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Abstract: Humping is a common defect in direct energy deposition processes that reduces the
geometric integrity of printed products. The available literature on humping detection is deemed
reactive, as they focus on detecting late-stage melt pool spatial abnormalities. Therefore, this work
introduces a novel, proactive indicator designed to detect early-stage spatiotemporal abnormalities.
Specifically, the proposed indicator monitors the variability of instantaneous melt pool solidification-
front speed (VIMPS). The solidification front dynamics quantify the intensity of cyclic melt pool
elongation induced by early-stage humping. VIMPS tracks the solidification front dynamics based
on the variance in the melt pool infrared radiations. Qualitative and quantitive analysis of the
collected infrared data confirms VIMPS’s utility in reflecting the intricate humping-induced dynamics
and defects. Experimental results proved VIMPS’ proactivity. By capturing early spatiotemporal
abnormalities, VIMPS predicted humping by up to 10 s before any significant geometric defects.
In contrast, current spatial abnormality-based methods failed to detect humping until 20 s after
significant geometric defects had occurred. VIMPS’ proactive detection capabilities enable effective
direct energy deposition control, boosting the process’s productivity and quality.

Keywords: additive manufacturing; condition monitoring; direct energy deposition; proactive;
solidification front; spatiotemporal

1. Introduction

Direct energy deposition (DED) stands out among additive manufacturing (AM) tech-
nologies due to its high productivity of geometries with near-to-optimal shapes. The
capability of multi-axis material delivery as a powder or wire enables the creation and
repair of complex geometries, large-scale parts, and multi-grade materials, aligning with
the demands of aerospace applications [1–3]. This advantage of material delivery in DED
comes with significant challenges. Unlike powder bed processes, where the powder is
laid statically, the DED material’s dynamic delivery complicates the heat dissipation [4,5].
The continuous and localized addition of material generates varying heat intensities and
gradients, leading to a complex thermal profile within the heat-affected zones. This com-
plexity in heat management can result in various defects and the absence of consistent and
standardized process output characteristics. The non-uniform cooling, heat accumulation,
and re-melting of built layers during the disposition of new ones leads to micro and macro
defects such as geometric and dimensional distortion, surface and internal cracks, and
porosity formation [6]. Consequently, a large body of literature focuses on developing
different monitoring and control systems to improve the reliability and repeatability of
DED processes [7].
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Humping is a phenomenon that significantly reduces the geometrical accuracy of
the produced products. Figure 1a shows a severe humping manifestation, demonstrating
the formation of crests and valleys that contribute to the characteristic wavy structure.
During humping, the melt pool goes through a series of abnormal solidification dynamics
(i.e., modes). Transitioning between these different modes depends on the humping severity,
as shown in Figure 1. Panels (b–f) showcase the different melt pool modes associated with
humping, with the severity increasing progressively from b to f. Additionally, within each
panel, time progresses from the top to the bottom (e.g., (b.1) precedes (b.2)). Starting with
the normal mode, in Figure 1(b.1,b.2), the melt pool (MP) shows a temporally invariant
shape. This temporal invariant shape implies that the solidification front (SF) speed matches
the laser speed. Thus, the relative velocity between the laser and solidification front at the
melt pool tail is almost zero. The initial stage of humping starts with the MP elongation
mode. In this mode, the MP shows cyclic behavior, alternating between long (Figure 1(c.1))
and short melt pools (Figure 1(c.2)). This variation in melt pool size indicates an inconsistent
solidification front velocity direction (SFD), which is the direction of the relative velocity
between the solidification front and the scanning speed, as shown by the orange arrows
in Figure 1(c.1,c.2). A negative SFD means that the solidification front is moving away
from the laser, and the liquid is accumulating at the MP tail, as shown in Figure 1(c.1).
Conversely, a positive SFD indicates liquid solidifying at the tail, causing a shorter MP.
Despite this fluctuation in the SFD, the degradation of geometric accuracy is minimal
during the early humping stage (i.e., elongation mode).
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Figure 1. (a) Real image of severe humping redrawn from [8] showing the crests and valleys forming
the wavy structure. Each column (i.e., from (b–f)) shows different melt pool modes with humping
severity increasing from (b) to (f). Within each column, time progresses from top to bottom.

As the severity of humping intensifies, the process transitions from the elongation
mode to the swelling mode. A significant volume of liquid accumulates at the MP’s tail
(Figure 1(d.1)) and solidifies locally, leading to crest formation at the tail (Figure 1(d.2)).
When the elongation is excessive, the detachment mode is activated. The MP tail is detached
and forms an isolated liquid volume (Figure 1(e.2)), further contributing to crest formation
(Figure 1(e.3)).

