 1030 nm. The laser
beam was guided through an optic fiber of 400 µm (see Figure 2). The configuration of
the LMD station includes a motorized optic head (Trumpf BEO D70, Ditzingen, Germany)
with collimation/focal lengths of 100/200 mm. For powder delivery, the LMD station had
a powder feeder with two 5L heated hoppers (Oerlikon Twin 150, Zürich, Switzerland)
and a three-jet discrete nozzle (3-Jet-SO16-F manufactured by FhG ILT, Aachen, Germany).
Argon was used as the protective gas (8 L/min) and as the carrier gas (2 L/min flow at
2 bar) for each powder delivery.

For this work, a powder mixing chamber, rapid switches for automatic hopper switch-
ing, and a powder flow watch sensor were incorporated into the twin powder-feeder
system. The operating parameters were adjusted to achieve a controlled powder flow rate
that adds up to a total rate of 5 g/min (SS 316L + SAF 2507 mix). The other manufacturing
process parameters used were a laser spot diameter of 2.2 mm, laser power of 700 W, and
deposition rate of 600 mm/min. Figure 2 shows the LMD station used, the discrete three-jet
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coaxial nozzle, and the manufactured tube with a gradual chemical composition (in Z
direction). The final dimensions of the manufactured single wall tube were an outside
diameter of 41.2 mm, an inside diameter of 36.8 mm, and a height of 28.4 mm.
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Figure 2. Details of the LMD station and FGM tube. (a) Cartesian four-axis kinematic LMD station
at LORTEK, (b) details of the coaxial discrete three-jet nozzle in operation, (c) build direction of the
semi-continuous FGM SS 316L to SAF 2507 tube, and (d) picture of the FGM hollow cylinder (tube)
manufactured by LMD process.

The first tests were carried out by depositing a simple long track, starting with a
chemical composition of 100% 316L austenitic stainless steel and gradually adding a specific
amount of super duplex powder to achieve a chemical composition of 100% super duplex
stainless steel by the end of the process. After the analysis of the monitored powder flow
rates signals, it became evident that the total flow was not constant and was decreasing,
partly due to inadequate gravimetric control of the super duplex powder, which was
not increased in the necessary proportion to maintain the required total mass flow rate
in g/min, among other problems.

After detecting the causes of the problems (bad connections of the super duplex
powder line to the mixer and excessive length of the pipe in the lines) and after the correct
integration of the mixing chamber device with better control of the rapid switch valves
between hoppers and their activation sequence, plus an adequate gravimetric control,
the problems were solved. For full system calibration, an individual gravimetric analysis
per hopper considering the specific material density was conducted; after that, a more
homogeneous and stable mixing flow was achieved for 5% increments (wt.%) in the
proportion of both materials.

As a next step, and after adjusting the powder mixing system with a proper gravimetric
calibration in the powder dosing of materials coming from each hopper, it was possible to
manufacture a tube (single bead per layer) consisting of 63 layers with a layer height of
0.45 mm. The manufacturing started with 100% of 316L stainless-steel powder; every three
layers, the mixing ratio between the austenitic SS and the super duplex SS powder flow
was changed, reducing the amount of austenitic SS at 5 wt.% whilst adding 5 wt.% of the
super duplex SS in the mass flow. In other words, the chemical composition of the FGM
material was changed in a semi-continuous way every three layers, decreasing the amount
of austenitic stainless steel and increasing the amount of super duplex, until finishing with
100% super duplex stainless steel in the last three layers.
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3. Results and Discussion
3.1. LMD Process Development and Adjusting to Obtain a Semi-Continuous Graded Material

For the study of semi-continuous multi-material deposition (gradual transition or
combination between two materials), the capability of the powder feeding and mixing
system incorporated in the LMD cell to deposit a functional graded material was analyzed.
The system was tuned and adjusted to combine a certain proportion of powder from one
hopper (austenitic stainless steel type 316L) with another proportion of powder from a
second hopper (super duplex steel SAF 2507) in a mixing chamber device. The difficulty
here lies in achieving a stable powder mix flow rate and in achieving a certain level of
automation and control in the command of the operation parameters for each hopper in the
twin powder feeder and the mixing system to obtain the minimum composition gradient
change and the precise proportion that is required at the time or position of the nozzle
that is desired. The main objective of the study was to analyze and discern the minimum
discontinuous gradient that can be achieved during the laser direct deposition process to
make it possible to either fabricate with a semi-continuous gradient in the layers of a 2.5D
fabrication (functional gradient in the Z direction, as shown in Figure 2c). The analysis
could also be used to obtain an FGM in the same layer (functional gradient in the radial or
X/Y direction from the center outwards or vice versa).

