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Abstract: This paper describes a sample partitioning approach to retain or reject samples from an
initial distribution of stability maps using milling test results. The stability maps are calculated using
distributions of uncertain modal parameters that represent the tool tip frequency response functions
and cutting force model coefficients. Test points for sample partitioning are selected using either (1)
the combination of spindle speed and mean axial depth from the available samples that provides
the high material removal rate, or (2) a spindle speed based on the chatter frequency and mean axial
depth at that spindle speed. The latter is selected when an unstable (chatter) result is obtained from a
test. Because the stability model input parameters are also partitioned using the test results, their
uncertainty is reduced using a limited number of tests and the milling stability model accuracy is
increased. A case study is provided to evaluate the algorithm.

Keywords: machining; chatter; modeling

1. Introduction

For discrete part production by milling, the optimum combination of spindle speed
and axial depth is desired to maximize material removal rate (MRR) and minimize cost.
To identify the optimal {spindle speed, axial depth} combination that provides maximum
MRR without chatter (a self-excited vibration), analytical and numerical milling models are
available [1]. These models have two primary inputs: (1) the tool tip frequency response
function, FRF; and (2) a cutting force model that relates the cutting force to the commanded
chip area using mechanistic coefficients. The tool tip FRF may be measured using tap
testing, where an instrumented hammer is used to excite the tool tip and a linear transducer,
such as a low-mass accelerometer, is used to measure the response [2–4]. The measured tool
tip FRF can then be represented by a discrete number of vibration modes, each of which is
described by a natural frequency, modal stiffness, and modal damping ratio. The cutting
force model coefficients may be identified experimentally by measuring the cutting force
for known milling parameters and determining the least-squares best fit coefficients using
the force model and measured force [3,5].

The objective of this research is to increase milling stability model accuracy when
the inputs are initially uncertain. Uncertainties in two inputs are considered: the modal
parameters that represent the tool tip FRFs and the cutting force model coefficients. This
paper is organized as follows. The sample partitioning approach is described that reduces
uncertainty in the modal parameters and cutting force model coefficients using stability
tests. Next, a case study is presented to evaluate the approach where the changes in initial
model input distributions and corresponding stability boundaries are reported. Then, a
discussion of the results is provided. Finally, conclusions are presented.

2. Sample Partitioning

A sample partitioning approach is proposed to reduce uncertainty in (1) the modal
parameters that represent the tool tip FRF; and (2) the cutting force model coefficients
using milling stability tests. The approach is to partition stability maps that agree with
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sequential stability tests completed at selected {spindle speed, axial depth} combinations
from those that disagree. The stability maps are generated using the zero-order frequency
domain stability model [6]. Tests are performed using time domain simulation, where the
time-delay differential equations of motion that represent the milling system are solved
numerically [3,7–9]. Because the zero-order frequency domain stability model inputs (i.e.,
the modal parameters and cutting force coefficients) are uncertain, Monte Carlo simulation
is applied to randomly sample distributions of the inputs to predict many potential stability
maps [10–12]. Each stability map represents one sample that may or may not be the true
map; all samples have an equal probability of being the true stability map.

The selection of test points is based on the outcome of the previous test (i.e., stable
or unstable/chatter behavior is exhibited). If the previous test was stable, the next test is
selected where maximum expected MRR is obtained. To determine the test point in this
case, the mean axial depth from all available stability maps (after partitioning based on
the previous stable result) is identified for each spindle speed. The MRR is then calculated
using the mean axial depth at the selected spindle speed. After repeating the calculation for
each spindle speed, the {spindle speed, axial depth} combination that gives the maximum
MRR is chosen as the next test point.