During swelling mode, the continuous formation of these crests deteriorates the
printed part’s geometrical accuracy rendering it wavy (Figure 1(f.1)). When the surface
is wavy, late humping symptoms (i.e., tilting mode) are observable. The MP follows
a distorted path (i.e., wavy trajectory); thus, it starts to tilt—see the change in the MP
orientation indicated by the blue line in Figure 1(f.2–f.4).
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The current literature offers various contradictory mechanisms that trigger the elonga-
tion and swelling mode. Some hypothesize a relation between powder density gradients in
the gas-powder jet and humping creation. They assume that the powder gradient can cause
protrusion growth [9]. Such protrusions are similar to the swelling in Figure 1(d.1) and
thus can also lead to the formation of the humping wavy surface in Figure 1a. However,
humping is not exclusive to powder-based AM processes but is also common in non-power-
based processes such as welding [10–12]. In the welding literature, humping is often related
to factors such as strong forward flow momentum and limited backfilling. The process
conditions that trigger these factors are still unclear. In keyhole printing, with high energy
intensity and deep depression in the laser-material interaction zones, some hypothesize
that the lateral oscillation of the keyhole triggers humping [13,14]. However, humping
is not exclusive to the high-energy-intensity keyhole printing mode but is also observed
for conduction-mode welding with lower energy intensity and shallow melt pools. Gulli-
palli et al., 2023 have even recently shown that reducing heat input in DED (i.e., moving
from keyhole to conduction mode printing conditions) can aid in activating humping [15].
These contradictory recommendations and explanations arise from the complex non-linear
interactions of physics in metal welding and printing. Thus, generalizations of these ex-
planations or guidelines will always be doubtful, reducing the reliability of offline energy
input optimization and emphasizing the need for real-time printing monitoring systems.

Instead of energy input optimization, the industry adopts energy management opti-
mization. Energy management can occur by active cooling [16,17] or interlayer dwelling,
with the latter being the more common strategy. Interlayer dwells pause the printing for a
predetermined dwell time (DT) after a predetermined continuous deposition time (CDT),
allowing the part to cool down and reach a predetermined temperature before resuming
printing [18,19]. If achieved, optimal energy management is capable of keeping the melt
pool in its normal state (Figure 1(b.1,b.2), effectively preventing humping. However, pre-
determining DT and CDT is a considerable optimization problem. For example, it has
been shown that the optimal CDT varies depending on the printed part geometry and the
current build height [20]. Frequent stopping or unnecessarily prolonged dwell reduces
productivity and subjects the part to unnecessary thermal cycles, potentially degrading
quality [21,22]. Conversely, excessive delays in stopping (i.e., too long CDT) may lead to
irreversible geometric inaccuracies, rendering the part as scrap unless hybrid additive-
subtractive manufacturing techniques are available. Therefore, identifying the optimal
stopping time that maximizes the CDT is crucial, highlighting the need for advanced
real-time monitoring technologies.

While there are numerous studies dedicated to online monitoring solutions for de-
tecting humping onset in additive manufacturing, the majority are reactive rather than
proactive. This is because they have focused on humping late spatial symptoms rather
than early spatiotemporal dynamics [23–25]. For instance, [24] detects humping when
the melt pool is spatially detached into two separate liquid volumes (i.e., the detachment
mode illustrated in Figure 1(e.2)). At this stage, geometric inaccuracies caused by humping
have already manifested and may lead to part scraping. Therefore, proactive monitor-
ing of humping is crucial to provide enough time to take action to prevent irreversible
geometric defects.

The principal contribution of this study is the early detection of the elongation mode
of humping. Our hypothesis is that focusing on spatiotemporal abnormalities, rather
than solely spatial ones, enables earlier and more accurate humping detection. This is
because early detection of the elongation mode requires the simultaneous consideration
of both spatial and temporal (i.e., spatiotemporal) dynamics (i.e., the variation between
Figure 1(c.1,c.2)), unlike the late detachment mode, which can only be detected by identify-
ing spatial abnormalities (i.e., the swelling state illustrated in Figure 1(e.2)). Motivated by
this physical understanding, we propose the VIMPS indicator as the following:
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1. Transforms from reactive to proactive humping detection.
2. Transforms humping detection from spatial (i.e., detachment) to spatiotemporal

(i.e., elongation) abnormalities.
3. Practically tracks the variability in solidification front dynamics.

The structure of this study is organized as follows: Section 2 describes the experimental
setup and test matrix utilized for collecting the infrared videos. Section 3 focuses on
interpreting and processing the data to calculate the proposed humping indicator (VIMPS).
Section 4 empirically confirms the superiority of VIMPS compared to current state-of-the-art
approaches.

