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Abstract: The soldering process for aerospace applications follows stringent requirements and
standards to ensure the reliability and safety of electronic connections in aerospace systems. For
this reason, the quality control phase plays an important role to guarantee requirements compliance.
This process often requires manual control since technicians” knowledge is fundamental to obtain
effective quality check results. In this context, the authors have developed a new open source dataset
(SolDef_AI) to implement an innovative methodology for printed circuit board (PCB) defect detection
exploiting the Mask R-CNN algorithm. The presented open source dataset aims to overcome the
challenges associated with the availability of datasets for model training in this specific research and
electronics industrial field. The dataset is open source and available online.

Keywords: open source dataset; SMT component soldering; aerospace printed circuit board
manufacturing; printed circuit board defect detection; automated optical inspection; deep learning;
mask R-CNN

1. Introduction

Electronic printed circuit boards (PCBs) play a pivotal role in the modern world of
satellite technology, particularly in the field of microsatellites. These devices have revo-
lutionized space exploration by offering a cost-effective and agile platform for various
missions, from Earth observation to scientific research. At the heart of every microsatel-
lite, intricate PCBs contain and connect different electronic components responsible for
communication, navigation, data collection, etc.

PCBs for microsatellites are characterized by their compact design, resilience to radia-
tion, ability to operate in extreme temperatures, durability against mechanical stress during
launch, efficient power consumption, hermetic sealing for space protection, high-frequency
communication capabilities, redundancy for mission reliability, long lifespan, and adapt-
ability to mission-specific requirements. These features collectively enable microsatellites
to conduct diverse space missions while withstanding the challenging conditions of outer
space.

The production of PCBs for microsatellites is a highly specialized and precise endeavor.
These PCBs must not only withstand the harsh conditions of outer space, including extreme
temperatures, radiation, and vacuum, but also be meticulously designed and assembled to
ensure the reliability and longevity of the satellite’s mission. In this overview, we delve
into the fascinating world of electronic PCBs for microsatellites, exploring their crucial role
in space exploration and the intricacies of their production process.

The production of PCBs for microsatellites is subject to strict regulations and standards
to ensure the reliability and safety of the electronic components operating in space. Some

J. Manuf. Mater. Process. 2024, 8, 117. https://doi.org/10.3390/jmmp8030117

https://www.mdpi.com/journal /jmmp


https://doi.org/10.3390/jmmp8030117
https://doi.org/10.3390/jmmp8030117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com
https://orcid.org/0000-0003-4538-7985
https://orcid.org/0000-0001-7571-6853
https://orcid.org/0000-0002-8867-8857
https://orcid.org/0000-0003-1507-8188
https://orcid.org/0000-0002-6118-0696
https://doi.org/10.3390/jmmp8030117
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com/article/10.3390/jmmp8030117?type=check_update&version=1

J. Manuf. Mater. Process. 2024, 8, 117

2 of 26

of the key reference standards include IPC-A-610, NASA-STD-8739.3, ECSS-Q-ST-70-38C,
MIL-PRF-31032, and MIL-PRF-55110.

These regulations provide clear guidelines for the design, production, and quality
control of PCBs for microsatellites. By ensuring compliance with these standards, it is
possible to ensure that these electronic boards are suitable for the space environment’s
challenges and critical space missions’ needs.

For the specific application of SMT soldering, the reference regulation is ECSS-Q-ST-
70-38C.

This standard was developed by the European Space Agency (ESA), and it concentrates
on technical specifications for the assembly of space electronic components, including PCBs.
It covers aspects such as materials, processes, inspection, and testing.

For these reasons, the detection of defects in the soldering process of micro/meso
electronic components on PCBs is crucial for ensuring the quality and reliability of electronic
devices. Several research works have been conducted to develop effective defect detection
techniques, focusing on leveraging advanced technologies such as deep learning, image
processing, and artificial intelligence [1-9]. In [10], deep autoencoders were used for
defect detection, emphasizing the specialized nature of soldering defect detection and the
application of traditional image processing techniques. Similarly, in [11], a genetic algorithm
and a neural network were combined to enhance automatic optical inspection for solder
connection defects in surface mount components on PCBs. The model was supported by
the AdaMax optimization method, which was highly efficient. The data obtained showed
that, compared to the RMSprop and Adam methods, the AdaMax optimization method
was more efficient in achieving results with a 96.40% success rate in 100 epoch loops. These
studies underscore the significance of advanced technologies in improving defect detection
processes.