If the previous test is unstable, the chatter frequency is determined by converting a
time domain milling signal, such as force or displacement, to the frequency domain. In the
frequency domain, chatter is identified when content appears at frequencies other than the
tooth passing frequency, ftooth, and its multiples (harmonics); see Equation (1), where Ω is
the spindle speed (rpm) and Nt is the number of teeth on the endmill. The chatter frequency,
fc (Hz), is applied to calculate the next spindle speed, Ω (rpm), using Equation (2) [13]. By
comparing Equations (1) and (2), it is observed that the spindle speed for the next test is
selected by setting the new tooth passing frequency equal to the chatter frequency from the
previous test.

ftooth =
ΩNt

60
(1)

Ω =
60 fc

Nt
(2)

After partitioning the maps based on stability tests (i.e., a binary stable or unstable
result is obtained), those maps that agree with the tests are used to identify the most likely
input values and reduce the associated uncertainty since there is a one-to-one correspon-
dence between the maps and the modal parameters and cutting force model coefficients.
The approach is summarized in Figure 1.
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2.1. Frequency Domain Stability Model

Altintas and Budak transform the dynamic milling equations into a time-invariant,
radial immersion-dependent system [6]. They approximate the time-dependent cutting
forces with an average value by expanding the time-varying coefficients of the dynamic
milling equations, which depend on the angular orientation of the tool as it rotates through
the cut, into a Fourier series. They then truncate the series to include only the average
component and obtain an analytical solution for the limiting axial depth of cut to avoid
chatter as a function of spindle speed. As noted, the two primary inputs to the analysis
are the tool tip FRFs in the x (feed) and y directions and the coefficients for the mechanistic
cutting force model.

2.2. Modal Parameters

The tool tip FRFs can be represented as a discrete number of vibration modes using
modal analysis, where each mode is represented as a single-degree-of-freedom spring–
mass–damper system [2,3,14–16]. The dynamic behavior of the spring–mass–damper
system may be described using a natural frequency, fn (Hz), modal stiffness, k (N/m), and
modal damping ratio, ζ (-). Any number of modes may be modeled using this approach.

2.3. Cutting Force Model

The resultant cutting force, F, and the tangential, Ft, and normal, Fn, direction com-
ponents are shown in Figure 2 [3,5,17–20]. The expressions for Ft and Fn are given by
Equations (3) and (4), where kt and kn are the cutting force coefficients, b is the axial depth
(chip width), and h is the chip thickness.

Ft = ktbh (3)

Fn = knbh (4)
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Figure 2. Cutting force model.

2.4. Sample Partitioning Algorithm

The sample partitioning algorithm is described by Figure 3, which displays many
potential stability boundaries (i.e., the family of blue curves) generated by Monte Carlo
simulation. Consider the test at the {spindle speed, axial depth} pair labeled {Ωu, bu}.
As indicated by the u subscript and the red ×, the test result is unstable. The stability
boundaries are partitioned using this test result. Those that predict an unstable result
(agree) are separated from those that predict a stable result (disagree). Only those sample
boundaries that agree are retained. This means that all boundaries with a limiting axial
depth greater than bu are eliminated from the distribution.

Next, consider the test at {Ωs, bs}. As indicated by the s subscript and the green circle,
the test result is stable. In this case, all boundaries with a limiting axial depth greater than
bs at Ωs are retained (agree) and boundaries with a limiting axial depth less than bs at
Ωs are eliminated (disagree) from the distribution. The sample partitioning is repeated
sequentially for all tests, both stable and unstable, to refine the initial distributions of not
only the stability maps, but also the modal parameters and cutting force model coefficients.
Specifically, each map that disagrees with the test result and is eliminated also eliminates
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the corresponding values of the modal parameters and cutting force model coefficients used
to produce that map. This enables the initial distributions of these uncertain parameters
(stability model inputs) to be refined and, subsequently, the uncertainty in the parameters
and stability predictions to be reduced.
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2.5. Case Study

To evaluate the proposed sample partitioning algorithm and test selection approach,
a numerical study was completed where the stability maps were predicted using the
frequency domain stability model [6] and test data were collected using the results of
milling time domain simulation [3]. For the milling stability tests, a 12.7 mm diameter,
four-tooth endmill with a 30 deg helix angle and uniform teeth spacing was selected. The
radial depth was 3 mm and the feed per tooth was 0.1 mm for the down milling, x-direction
milling tests; the spindle speed and axial depth were varied to partition the predicted
stability maps using the test results (labeled stable or unstable). The true modal parameters
are provided in Table 1; two modes were selected and the FRFs were symmetric in the
x and y directions. The true cutting force coefficients are also listed in Table 1; these are
representative of a 6061-T6 aluminum workpiece material.