2. Experimental Setup

Experiments were conducted on a 3kW TRUMPF TruDiode laser (TRUMPF, Ditzingen,
Germany) integrated with a six-axis CNC gantry. This system incorporated Reis Lasertec
optics (Reis Lasertec, Würselen, Germany), an ILT powder nozzle (Fraunhofer Institute
of Laser Technology ILT, Aachen, Germany), and a Sulzer-Metco TWIN-10 feeder (Sulzer
Management Ltd, Winterthur, Switzerland). A 125 mm collimation lens, a 150 mm focal
lens, a 600 µm fiber, a laser whose wavelength is 950 nm, and a spot size of D = 2.6 mm
were used. Figure 2 shows the laser profile used. In this study, austenitic nickel–chromium
stainless steel powder was used; it has a nominal particle size distribution between −45 and
+11 µm and a chemical composition of Fe 17Cr 12Ni 2.5Mo 2.3Si 0.03C. Circular builds of
25 mm in both height and diameter were constructed under varied printing conditions, as
detailed in Table 1. Three parts were printed using combinations of two laser powers, P, and
two traverse speeds, v. All prints were made with an 8 g/min powder flow rate. In total,
nine parts were printed, including two replicas. We focus on thin-walled (i.e., single-bead
multi-layer) prints as they are the most prone to humping defects. A continuous spiral
printing path was generated by rotating the table and moving the head in the positive Z
direction, as shown in Figure 3.
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Table 1. Experimental test matrix.

Test No. P (W) v (mm/min)

1 650 600
2 650 360
3 850 360

For melt pool monitoring, a med-wave infrared MWIR camera (i.e., FLIR SC8300
(FLIR Systems, Inc., Wilsonville, OR, USA)) was used. The MWIR option was selected to
ensure the capture of low-temperature regions, such as the melt pool tail, which cannot
be captured by a normal VIS camera (i.e., a camera only sensitive to visible light). This
is because visible light is mainly emitted by objects at extremely high temperatures [26].
The camera was equipped with a 50 mm focal lens with a 1-inch extension tube to achieve
the desired field of view (FOV) of 5 mm × 3.5 mm. The camera was operated at a frame
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rate of 233 Hz and a resolution of 256 × 180 pixels. These settings were selected so that
the sampling frequency was adequate to capture the humping dynamics. To allow for
continuous monitoring and to negate any relative movement between the melt pool and the
camera, the camera was directly mounted on the laser head, as shown in Figure 3b. After
printing, the as-printed parts were imaged using a ZEISS Smartzoom 5 (ZEISS, Oberkochen,
Germany) automated digital microscope to qualitatively assess the geometrical accuracy
(i.e., topography).
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3. Signal Processing
3.1. Pixel Intensity Physical Interpretation

The present study collects the melt pool infrared signature as a series of 2D images
throughout the printing duration. These sequential images provide a comprehensive
overview of the melt pool spatiotemporal variations. Figure 4 shows a single frame;
the top part shows the large field of view (the top image shows a zoomed-out FOV, not
the processed FOV in the developed approach) of the entire cylinder, while the bottom
part zooms in on the heat-affected zone (HAZ) and the melt pool. It should be noted
that despite its higher temperature, the melt pool in Figure 4, marked in red, exhibits a
darker appearance, indicative of lower pixel intensity. This phenomenon can be explained
by the variations in emissivity associated with different phases of the material, which
affect its heat radiation. According to the Stefan–Boltzmann law, the total radiation (Prad)
emitted by a body is a function of both its temperature (Temp) and its emissivity (ϵ),
expressed as Prad = σϵATemp4, where σ represents the Stefan–Boltzmann constant. In
the case of stainless steel, the liquid phase exhibits a lower emissivity compared to its
solid counterpart [27], especially when the solid is oxidized [28]. Consequently, the darker
appearance of the melt pool in Figure 4 suggests that the decreased emissivity in the liquid
state has a more pronounced effect than the increased temperature. Such an observation
can be confirmed by analyzing the sequence of the melt pool’s image after the deactivation
of the laser, as shown in Figure 5. During such a sequence of images, the melt pool is
solidifying; thus, its temperature consistently declines. Notably, in Figure 5, the pixel
intensity of the melt pool initially increases, reaching its peak around time t = 304 s,
followed by a reduction at t = 307 s. This temporary increase in pixel intensity during the
solidification can be attributed solely to changes in emissivity as the material transitions
from liquid to solid phases. Consequently, this explains that the lower pixel intensity of
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the melt pool is due to its lower emissivity. This pattern aligns with observations reported
in [29], where steel displayed similar radiative characteristics during solidification in an
argon environment.
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corresponds to the moment at which the laser was turned off.