Figure 3 shows the monitored data (powder mass flows) in the manufacturing of the
continuous deposition tube. The delay time on the powder delivery was mainly affected
by the conveyer line length and the carrier gas flow rate [8]; for this work, the delay time
was well established for the LMD process parameters defined and after multiple trials
conducted before the FGM tube manufacturing.
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Figure 3. Example of powder flow monitoring on each hopper and at the nozzle inlet in a deposition
test for a semi-continuous FGM SS 316L+SAF 2507 after gravimetric control and system tuning.

Powder mix samples were taken at the nozzle outlet with different mixing proportions,
with the laser off, to observe them in a FESEM and evaluate the homogeneneity of the
particle mixture of both materials. The chemical composition, being similar in the two
materials of the gradient created, makes it difficult to discriminate the particles using EDS
maps, which was attempted without success.

3.2. Cross-Section and Microstructure Analysis by LOM

The manufactured FGM tube was cut to evaluate its cross-section, and after metallo-
graphic preparation of the sample, the predominant microstructure in the material obtained
with the combination of powders was revealed after using suitable chemical etching. In
the polished state, we found minimal flaws, in the form of small and rounded internal
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porosities in the deposited material, evaluated in the cross-section of the tube. This porosity
seems to be gas trapped during the solidification process of the deposited graded material.
After analyzing the internal porosity of the particles of each powder provider (reported
in Table 2), we observed that in the coarse particles of both gas-atomized powders’ inter-
nal porosities (see Figure 4), which were in a major proportion in the super duplex steel
powder particles. We presumed that these particles’ porosities could generate gas trapped
in the melt pool that is grouped and does not escape from the molten metal due to the
high deposition speed and specific solidification conditions in the single-track deposition
process and that generates such a defect.
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Figure 4. LOM micrographs (polished condition). (a) Cross-section of SS 316L powder particles,
(b) cross-section of SAF 2507powder particles, and (c) cross-section of the manufactured FGM tube
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In the etched condition and for the layers with the highest AISI 316L content, an
electrolytic KOH solution was used as the reagent, and for the layers with the highest super
duplex content, chemical etching by immersion with Beraha’s reagent was subsequently
used. In Figure 5, the optical micrographs of each combination are compiled for compar-
ison. They show the evolution between the proportion of austenite and ferrite with the
progression in the semicontinuous chemical gradient in the central area of each deposited
layer. The substrate material and potential dilution effect were not considered in this study.
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Figure 5. Cross section of the FGM tube deposited with different balances (in wt.%) of
austenitic/super duplex stainless-steel compositions (LOM micrographs, at 200× and 500× elec-
trolytic etching with KOH solution). (a) 100/0, (b) 75/25, (c) 50/50, (d) 25/75, and (e) 0/100.

The process by which the microstructure of the material evolves with the functional
gradient of the chemical composition, not only in the columnar dendritic growth form,
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but also in the size of the dendrites and formation of main phases, is clearly observed
in the micrographs of Figure 5. The initial microstructure of the 316L austenitic stainless
steel obtained by LMD is of the cellular dendritic type (see the micrographs with different
proportions of elements in Figure 5) with an epitaxial grain nucleation mechanism and
columnar dendritic growth of columnar grains in the direction of the maximum thermal
gradient (towards the surface of the layers); progressing through a competitive growth
mechanism, this microstructure, at least for austenitic SS 316L compositions, is similar to
those reported in the literature [24]. Small cells of the delta ferrite phase (δ, in the form
of needles and plates) were observed in the austenitic matrix of gamma iron austenite (γ)
dendrites. Some authors report the presence of a Laves phase [25], which was not observed
in the evaluated layers with LOM; a reduced fraction of the gamma-prime phase (γ′) could
have been present but was not observed by optical microscopy in the zones with higher SS
316L content.