Table 1. True values for stability model inputs.

Modal Parameters

fn1 (Hz) 1000 fn2 (Hz) 1200

k1 (N/m) 5 × 106 k2 (N/m) 7 × 106

ζ1 (-) 0.02 ζ2 (-) 0.03

Cutting force model coefficients

kt (N/mm2) 700

kn (N/mm2) 200

Stability was determined using the x-direction displacement predicted by the time
domain simulation. The time-dependent displacement was converted to the frequency
domain and the chatter frequency was identified, if present. As noted, the frequency
content from each test was compared to the tooth passing frequency (i.e., the spindle speed
multiplied by the number of flutes) and its integer multiples (harmonics). A test was labeled
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as stable if content appeared only at these frequencies. A test was labeled as unstable if
frequency content was observed at a different frequency and the chatter frequency was
recorded for the selection of the next test point [21].

For the two-mode system, chatter can occur either in the 1000 Hz mode or the 1200 Hz
depending on which portion of the stability boundary is exceeded. This is demonstrated in
Figure 4, where it is observed that exceeding the stability boundary to the right of the peak
at 15,620 rpm results in a different chatter frequency than exceeding the boundary to the
left [22].
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Figure 4. Variation in chatter frequency with spindle speed and portion of the stability boundary that
is exceeded. The stability map is shown at the bottom, where blim is the limiting axial depth to avoid
chatter, and the insets show the frequency-dependent magnitude of the x-direction displacement for
the two spindle speeds. The tooth passing frequency and its harmonics are identified by the open
red circles.

The initial uniform distributions for the Monte Carlo simulation were defined in the
range from 90% of the input variable true value, T, to 130% of T, or U(0.9T, 1.3T) [23]. This
approach was selected so that (1) each sample was equally likely to represent the true input
value and (2) the true value was not located at the center of the distribution range. See
Figures 5 and 6, where the horizontal axis ranges from 0.9T to 1.3T in each case and the
true value is identified.

The six modal parameter distributions were randomly sampled to generate the sym-
metric tool tip FRFs; see Equation (5), where f is the excitation frequency (Hz) and Fx is
the cutting force in the x direction [3]. The cutting force coefficient distributions were then
sampled and combined with the tool tip FRFs to generate 1 × 104 stability maps using the
zero-order frequency domain model [6]. The eight input parameters were assumed to be
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uncorrelated. The distributions of 10 FRFs and stability maps are shown in Figure 7 to
observe the variation obtained from the Monte Carlo simulation.
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Given the 1 × 104 initial stability maps obtained by Monte Carlo simulation, the first
test point was selected using the maximum MRR criterion [24]. The result is displayed
in Figure 8, where the spindle speed is 17,547 rpm and the axial depth is 3.5082 mm.
This maximum expected MRR test point is marked by a white square. The stability map
obtained from the true model input values (Table 1) is also indicated by a magenta curve.
This is provided as a reference because it is not known at the time of testing and, therefore,
does not influence the test point selection.
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Figure 8. Initial distribution of stability maps (blue curves) and first test point (white square). The
stability map obtained from the true model input values is included as the magenta curve.

The first test point identified in Figure 8 is unstable. The corresponding chatter
frequency of 1002.4 Hz is identified in Figure 9. The sample partitioning result is displayed
in Figure 10, where it is observed that all stability boundaries below the test point are
eliminated. In Figure 8, 5933 samples remain after partitioning. The new distributions in
fn1 and fn2 are displayed in Figure 11. Because chatter occurred in the 1000 Hz mode, the fn1
distribution accuracy was increased significantly (i.e., those natural frequencies that were
far from the true value were effectively eliminated). No appreciable change was observed
for the other six distributions (i.e., they remained approximately uniform).
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The horizontal axis ranges are identical to Figure 5.