3.2. Physics-Based Indicator

This section outlines the proposed methodology for calculating the variability of the
instantaneous MP solidification-front speed (VIMPS) indicator from the raw collected IR
videos. VIMPS is designed to quantify the variability in SFD during elongation and swelling
modes. The proposed method starts by defining a region of interest (ROI) around the melt
pool, as shown in Figure 6. Within this ROI, for every time step, three principal indicators
are computed: (1) average pixel intensity (API), (2) rolling variance of API (APIRV), and
(3) rolling mean of API (APIRM). These indicators are instrumental in calculating the
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VIMPS indicator. The following sections detail the computation and rationale behind these
three critical indicators.
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Figure 6. (d) Average pixel intensity (API) variations during the accumulation (a→b) and solidifica-
tion (b→c) through one elongation mode cycle.

The API reflects the dominance of the solid phase over the liquid phase in the compo-
sition within the ROI. It is designed to have an inverse and positive correlation with the
MP size and the SFD, respectively, as shown in Table 2. It can be calculated at a specific
time step as follows (When the context is clear, the time index (t) is dropped from API(t)
and PI (x, y, t) to avoid cluttered notation. But it should be clear that each of API, APIRV,
APRIVM, APRIVxM, and PI varies over time):

API =
1

W × H

W

∑
x=1

H

∑
y=1

PI (x, y) (1)

where W and H are the width and height of the ROI, respectively. PI(x, y) represents the
pixel intensity at coordinates (x, y) in the IR-captured video frame. According to Section 3.1,
PI is higher for the solidified stainless-steel powder used in this study. Consequently, API is
higher when the solid phase dominates the ROI composition. For example, Figure 6 shows
the API variations during the accumulation and solidification through one elongation mode
cycle. In Figure 6a, when the melt pool is small, the ROI composition is dominated by
the solid phase; thus, API is high, as shown in Figure 6d. Driven by limited backfilling
and dominant forward flow, as illustrated in Figure 6b, liquid accumulates within the
melt pool tail, and the SFD switches to the negative direction, denoting the onset of the
elongation mode. This elongation mode shifts the ROI composition towards the liquid
phase, reducing the API, as Figure 2d illustrates. This API drop is due to the liquid’s lower
PI. Upon reaching maximal extension, the MP undergoes rapid cooling, reversing the SFD,
and leading to a localized solidification in the tail, as shown in Figure 6c. This solidification
dominates the ROI and increases the PI, thus increasing the API. Such an accumulation–
solidification cycle, summarized in Table 2, will repeat throughout the elongation mode,
fluctuating SFD between positive and negative values. Such fluctuations are reflected on the
API, leading to the cycle shown in Figure 6c. The cycle amplitude (A) and period (T) depend
on the humping intensity; small T and large A indicate intense humping. In contrast, during
the normal mode (i.e., no humping), as shown by the horizontal straight line in Figure 6d,
the API remains unchanged (i.e., T → ∞, A → 0) as SFD remains at zero. The subsequent
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steps to calculate the VIMPS indicator are essential signal-processing steps designed to
minimize noise, enhance robustness, and streamline decision-making processes.

Table 2. Variation of different physical quantities during the elongation mode.

MP Size SFD API

Accumulation in Figure 1(c.1) Increasing Negative Decreasing
Solidification in Figure 1(c.2) Decreasing Positive Increasing

Instead of calculating the cycle amplitude (A) and period (T) to quantify humping
intensity, the rolling variance of API (APIRV) is used. APIRV calculates the variance in API
as follows:

APIRV =
1

TRD

TRD−1

∑
τ=0

(API(t − τ)− APIRM)2 (2)

where TRD is the rolling window duration, τ is a time step within the rolling window, t
is the current time step. In this study, TRD was set to 2 s, and APIRM is the API rolling
mean defined in Equation (3). Compared to the (A, T), APIRV is more straightforward
to calculate as it does not involve frequency analysis and still provides the information
needed for humping detection. Small (T) and large (A) are reflected as high APIRV. Thus, a
sudden increase in APIRV indicates the MP transitioning from normal to elongation mode.

The rolling mean of API (APIRM) is also used to enhance the robustness of APIRV
by making it less sensitive to variances that are unrelated to elongation and is calculated
as follows:

APIRM =
1

TRD

TRD−1

∑
τ=0

API(t − τ) (3)

APRIVxM, the more robust version of APRIV, is calculated as follows:

APIRVxM = APIRM × APIRV (4)

In the calculated APRIVxM, since APIRM is low at early layers (i.e., low total heat
input), it dampens the APIRV. This dampening improves robustness against unrelated
variances, particularly noticeable during the initial layers, where APIRV’s increase is not
attributable to elongation but to initial MP formation and heat dissipation into the substrate.

