Forging Treatment Realized the Isotropic Microstructure and Properties of Selective Laser Melting GH3536
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Microstructure and Composition of Samples after Forging
3.2. Grains of Samples after Forging
3.3. Room-Temperature Tensile Properties of Samples
3.4. High-Temperature Properties of Samples after Forging
3.4.1. High-Temperature Tensile Property
3.4.2. High-Temperature Endurance Property
4. Conclusions
- (1)
- Forging treatment eliminated the microstructure anisotropy. The microstructure parallel to the z-axis and vertical to the z-axis and their corresponding components were similar. Equiaxed grains were formed, and there were carbides in the grain and grain boundary. Spherical carbides were dispersed in the grains.
- (2)
- With the increase in forging temperature, the degree of equiaxed grains was significantly improved, and a large number of annealing twins were formed. The grain size was mostly concentrated within 10 μm, and the grain boundary phase difference was most concentrated at 60°.
- (3)
- With the increase in forging temperature, the yield strength, tensile strength, and contraction of area of the samples changed little, and the properties of parallel and vertical samples were almost the same.
- (4)
- The yield strength, tensile strength, and contraction of area in the parallel and vertical samples were almost the same at three temperatures. Judging from the elongation after fracture and the contraction of area, the sample properties showed anisotropy characteristics after a high-temperature endurance test at 650 °C.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ohnabe, H.; Masaki, S.; Onozuka, M.; Miyahara, K.; Sasa, T. Potential application of ceramic matrix composites to aero-engine components. Compos. Part A Appl. Sci. Manuf. 1999, 30, 489–496. [Google Scholar] [CrossRef]
- Lv, C.; Chang, J.; Bao, W.; Yu, D. Recent research progress on airbreathing aero-engine control algorithm. Propuls. Power Res. 2022, 11, 1–57. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, W.; Xie, Y.; Li, H.; Zeng, C.; Xu, M.; Zhang, H. In-situ monitoring plume, spattering behavior and revealing their relationship with melt flow in laser powder bed fusion of nickel-based superalloy. J. Mater. Sci. Technol. 2023, 177, 44–58. [Google Scholar] [CrossRef]
- Zhao, S.; Xie, X.; Smith, G.D.; Patel, S.J. Microstructural stability and mechanical properties of a new nickel-based superalloy. Mater. Sci. Eng. A 2003, 355, 96–105. [Google Scholar] [CrossRef]
- Wang, R.; Yang, D.; Wang, W.; Wei, F.; Lu, Y.; Li, Y. Tool wear in nickel-based superalloy machining: An overview. Processes 2022, 10, 2380. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, W.; Zheng, H.; Xie, Y.; Zhang, X.; Li, H.; Xu, M.; Zhang, H. Microstructure, crack formation and improvement on Nickel-based superalloy fabricated by powder bed fusion. J. Alloys Compd. 2023, 962, 171151. [Google Scholar] [CrossRef]
- Chen, N.; Zheng, D.; Niu, P.; Li, R.; Yuan, T. Laser powder bed fusion of GH3536 nickel-based superalloys: Processing parameters, microstructure and mechanical properties. Mater. Charact. 2023, 202, 113018. [Google Scholar] [CrossRef]
- Pollock, T.M.; Tin, S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties. J. Propuls. Power 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Bertrand, P.; Smurov, I. Parametric analysis of the selective laser melting process. Appl. Surf. Sci. 2007, 253, 8064–8069. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Z.; Chen, Y.; Xin, Z.; Ye, Y.; Lu, H.; Wan, H.; Cheng, L.; He, K.; Tu, X. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Nickel Superalloy GH3536 Obtained by Selective Laser Melting. Met. Sci. Heat Treat. 2021, 63, 369–374. [Google Scholar] [CrossRef]
- Zhang, L.; Song, J.; Wu, W.; Gao, Z.; He, B.; Ni, X.; Long, Q.; Lu, L.; Zhu, G. Effect of processing parameters on thermal behavior and related density in GH3536 alloy manufactured by selective laser melting. J. Mater. Res. 2019, 34, 1405–1414. [Google Scholar] [CrossRef]