Given the unstable test and corresponding chatter frequency of 1002.4 Hz, the
spindle speed for the second test was calculated using Equation (2). Specifically,
Ω = 60(1002.4)

4 = 15, 036 rpm. The mean limiting axial depth at the selected spindle
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speed from the remaining stability maps was 2.8313 mm. The second test point is marked
by a white square in Figure 10.

This test and partition sequence was repeated 14 times until only a single stability map
remained. The test points, number of samples remaining after each test, and the chatter
frequency, if present, are reported in Table 2. The corresponding mean values of the stability
model input parameters after each test are provided in Table 3 and displayed in Figure 12
as a function of the test number.

Table 2. Testing and sample partitioning results.

Test
Number

Spindle Speed
(rpm) Axial Depth (mm) Number of Samples

Remaining
Result (Stable or

Unstable)
Chatter Frequency

(Hz)

1 17,547 3.5082 5933 U 1002.4

2 15,036 2.8313 2284 S -

3 15,652 4.3462 996 S -

4 15,823 5.7928 579 U 990.6

5 14,859 4.1948 202 S -

6 15,356 6.3741 117 U 1297

7 19,455 1.3065 61 U 1002.3

8 15,035 5.2794 39 U 1287

9 19,305 1.1535 17 U 1001.4

10 15,021 4.8373 9 U 1289.5

11 19,343 1.0234 6 S -

12 15,496 5.6584 5 S -

13 15,497 5.7520 2 U 1306.6

14 19,599 1.0305 1 S -

Table 3. Mean values of the stability model input parameters after each test.

Test
Number fn1 (Hz) k1 × 106

(N/m)
ζ1 (-) fn2 (Hz) k2 × 106

(N/m)
ζ2 (-) kt (N/mm2)

kn
(N/mm2)

1 1037.2 5.4789 0.022 1349.2 7.6603 0.0329 779.44 219.79

2 995.8 5.5222 0.022 1204.3 7.7727 0.033 756.03 221.05

3 1034.8 5.5610 0.022 1168.1 7.7688 0.032 753.72 220.65

4 1022.7 5.5458 0.022 1187.7 7.7507 0.033 763.68 219.41

5 996.0 5.6043 0.022 1146.9 7.8615 0.033 737.28 218.15

6 993.0 5.5804 0.023 1165.5 7.8217 0.034 745.29 216.45

7 1002.2 5.2989 0.022 1140.4 7.7941 0.034 788.66 212.84

8 1003.2 5.2228 0.022 1148.0 7.7024 0.033 802.22 211.73

9 1012.6 4.9311 0.022 1117.2 7.6632 0.034 848.76 211.04

10 1012.3 4.9666 0.021 1129.0 7.3640 0.034 835.10 217.16

11 1010.2 5.1172 0.023 1128.8 7.5549 0.033 854.49 220.36

12 1012.0 5.1983 0.022 1126.9 7.4165 0.032 846.82 220.43

13 1022.4 5.3414 0.022 1121.3 7.4793 0.033 877.17 227.77

14 1015.1 5.5233 0.021 1143.1 8.3542 0.028 872.75 232.71
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The sample portioning progression over all 14 tests is summarized in Figure 13. It is
seen how the limited test results quickly refine the initial stability map distribution. The
final map (blue) in panel 14 closely resembles the stability map (magenta) determined using
the true values from Table 1. The final values of the stability map input parameters are
listed in Table 4. A comparison to the true values is provided.

Table 4. Comparison of stability model inputs after sample partitioning (14 tests) and the true values.