Finally, the VIMPS is obtained by taking the rolling mean of the APIRVxM. The rolling
mean makes VIMPS more interpretable by further dampening APIRVxM noise.

VIMPS =
1

TRD2

TRD2−1

∑
τ=0

APIRVxM(t − τ) (5)

TRD was set to 10 s to minimize the noise while preserving the signal information.
Since API tracks the fluctuation in the instantaneous solidification front speed, and since
VIMPS tracks the variability in API, the proposed indicator is the denoted variability
of instantaneous melt-pool solidification front speed (VIMPS). The procedures to obtain
VIMPS are summarized in Table 3.
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Table 3. Pseudocode for physics-based indicator methodology.

Line Pseudo Code

1 Define Region of Interest (ROI)
2 For each time step t do:
3 Calculate Average Pixel Intensity (API) as per Equation (1)
4 Calculate API’s Rolling Mean (APIRM) as per Equation (2)
5 Calculate API’s Rolling Variance (APIRV) as per Equation (3)
6 Calculate APIRVxM as per Equation (4)
7 Calculate (VIMPS) as per Equation (5)
8 End For

4. Results

The results of this study are divided into three sections: Section 4.1 provides an
overview of the outcome of the tests in the test matrix shown in Table 1. Section 4.2
affirms the VIMPS expressiveness of the geometrical defect, while Section 4.3 affirms API’s
capability to track the solidification dynamics, which is essential for VIMPS’s success.

4.1. Geometrical Accuracy

Figure 7 shows the as-printed parts of the different tests in Table 1. Figure 7a–c shows
isometric views of the parts, while Figure 7d–f presents top-view images of the printed parts
alongside the surface topography (i.e., the inner circle color map). Parts printed in Tests #1
and #3 have shown signs of humping. Figure 7a,d clearly shows the geometrical defects
caused by melt-pool humping. More specifically, in Figure 7d, the unstable deposition
and swelling formed a crest valley structure, as shown in the top view surface topography.
In addition, the effect of humping can also be seen by looking at the side walls of the
cylinder in Figure 7a,c. It is observed that there are protrusions, normal to the cylinder wall,
indicative of the swelling and uneven deposition that is associated with humping. More
interestingly, the protrusions in Figure 7c form a spiral pattern, which will be explained
later in Section 4.2. Most importantly, Test #2 shows an acceptable geometrical shape with
no signs of humping, as shown in Figure 7b,e.
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Figure 7. As-printed parts. (a,d) Test-1, (b,e) Test-2, and (c,f) Test-3. (d–f) Top-view with an elevation
map (i.e., topography). Yellow regions are higher than blue regions by 1 mm, as shown in the scale.
Note that the variations in (e,f) are mainly due to the helical printing path, while in (d), the variations
are dominated by the humping-induced crests.

In terms of humping in relation to printing conditions, Gullipalli et al. [17] suggested
that lower heats activate humping. However, our experiments show a contradicting trend
where lower heats suppressed humping. Comparing Test #2 to Test #1 in Figure 6 shows
less protrusion in Test #2 (i.e., Figure 6b) compared to Test #1 in Figure 6a. This is despite
the low heat input for Test #2 (i.e., higher speed), as shown in Table 1. The contradiction
between the trend seen here and the one seen in Gullipalli et al. [17] indicates that it
is challenging to draw a simple relation between the process parameters and humping
activation. The complexity arises from the non-linear interplay of various physical factors
involved. Therefore, the development of real-time condition-monitoring systems, such as
VIMPS, is vital for real-time control and elimination of humping.

4.2. VIMPS Expressiveness of Geometrical Defects

As will be demonstrated in this Section, VIMPS shows a clear correlation to the
geometric defects presented in Figure 7. Figure 8 shows API, APIRV, and VIMPS for the
three prints shown in Figure 7. The bottom x-axis indicates the time elapsed since the
beginning of the print process, while the top x-axis indicates the layer number. The API is
indicated on the left y-axis, whereas the APIRV and VIMPS values are plotted on the right
y-axis. A vertical line marks the layer and time—referred to as T*Geo—when geometric
protrusions start to appear on the as-printed part. Notably, the upsurge in VIMPS values
consistently aligns with T*Geo across all samples, affirming the indicator’s predictive value
for detecting early humping modes (i.e., elongation). Additionally, Figure 8 shows the
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usefulness of the signal processing steps performed to calculate VIMPS based on the APIRV.
VIMPS is significantly more interpretable and has lower noise than APIRV.
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(a) Test #1 (b) Test #2 (c) Test #3.