- Min, S.; Zhang, H.; Liu, H.; Zhang, K.; Huang, A.; Hou, J. Influence of defects on high-temperature oxidation performance of GH3536 superalloys fabricated by laser powder bed fusion. Addit. Manuf. Lett. 2022, 3, 100064. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Z.; Li, B.; Qi, F.; Peng, W. Numerical simulation on melt pool and solidification in the direct energy deposition process of GH3536 powder superalloy. J. Mater. Res. Technol. 2023, 26, 5626–5637. [Google Scholar] [CrossRef]
- Cui, J.; Wang, H.; Yang, Z.; Zhao, M.; Guo, Y. Study on grain boundary distribution and formation mechanism in GH3536 superalloy strip and foil after annealing treatment. Mater. Charact. 2022, 192, 112236. [Google Scholar] [CrossRef]
- Xiao, L.; Peng, Z.; Zhao, X.; Tu, X.; Cai, Z.; Zhong, Q.; Wang, S.; Yu, H. Microstructure and mechanical properties of crack—Free Ni—Based GH3536 superalloy fabricated by laser solid forming. J. Alloys Compd. 2022, 921, 165950. [Google Scholar] [CrossRef]
- Qiao, G.; Zhang, B.; Bai, Q.; Dilnoza, Y. Effect of heat treatment on microstructure and residual stress of GH3536 superalloy fabricated by selective laser melting. J. Mater. Eng. Perform. 2021, 30, 8892–8900. [Google Scholar] [CrossRef]
- Yan, P.; Bai, J.; Yuan, Z.; Wang, S.; Ma, R.; Zheng, J. Constitutive Equation and Hot Deformation Behavior of SLM-GH3536 Alloy. JOM 2023, 75, 4819–4831. [Google Scholar] [CrossRef]
- Wei, Q.; Xie, Y.; Teng, Q.; Shen, M.; Sun, S.; Cai, C. Crack Types, Mechanisms, and Suppression Methods during High-energy Beam Additive Manufacturing of Nickel-based Superalloys: A Review. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100055. [Google Scholar] [CrossRef]
- Schneider, J.; Farris, L.; Nolze, G.; Reinsch, S.; Cios, G.; Tokarski, T.; Thompson, S. Microstructure Evolution in Inconel 718 Produced by Powder Bed Fusion Additive Manufacturing. J. Manuf. Mater. Process. 2022, 6, 20. [Google Scholar] [CrossRef]
- Fei, J.; Liu, G.; Patel, K.; Özel, T. Effects of Machining Parameters on Finishing Additively Manufactured Nickel-Based Alloy Inconel 625. J. Manuf. Mater. Process. 2020, 4, 32. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, R.; Liu, Y.; Zhang, L. Understanding melt pool characteristics in laser powder bed fusion: An overview of single- and multi-track melt pools for process optimization. Adv. Powder Mater. 2023, 2, 100137. [Google Scholar] [CrossRef]
- ASTM E1856-13; Standard Guide for Evaluating Computerized Data Acquisition Systems Used to Acquire Data from Universal Testing Machines. ASTM International: West Conshohocken, PA, USA, 2021.
- Huang, S.; Chen, B.; Liu, W.; Zhou, B.; Zhang, X.; Zeng, Q.; Guo, S. Effect of Heat Treatment on Microstructure and Properties of GH3536 Fabricated by Selective Laser Melting. Metals 2022, 12, 1184. [Google Scholar] [CrossRef]
- Liang, J.; He, Z.; Du, W.; Ruan, X.; Guo, E.; Shen, N. Tailoring the microstructure and mechanical properties of laser metal-deposited Hastelloy X superalloy sheets via post heat-treatment. Mater. Sci. Eng. A 2023, 884, 145546. [Google Scholar] [CrossRef]
- Haack, M.; Kuczyk, M.; Seidel, A.; López, E.; Brückner, F.; Leyens, C. Investigation on the formation of grain boundary serrations in additively manufactured superalloy Haynes 230. J. Laser Appl. 2020, 32, 032014. [Google Scholar] [CrossRef]
- Wang, H.; Wu, H.; Liu, Y.; Qiu, W.; Deng, H.; Zhou, L.; Chen, L. Oxidation Behavior of Hastelloy X Alloy Fabricated by Selective Laser Melting and Subsequent Hot Isostatic Pressing Treatment. Adv. Eng. Mater. 2022, 24, 2200369. [Google Scholar] [CrossRef]
- Montero-Sistiaga, M.L.; Pourbabak, S.; Van Humbeeck, J.; Schryvers, D.; Vanmeensel, K. Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting). Mater. Des. 2019, 165, 107598. [Google Scholar] [CrossRef]