Stability Model Input Post-Partitioning True Percent Difference

fn1 (Hz) 1015.1 1000 1.51

k1 (N/m) 5.5233 × 106 5 × 106 10.47

ζ1 (-) 0.021 0.02 5.00

fn2 (Hz) 1143.1 1200 −4.74

k2 (N/m) 8.3542 × 106 7 × 106 19.3

ζ2 (-) 0.028 0.03 −6.67

kt (N/mm2) 872.75 700 24.7

kn (N/mm2) 232.71 200 16.4
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test number.
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3. Discussion

As seen in Figure 13, the sample partitioning approach effectively reduces the initial
1 × 104 stability maps to a single sample using only 14 tests. Furthermore, the remaining
map accurately represents the map obtained from the true model input values. In practice,
however, all 14 tests may not be required. The user could elect to discontinue testing at
any point using an appropriate stopping criterion. The criterion could be based on the
remaining number of samples, changes to the distribution, or test cost, for example. In an
ad hoc sense, a review of Figure 13 suggests that test 8 or test 9 could serve as a stopping
point since the basic shape of the stability boundary has been identified.

A second observation is that the chatter frequency-based spindle speed selection
enabled the domain to be explored and the uncertainty to be reduced. For the case study,
the two-mode system caused the chatter frequency to vary between spindle speeds near
15,000 rpm and 19,000 rpm (see Table 2 and Figure 13). The presence of the two modes did
not limit the algorithm efficiency.

An interesting result was obtained for test 12 as shown in Figure 14. Although the
selected test point exceeded the stability boundary defined by the true stability model
input parameters, the test point was stable as determined by time domain simulation. This
highlights that approximations are applied to obtain the time-invariant, radial-immersion-
dependent milling model [6]. Although the model is generally accurate, discrepancies with
tests may occur. The sample partitioning therefore serves to select those stability maps
that best agree with the test results, not necessarily those that are generated from input
parameters that best match the true values. This is emphasized by the results in Table 4,
where disagreement between the final and true stability model inputs is observed, but the
final stability map provides good agreement with both the test results and the stability map
obtained from the true input values.
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Figure 14. Point 12 from Table 2 is identified by a black square. Although the result is predicted to be
unstable using the stability map predicted from the true model inputs (magenta), it was observed to
be stable in the time domain simulation, which provided the test result for this study.

After testing is concluded, the remaining stability maps represent the model for
parameter selection. If multiple maps are retained (e.g., 39 samples would remain if testing
was discontinued after test 8), then multiple values for each model parameter would
remain. The mean values of the modal parameters and cutting force model coefficients at
each spindle speed could be calculated, for example, and then used to define the stability
map. The final milling parameters would then be based on the user’s risk preference.
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Most likely, combinations of {spindle speed, axial depth} at the stability boundary would
not be selected since it is understood that uncertainty remains, even though it has been
reduced by the testing and sample partitioning. It is important to note that the stability map
input values identified by testing and sample partitioning can be applied to other milling
conditions. For example, the milling direction could be switched from down- to up-milling
and the radial depth could be changed. In this way, the method is generalizable to other
milling conditions.

To evaluate the parameters from Table 4, the time domain simulation results are
compared for up milling with a 5 mm radial depth of cut and 0.15 mm feed per tooth.
Recall that the model was developed using a 3 mm radial depth of cut for down milling
with a 0.1 mm feed per tooth. To choose the {spindle speed, axial depth} combinations
for testing, the stability map was calculated using the frequency domain model [6] and
post-partitioning input values from Table 4. Tests were then performed at the spindle speed
corresponding to the maximum allowable axial depth from the predicted stability map.

A comparison of the results using the true and post-partitioning values is shown in
Figure 15, where the test spindle speed was 15,663 rpm. The axial depths were 3 mm
and 4 mm. The stability map for the true values (magenta) predicts the 3 mm axial depth
to be stable and the 4 mm axial depth to the unstable. The post-partitioning stability
map (blue) predicts both axial depths to be stable; the local peak in this map is located at
{15,663 rpm, 4.41 mm}. The left inset shows that the 3 mm axial depth is stable for both
parameters set. Due to the larger cutting force coefficients for the post-partitioning results,
the corresponding x-direction force, Fx, is larger (blue). Because the force is larger, the
x-direction vibration response (blue) is also larger. The circles represent the once-per-tooth
samples. Because they repeat from one tooth passage to the next, forced vibration is present
and the cutting conditions are stable [25].