To demonstrate the correlation between VIMPS and the humping-induced geometric
inaccuracy, Figure 9 shows the VIMPS overlayed on a sectioned surface topography of Test
#3. The surface topography further highlights the existence and location of protrusions
induced by humping, as shown earlier in Figure 7c. In Figure 9a, these protrusions appear
as yellow bright spots. Such spots result from the sudden and localized solidification
highlighted earlier in Figure 1 during swelling modes. More importantly, when VIMPS is
overlayed on the topography in Figure 9a, the noticeable increase in VIMPS matches the
building height at which the protrusion starts to appear more frequently (i.e., protrusion
density). Note that in Figure 9a, the x-axis (i.e., location) is shared but not the y-axis. This
alignment between VIMPS and the density of the protrusions further confirms the utility of
VIMPS for both humping detection and quantification.

Table 4 summarizes the superiority of VIMPS over the spatial-based SOTA in terms
of latency, computations, and consistency, whereas Figure 10 shows the onset of the de-
tachment mode, a severe humping condition, in Tests 1 and 3. Available SOTA approaches
in the literature detect humping by monitoring the detachment mode, and hence, their
detection of humping is expected to be at or after the onset of detachment mode, as shown
in Figure 10. In Test #1, VIMPS detected humping at approximately t = 200 s, well ahead of
the first realization of detachment mode at t = 219.07 s, as demonstrated in Figure 10a. Thus,
VIMPS lowered the detachment latency by almost 20 s. The superiority of VIMPS is also
maintained in Test #3. As shown in Figure 10c, the detachment started at t = 200.55 s, while
VIMPS had already signaled the humping at around t = 170 s, with the geometric defects
observable shortly thereafter (i.e., T*Geo). VIMPS’s lower latency is essential for timely
interventions that can significantly enhance the manufacturing process’s productivity and
allow for proactive actions.
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Table 4. Comparative analysis of humping detection methods; all values are in seconds.

Metric VIMPS SOTA’s [24]
Theoretical Upper Bound

Test # 1 3 1 3
Detection Time 200 170 219 200
T*Geo Time 210 180 210 180
Detection Lead 10 10 −9 −20
Consistency High Low
Complexity Low High
Principle Spatiotemporal Spatial
Mode Elongation Detachment

Note that this is an upper bound for the SOTA performance, as detachments in this figure were detected by human
annotator. In reality, lower performance is expected due to error depending on the segmentation approach used.

Regarding consistency, Figure 10b,d shows the second occurrence of MP detachment
in the respective tests. It is noticeable that this second occurrence is delayed up to 44.45 s,
as shown in the case of Test #1. This low consistency (i.e., the lag between the first
and second occurrence) lowers the operator’s confidence in the detachment-based SOTA
and complicates the decision making. On the other hand, Figure 8 shows that VIMPS
is consistently and significantly higher after the T*Geo. In addition, the simplicity of
VIMPS offers a practical advantage over the detachment-based SOTA. This is because
the detachment-based SOTA requires a more sophisticated segmentation algorithm to
detect when the MP is detached into separate volumes. Although many segmentation
approaches have been proposed lately, they are still more complex than VIMPS and, thus,
more prone to error. For example, Appendix A shows the result of segmenting Figure 10a
using the “Segment Anything Model” (SAM) [30], a SOTA segmentation model. Despite
its sophistication, SAM fails to segment the melt pool correctly without human help; a
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detailed explanation of this conclusion is available in Appendix A. Accordingly, VIMPS
effectively addresses several critical issues inherent in the detachment-based SOTA:

1. It corrects the conceptual oversight related to the early stages of humping elongation modes.
2. It acknowledges the temporal dynamics of humping, which are often overlooked.
3. It avoids the complexity of segmentation, reducing potential errors.
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Figure 10. Manually annotated melt pool at the detachment mode (a,b) from Test #1 and (c,d) from
Test #3. (a,c) First instances of the detachment mode in the corresponding test and (b,d) the
second instance.

These improvements over the detachment-based approach are summarized in Table 4,
highlighting the benefits and enhanced reliability of using VIMPS.

The following analysis focuses on calculating the tilting frequency, another helpful
insight that is lost if temporal variations are overlooked. Figure 11 shows the result of
performing fast Fourier transformation (FFT) on the API signal during MP tilting. As
shown in Figure 11a, the API signal shows a quasi-sinusoidal pattern with a dominant
frequency of 1.22, as shown in Figure 11b. This frequency is 9.4 times the table rotation
frequency (i.e., 0.13 Hz) during the cylinder printing process, which can be directly related
to the nine distinct crests observed in Figure 7d and the spiral pattern observed in Figure 7a.
The melt pool completes approximately nine tilt cycles in each layer according to the
dominant frequency, reflecting the nine crests shown at the top layer of the print. The
spiral pattern arises because the humping frequency is not an exact multiple of the rotation
frequency. Therefore, with each successive layer, the crests’ location shifts by an angle
of δθ. This can be conceptualized as stacking various elevation maps from Figure 7d,
with each layer rotating by δθ, leading to the spiral formation observed in Figure 7a. The
alignment between the insights from Figure 11 and the as-printed part geometry shown
in Figure 7 affirms the efficacy of API to reflect the MP’s spatiotemporal dynamics and its
real-time expressiveness of geometrical defect occurrence and characteristics. Additionally,
this highlights the usefulness of monitoring the temporal information that, unlike VIMPS,
current SOTA approaches overlook.
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(b) its fast Fourier transformation analysis.