- Montero-Sistiaga, M.L.; Liu, Z.; Bautmans, L.; Nardone, S.; Ji, G.; Kruth, J.-P.; Van Humbeeck, J.; Vanmeensel, K. Effect of temperature on the microstructure and tensile properties of micro-crack free hastelloy X produced by selective laser melting. Addit. Manuf. 2020, 31, 100995. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Yu, W.; Tang, H.; Wang, H.; Xu, G.; Wang, Z. Effect of a special thermo-mechanical treatment process on microstructure and properties of 7185 alloy. J. Alloys Compd. 2023, 935, 168072. [Google Scholar] [CrossRef]
- Tillmann, W.; Schaak, C.; Nellesen, J.; Schaper, M.; Aydinöz, M.u.; Hoyer, K.-P. Hot isostatic pressing of IN718 components manufactured by selective laser melting. Addit. Manuf. 2017, 13, 93–102. [Google Scholar] [CrossRef]
- Peters, M.; Brodie, E.G.; Thomas, S.; Djumas, L.; Brameld, M.; Salasi, M.; Quadir, Z.; Iannuzzi, M.; Wang, J.; Sercombe, T.; et al. On the importance of nano-oxide control in laser powder bed fusion manufactured Ni-based alloys to enhance fracture properties. Materialia 2023, 32, 101958. [Google Scholar] [CrossRef]
Cr | Fe | Mo | W | Mn | Cu | C | Si | S | Ni |
---|---|---|---|---|---|---|---|---|---|
22.710 | 18.750 | 8.940 | 2.110 | 0.007 | 0.031 | 0.076 | 0.130 | 0.001 | Bal. |
No. | Size /mm3 | Forging Temperature/°C | Deformation Velocity/mm/s | Deformation Amount/mm | Forging Direction |
---|---|---|---|---|---|
1# | 60 × 60 × 90 | 1050 | 20 | H = 90 mm forging to H = 36 mm | Parallel to z-axis |
2# | 60 × 60 × 90 | Vertical to z-axis | |||
3# | 60 × 60 × 90 | 1080 | Parallel to z-axis | ||
4# | 60 × 60 × 90 | Vertical to z-axis | |||
5# | 60 × 60 × 90 | 1110 | Parallel to z-axis | ||
6# | 60 × 60 × 90 | Vertical to z-axis |
Samples | Temperature /°C | Tensile Strength /MPa | Yield Strength /MPa | Elongation /% | Contraction of Area/% |
---|---|---|---|---|---|
Vertical to the z-axis | 23 | 726 | 305 | 49.4 | 45.9 |
Parallel to the z-axis | 721 | 313 | 53.9 | 57.7 | |
Vertical to the z-axis | 650 | 520 | 185 | 46.4 | 40.6 |
Parallel to the z-axis | 532 | 192 | 51.8 | 50.9 | |
Vertical to the z-axis | 815 | 336 | 175 | 47.2 | 45.8 |
Parallel to the z-axis | 342 | 186 | 42.6 | 40.5 |
Point | Cr | Fe | Co | Ni | Mo | W |
---|---|---|---|---|---|---|
1 | 38.94 | 13.64 | 1.26 | 29.99 | 14.65 | 1.51 |
2 | 25.31 | 17.77 | 1.79 | 43.81 | 10.25 | 1.07 |
3 | 37.66 | 14.17 | 1.29 | 31.42 | 14.1 | 1.36 |
4 | 35.99 | 14.44 | 1.41 | 32.82 | 13.99 | 1.34 |
Point | Cr | Fe | Co | Ni | Mo | W |
---|---|---|---|---|---|---|
1 | 36.1 | 14.48 | 1.4 | 32.86 | 13.78 | 1.38 |
2 | 32.56 | 15.49 | 1.49 | 35.98 | 13.22 | 1.26 |
3 | 25.42 | 15.8 | 1.53 | 37.65 | 9.87 | 0.98 |
4 | 24.3 | 18.24 | 1.82 | 45.31 | 9.29 | 1.03 |
Point | Cr | Fe | Co | Ni | Mo | W |
---|---|---|---|---|---|---|
1 | 31.45 | 15.96 | 1.43 | 37.14 | 12.77 | 1.26 |
2 | 30.51 | 16.13 | 1.54 | 38.01 | 12.54 | 1.28 |
3 | 28.52 | 17.19 | 1.68 | 40.65 | 10.94 | 1.02 |
4 | 38.07 | 13.82 | 1.3 | 30.92 | 14.55 | 1.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Wang, T.; Li, K.; Zhou, B.; Chen, B.; Zhang, X. Forging Treatment Realized the Isotropic Microstructure and Properties of Selective Laser Melting GH3536. J. Manuf. Mater. Process. 2023, 7, 213. https://doi.org/10.3390/jmmp7060213
Huang S, Wang T, Li K, Zhou B, Chen B, Zhang X. Forging Treatment Realized the Isotropic Microstructure and Properties of Selective Laser Melting GH3536. Journal of Manufacturing and Materials Processing. 2023; 7(6):213. https://doi.org/10.3390/jmmp7060213
Chicago/Turabian StyleHuang, Shuai, Tianyuan Wang, Kai Li, Biao Zhou, Bingqing Chen, and Xuejun Zhang. 2023. "Forging Treatment Realized the Isotropic Microstructure and Properties of Selective Laser Melting GH3536" Journal of Manufacturing and Materials Processing 7, no. 6: 213. https://doi.org/10.3390/jmmp7060213
APA StyleHuang, S., Wang, T., Li, K., Zhou, B., Chen, B., & Zhang, X. (2023). Forging Treatment Realized the Isotropic Microstructure and Properties of Selective Laser Melting GH3536. Journal of Manufacturing and Materials Processing, 7(6), 213. https://doi.org/10.3390/jmmp7060213