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 13 of 15 
 

 

reduced by the testing and sample partitioning. It is important to note that the stability 
map input values identified by testing and sample partitioning can be applied to other 
milling conditions. For example, the milling direction could be switched from down- to 
up-milling and the radial depth could be changed. In this way, the method is generalizable 
to other milling conditions. 

To evaluate the parameters from Table 4, the time domain simulation results are com-
pared for up milling with a 5 mm radial depth of cut and 0.15 mm feed per tooth. Recall 
that the model was developed using a 3 mm radial depth of cut for down milling with a 
0.1 mm feed per tooth. To choose the {spindle speed, axial depth} combinations for testing, 
the stability map was calculated using the frequency domain model [6] and post-parti-
tioning input values from Table 4. Tests were then performed at the spindle speed corre-
sponding to the maximum allowable axial depth from the predicted stability map. 

A comparison of the results using the true and post-partitioning values is shown in 
Figure 15, where the test spindle speed was 15,663 rpm. The axial depths were 3 mm and 
4 mm. The stability map for the true values (magenta) predicts the 3 mm axial depth to be 
stable and the 4 mm axial depth to the unstable. The post-partitioning stability map (blue) 
predicts both axial depths to be stable; the local peak in this map is located at {15,663 rpm, 
4.41 mm}. The left inset shows that the 3 mm axial depth is stable for both parameters set. 
Due to the larger cutting force coefficients for the post-partitioning results, the corre-
sponding x-direction force, Fx, is larger (blue). Because the force is larger, the x-direction 
vibration response (blue) is also larger. The circles represent the once-per-tooth samples. 
Because they repeat from one tooth passage to the next, forced vibration is present and 
the cutting conditions are stable [25]. 

The right inset shows that the 4 mm axial depth is unstable for both parameters set. 
Due to the larger stiffness values for the post-partitioning results, the behavior is only 
marginally unstable (blue). This is demonstrated by the variation in the force profile from 
one tooth to the next, but only a small variation in the once-per-tooth samples. The behav-
ior for true values exhibits fully developed chatter (magenta). 

 
Figure 15. Comparison of results using the true (magenta) and post-partitioning (blue) values. Figure 15. Comparison of results using the true (magenta) and post-partitioning (blue) values.



J. Manuf. Mater. Process. 2024, 8, 109 14 of 15

The right inset shows that the 4 mm axial depth is unstable for both parameters set.
Due to the larger stiffness values for the post-partitioning results, the behavior is only
marginally unstable (blue). This is demonstrated by the variation in the force profile from
one tooth to the next, but only a small variation in the once-per-tooth samples. The behavior
for true values exhibits fully developed chatter (magenta).

4. Conclusions

This paper described a milling modeling approach that implemented sample partition-
ing to retain or reject samples from an initial distribution of stability maps using milling
test results. Because the stability model input parameters are also partitioned using the test
results, their uncertainty is reduced using the test results and the milling stability model
accuracy is increased. In a case study, the stability maps were calculated from distributions
of uncertain: (1) modal parameters that represent the tool tip frequency response functions,
and (2) cutting force model coefficients. Test points were selected based on the previous
test result. If the previous test was stable, the combination of spindle speed and mean
axial depth from the remaining samples that provides the high material removal rate was
selected. If the previous test was unstable, the spindle speed for the next test was calculated
using the chatter frequency, where the tooth passing frequency was set equal to the chatter
frequency. The mean axial depth at that spindle speed was then selected to fully define the
test point.

A case study validated the approach. For a selected milling system, defined by a
two-mode symmetric frequency response function and mechanistic cutting force model,
initial uniform distributions for the stability model input parameters were reduced from
1 × 104 samples to a single final sample in only 14 tests. The remaining stability map
provided good agreement to the stability map produced from the true model input values.
A discussion was provided that explored stopping criteria, multiple chatter frequencies,
disagreement between the time domain simulation (used for testing here) and the frequency
domain stability model, and final milling parameter selection given the reduced uncertainty
model after testing, including generalizability.
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