Although Figure 7b reveals no visible meso-protrusions in Test #2, Figure 12 shows
some micro-protrusions when the topography is investigated with higher resolution. These
micro-protrusions especially appear towards the late layers, as shown in Figure 12c. The
size of these micro-protrusions can vary significantly. For example, Figure 12b shows two
adjacent micro-protrusions, each with a unique topography. It is worth noticing that these
micro-protrusions are generally larger than the powder size used in this study.
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4.3. API Expressiveness of Solidification Spatiotemporal Dynamics

The superiority of VIMPS is conditioned on the API’s success in tracking the solidifica-
tion’s spatiotemporal dynamics. This section affirms API’s expressiveness regarding the
elongation cycle’s spatiotemporal dynamics. Figure 13a,b shows the elongation mode’s
cycle (i.e., accumulation and solidification steps) during Test #1. Test 1’s early layer is
shown in column (a), while the late layer is shown in (b). The liquid accumulation starts in
Figure 13(a.1,b.1), and the melt pool reaches its maximum elongation at the end of liquid
accumulation in Figure 13(a.2,b.2). The resultant increased surface area of the melt pool
then speeds up cooling, leading to localized solidification at the tail, Figure 13(a.3,b.3).
These steps are more distinguishable in the melt pool infrared image at late humping stages
(i.e., Figure 13b) compared to the early stage (i.e., Figure 13a). This is because the elongation
is much smaller in the early stage compared to the late layers.
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Figure 13. (a) Early and (b) late infrared images from test #1 and (c) late test #2. The accumulation
step begins in (1) and ends in (2), and the solidification step starts in (2) and ends in (3). Subplots (4)
show the pixel intensity increase during the solidification (i.e., the pixel-wise difference between (3)
and (2). Subplots (5) show the average pixel intensity (API) and variability of instantaneous melt
pool solidification-front speed (VIMPS) variation during the elongation cycle.

To highlight the distinctions in solidification spatiotemporal dynamics between the
early and late layers, Figure 13(a.4,b.4) captures the pixel intensity (PI) increase resulting
from solidification processes. The PI increase over time is critical to reveal the spatiotem-
poral dynamics because, unlike the spatial variations shown in Figure 10, the spatiotem-
poral difference is hidden if only a single frame (i.e., single time step) is investigated.
Figure 13(a.4) demonstrates the pixel-wise difference between Figure 13(a.3,a.2), where
the pronounced yellow regions signal the formation of new solid structures and switch-
ing the SF to the positive direction, as shown in Figure 13(a.3,a.2). At the late layer,
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under the swelling mode, the accumulated liquid at the tail locally solidifies, as shown
in Figure 13(b.3,b.2), forming a crest that elevates well above the MP head, as shown in
Figure 13(b.3).

The VIMPS design takes advantage of the API’s ability to reflect the intricate elon-
gation and swelling spatiotemporal dynamics. Figure 13(a.5,b.5) confirms the previously
conceptualized trend in Figure 6d, where the API exhibits a decreasing trend with the
liquid’s accumulation at the melt pool’s tail, followed by an increasing trend during solidifi-
cation. This API trend aligns with the phase transformation during solidification, regardless
of the magnitude of the elongation. The intensity of API fluctuations (i.e., amplitude and
frequency) correlates directly with the MP abnormal solidification front’s spatiotemporal
dynamics. Consequently, quantifying the API fluctuation leads to the novel proposed
VIMPS indicator. It is worth noticing that in Figure 13(b.4), the head of the melt pool
shows a negative value (i.e., blue shades), which is unrelated and even contradicts the SF
dynamics at the tail. Future work can test excluding the MP head from the analyzed ROI
and how this will affect the quality of the API signal.

Figure 13(c.5) also shows interesting insights correlating Test #2’s overall relatively
good geometrical accuracy with its solidification dynamics. For Test #2 in Figure 13(c.5), the
elongation cycle time (T) is significantly higher than the other two tests in Figure 13(a.5,b.5).
Test #2 takes 3.15 s to complete one cycle, while it took 0.28 s for the other two tests. This
indicates that the elongation mode is activated in both, especially toward the end layers,
but with a longer cycle time in the case of Test #2.