The solidification mode in DED processing of austenitic stainless steels influences the
partitioning of alloying elements in regions of compositional microsegregation, the mor-
phology and volume fraction of retained ferrite, and the development of grain boundaries
in as-deposited materials [26,27]. In a sequence depicting microstructural development, the
first act is the oxide inclusion formation, followed by a dislocation substructure, primary
ferrite (FA) cellular solidification structure (in the case of austenitic SS compositions), or
primary austenite (AF) cellular solidification structure (in the case of ferritic SS compo-
sitions), creating the epitaxial grain structure [26,28]. The primary phase formed from
the liquid (L) may be austenite (γ) or ferrite (α) depending on the content of austenite-
and ferrite-stabilizing elements, such as Ni and Cr, respectively. For the austenitic SS
composition, grain morphology and size are related to the solidification mode with primary
austenite solidification (AF) due to the prevalence of the 316L composition.

With the progressing of the FGM, the residual primary ferrite results from incomplete
delta to gamma transformation during solidification and/or residual ferrite after Wid-
manstatten austenite precipitation in primary ferrite. This proposed solidification path is
based on the classical metallurgical theory of stainless steel welding and considers only the
chemical composition [29,30]. The transition in the solidification modes along the build-up
is as shown in Figure 5c–e. According to different authors, the intragranular austenite
in the as-deposited microstructure was found to preferentially nucleate and grow from
inclusions [17,31].

The duplex microstructure observed on the last three deposited layers could be in-
fluenced not only by the austenite formation from the primary ferrite (FA) mechanism,
but also by the solidification conditions and thermal gradients derived from the different
thermal conductivity in this material, the increased heat exchange surface, and the distance
from the build plate. However, this microstructure is quite similar to that reported by other
authors who have deposited super duplex SS via the DED-LB/p process [13,17,31] and the
DED-LB/w process [14,15].

3.3. FESEM and EDS Analysis in the FGM Obtained

Ferrite and austenite phases in different ratios were observed in the microstructure
of the FGM in as-built conditions, as indicated previously. The elongated grains of ferrite
grow through several layers and there are fine-grained areas along the boundaries of the
melt pool region. The austenitic phases in three variants form during deposition following
a cooling and thermal cycle. Grain boundary austenite was formed first along ferrite grain
boundaries at the highest temperatures between 1350 ◦C and 850 ◦C [32]; Widmanstätten
austenite creates thin needles, whereas the intergranular austenite precipitates as fine
particles within ferrite grains at the lowest solidification temperature and preferentially
nucleate and grow from oxide inclusions. All types of austenite are visible in micrographs
of upper layers in the as-built condition (see Figure 6c). Ferrite grains in the etched samples
grew across several layers of the build, similar to those reported in the literature when
a wire super duplex was used as the feedstock [15]. Additionally, the presence of some
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oxygen-rich inclusions rich in Mn and Si were observed in the microstructure, similar to
those previously reported by Smith et al. [26]. Oxide inclusions nucleate and grow when
the solubility of oxygen dissolved in the molten pool decreases, these inclusions were
identified as metastable rhodonite (MnSiO3 or MnO.SiO2) by Iams et al. [31].
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Figure 6. FESEM micrographs (SE mode, electrolytic etched cross-sections) of different SAF 2507/SS
316L mix ratios and zones in the FGM tube. (a) 40/60 ratio: layer 38 at a height of 18 mm, (b) 80/20 ra-
tio: layer 50 at a height of 22.5 mm, and (c) 100/00 ratio: layer 62 at a height of 27.5 mm.

Alpha stabilizer elements such as Cr, Mo, and Fe are in higher proportion in ferrite, and
elements such as Ni, Mn, Si, and N are reduced. The opposite occurs in austenite regions (see
micrograph and spectrums of Figure 7 as examples of a 50/50 composition ratio).
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3.4. Quantification of Austenite/Ferrite Phases