5. Conclusions

Motivation: This study addresses the limitations of offline humping elimination meth-
ods and the high detection lag in current online approaches. This work hypothesizes
that monitoring spatiotemporal abnormalities enables earlier humping detection. To test
this hypothesis, a new proactive monitoring indicator is introduced, which monitors the
variability of instantaneous melt pool solidification-front speed (VIMPS).

Methodology: VIMPS captures the unique spatiotemporal dynamics of the solidifica-
tion front. Unlike traditional methods that focus on spatial abnormalities, VIMPS analyzes
the average pixel intensity (API) in infrared video data to detect early elongation modes.
This method identifies cyclic fluctuations in the solidification front speed, which corre-
spond to the early stages of humping. By quantifying these fluctuations, VIMPS provides a
proactive humping indicator.

Key findings: The results confirmed our hypothesis. Thanks to monitoring spatiotem-
poral abnormalities, VIMPS proactively detected humping 10 s before its onset. In contrast,
current spatial abnormalities based on state-of-the-art methods only reactively detect it up
to 20 s after its initiation. This results in a reduced detection latency of up to 30 seconds,
a significant improvement over existing methods. This reduction in latency is crucial for
DED process optimization and control. Additionally, the FFT analysis confirmed API’s
ability to reflect the intricate patterns of humping-induced defects.

Impact: For industrial applications, VIMPS is computationally efficient and utilizes
existing hardware, making it easy to integrate into current monitoring systems. As a
practical and proactive indicator, VIMPS serves as a crucial first step toward achieving
real-time DED optimization and control.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jmmp8030114/s1, Figure S1: MP (melt pool) infrared image during
detachment mode.
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Abbreviations

A The amplitude of the elongation cycle
API Average pixel intensity
CDT Continuous deposition time
DED Direct energy deposition
DT Dwell time
LE Linear energy input
MP Melt pool
SF Solidification front
SFD Solidification front relative velocity direction
T Duration of the elongation cycle
VIMPS Variability of instantaneous melt-pool solidification-front speed

Appendix A

This appendix is meant to show the technical difficulty with the current state-of-the-art
method (SOTA). As discussed in Section 4.2, the detachment-based SOTA involves using
image segmentation to determine when the melt pool (MP) divides into separate volumes.
Image segmentation has garnered significant attention in additive manufacturing (AM)
research, leading to various successful models tailored to specific AM-related segmentation
problems [31]. On the contrary, the Segment Anything Model (SAM) [30], developed by
Meta, stands out due to its zero-shot learning capabilities, which allow it to operate across
new datasets without further training or finetuning.

Zero-shot learning is a valuable attribute as it eliminates the need for manually anno-
tated datasets, which is a major time-consuming and labor-intensive step in developing
deep learning models. This attribute aligns with the simplicity offered by the VIMPS tool.
However, our empirical analysis, illustrated in Figure A1, demonstrates that SAM struggles
with correct segmentation without human guidance (i.e., SAM “Everything” prompting).
Even when the model is given extra information through supervised inference (i.e., “Hover
and Click”. Promting), it still struggles. In the “Hover and Click” mode, during inference,
the user iteratively adds blue dots at regions that belong to the melt pool and adds red
points to areas that do not. In detachment mode, it becomes more challenging as the user
needs to define two isolated melt pool volumes and insert red dots into the proper regions
to split the segmented region into two separate volumes properly. So, even with super-
vision, detachment detection is challenging. For real-time monitoring, the segmentation
inference should be fully unsupervised.

This limitation underscores a critical limitation of zero-shot learning—while promising,
it does not universally guarantee effective performance across all data sets [32]. The
discrepancy between the images used in initial training and those in application settings
can be substantial, often necessitating the use of transfer learning techniques to bridge this
gap [33,34].
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Figure A1. (a) MP (melt pool) infrared image during detachment mode, the same as in Figure 10a. 
(b–i) SAM (Segment Anything Model) segmentation results. (b) Zero-shot segmentation results 
Figure A1. (a) MP (melt pool) infrared image during detachment mode, the same as in Figure 10a.
(b–i) SAM (Segment Anything Model) segmentation results. (b) Zero-shot segmentation results
without human aid, (c) the results with human aid that lead to correct segmentation, and (d–f) the
intermediate steps between (b,c). Interested readers can reproduce this experiment by downloading
(a) from the Supplementary Material and testing the SAM demo on the following link [35]. (b) Can be
obtained using the automatic “Everything” prompting, but (c–f) needs more sophisticated prompting
with interactive points using the manual “Hover and Click”.
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