As the chemical compositional gradient increases toward that of higher super duplex
content, the ferrite formation is stabilized due to the increase in the content of Cr, Mo, Fe,
and Ti (alpha- or ferritizing elements) in the mixture, and with the reduction in Ni, Mn,
Si, and N (gamma- or austenitizing elements). Thus, as the chemical composition of a
super duplex stainless steel is approached, a balance close to ~55/45 between the two main
phases observed in the microstructure (austenitic/ferritic) becomes evident. The tendency
to form a greater amount of ferrite is observed in the bar graph of Figure 8 as the proportion
of super duplex in the mixture increases.
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It was from 85% (wt.%) of super duplex content in the mixture of the FGM that a
percentage of ferrite higher than 30% was obtained, which changed the dendritic mor-
phology observed in the microstructure, and the typical “duplex” structure was formed.
Better corrosion behavior was then expected from this ratio in the graded function material
obtained by LMD. In the bottom layers made with 100% 316L austenitic stainless steel (first
three layers), a balance of 93.61 ± 1.22% area fraction of austenite and 6.39 ± 1.22% area
fraction of ferrite was obtained; the base material dilution was not considered here, while
in the top layers made from 100% super duplex composition, a balance of 56.61 ± 1.86%
austenite and 43.39 ± 1.62% ferrite was obtained in the resulting microstructure. This
austenite/ferrite ratio measured for 100% super duplex composition layers was near to
the ~55/45 reported ratios in literature for this material processed by laser [13,17,31], but
lower in the ferrite area fraction than typical wrought super duplex steel (~45/55). The
austenite/ferrite fraction is affected by chemical composition, solidification conditions, and
cooling rates, and it is expected to have more austenite at typical deposition speeds and
solidification rates in DED-LB processes in comparison with the PBF-LB process [33].

In a theoretical exercise, we calculated the theoretical austenite/ferrite phase ratio
using the Schaeffler diagram and considering the chemical composition of both materials
(SS 316L and SAF 2507). The measured ratio values in this work correlate well with the
theoretical prediction given by the theoretical Schaeffler [34] and WRC-1992 [35] diagrams
for the austenite/ferrite ratio in the welding of stainless steels. The austenitic stainless steel
type 316L will have a lower resistance to pitting corrosion (PREN ~25.5) than SAF 2507
super duplex stainless steel (PREN ~42.5) according to the Schaeffler diagram [36]. Recently,
other authors have concluded that the Schaffler diagram can also have a good correlation for
high-energy-density welding and fast solidification processes such as laser-based directed
energy deposition processes of stainless steels [26,37,38].

3.5. Micro Hardness Evolution

For the obtention of the hardness profile, the indentations were made in the central area
of the tube cross-section (half of the wall thickness) and with a separation of 1.0 mm between
them. Figure 9 shows the cross section of the tube wall, on which the metallographic
preparation was carried out to obtain a polished surface for micro hardness measurements;
the hardness profile was obtained from the build plate (SS 310), crossing the base of the
tube (100% SS 316L) to the last layers of the tube (100% super duplex SAF2507 composition).
An increase in hardness was evidenced by the increase in the ferrite fraction in the duplex
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microstructure on the graded composition material, reaching a hardness between 217 and
230 HV for SS 316L in initial layers at the base of the tube and between 329 and 330 HV for
the full super duplex composition in the last three layers of the FGM tube.
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It is well known that the nano hardness of ferrite is higher than the austenite phase
in duplex and super duplex stainless steel grades [39], so the increase in the ferrite area
fraction has an impact on the overall mechanical behavior of the material, which was
evidenced in the microhardness measurements (HV0.1 scale) taken in this work in the
cross-section of the FGM tube manufactured.

4. Conclusions

The main conclusions based on the results obtained and their analysis in this research
work are as follows:

• The DED-LB/p (LMD) process is a promising manufacturing process route to obtain
controlled FGMs for near-net-shape metallic components. It was demonstrated that
is possible to create products with a semi-continuous functionally graded material
with a gradient from austenitic to super duplex stainless-steel compositions using
this technology;

• A tube with a semi-continuous functional gradient material was successfully manufac-
tured in which the chemical composition was varied, starting from a composition of
100% austenitic stainless-steel type 316L and ending in 100% super duplex stainless-
steel type SAF 2507 with a discontinuous gradient, reducing the amount of austenitic
SS at 5 wt.% whilst adding 5 wt.% of the super duplex SS content in the mass flow
every three layers in the manufactured single wall/bead tube;

• The evolution of ferrite formation was verified and the phase fraction measured.
The increase in ferrite content is associated with the increase in alpha-iron promoter
chemical elements as the proportion of super duplex steel in the powder mixture
is increased. The correlation between the increase in hardness of the FGM with the
increase in the ferrite phase area fraction as a hard phase in the FGM material was
verified;

• It is of utmost importance to automate and control the command of the hoppers and
rapid switch valves of the twin powder feeder to achieve the desired mixing ratio
and powder delivery stability in the FGM obtained by DED-LB/p. The monitoring
of powder flow rates using sensors and the meticulous measure of powder delays
and gravimetry are essential to verify and guarantee the stability of the powder mix
supply to the nozzle during the deposition process.
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