Furthermore, in [12], the potentiality of a model developed by the authors was demon-
strated through extensive experiments on a PCB dataset (i.e., FSOD professional few-shot
object detection dataset created by Tencent in 2020), indicating the potential for innovative
approaches to defect detection. In [13], the authors also focused on utilizing deep learning,
specifically a skip-connected convolutional autoencoder, for PCB defect detection, empha-
sizing the criticality of surface inspection in ensuring quality control. In addition, in [14,15],
the importance of image processing algorithms was highlighted in detecting soldering
defects and soldering joints in the PCB defect detection process. These references empha-
size the role of image processing in identifying and classifying defects, contributing to the
overall quality control process. Moreover, in [16], the authors introduced an improved
IoU-based loss function for PCB defect detection, showcasing the potential for enhancing
existing algorithms to achieve higher accuracy. In [17], a novel automated defect detection
approach was proposed for the PCB manufacturing process, indicating ongoing efforts to
innovate defect detection methodologies.

The study in [18] introduces the TDD-net, a tiny defect detection network specifically
designed for PCBs. Quantitative results on the PCB defect dataset show that the proposed
method has better portability and can achieve 98.90% mean average precision (mAP),
which outperforms the state of the art. They applied an open PCB defect dataset to verify
their PCB defect detection method, emphasizing the practical application of their approach.
Additionally, they proposed an improved IoU-based loss function for PCB defect detection,
showcasing the potential for enhancing existing algorithms to achieve higher accuracy.

The study in [19] adopted YOLOv4-MN3 for PCB surface defect detection, focusing
on automatically locating small and dense solder joints in PCB images. The experimental
results show that the improved detector achieved a high performance, scoring 98.64% mAP
at 56.98 frames per second (fps), outperforming the other compared to SOTA detectors.
In [20], the D3PointNet model was proposed for dual-level defect detection in solder
paste printers, emphasizing defect region proposal and classification. Experimental results
showed that the proposed D3PointNet is robust to the sparsity and size changes of the
DSPP image, and its exact match score was 10.2% higher than that of the existing CNN-
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based state-of-the-art multi-label classification model in the DSPP image dataset. In [21],
the authors highlight the significance of semi-supervised defect detection methods with
data-expanding strategies to address the challenges of labeling large-scale datasets for
PCB quality inspection. The experimental results on DeepPCB indicate that the proposed
DE-SSD achieves a state-of-the-art performance, with an improvement in mAP of at least
4.7 compared with previous methods. A novel PCB defect detection method based on
digital image processing was introduced in [22], demonstrating the effective detection and
analysis of solder pads and solder pastes.

Experiments show that this method can effectively detect and analyze various infor-
mation about solder pads and solder pastes, among which the detection accuracy rate
of solder pads is 99.4% and the missed detection rate is 0.4%. The detection accuracy
rate of solder paste is 99.3%. The work in [23] develops the LPViT model for PCB image
classification and defect detection, focusing on the DeepPCB dataset containing various
PCB defects. LPViT improves all metrics by more than 6%. It also outperforms the current
SOTA model (98.8% vs. 98.6%). The study in [24] proposes an improved YOLOv5-based
model for automatic PCB defect detection, emphasizing the training of models using artifi-
cial defect image datasets. The results revealed that this model performed well on defect
location and classification, with its mAP0.5 reaching 63.4%. The work in [25] introduces the
PCB-YOLO algorithm, an improved detection method based on YOLOvS5 for PCB surface
defect detection, addressing issues of accuracy and speed. The experimental results show
that PCB-YOLO achieves a satisfactory balance between performance and consumption,
reaching 95.97% mAP at 92.5 fps. A preliminary study was proposed in [26] to analyze the
ML capabilities to perform automated optical inspection (AOI) for quality control in the
manufacturing of PCBs. The target was to investigate the performance of the Mask R-CNN
method in identifying the main PCB defects after the manufacturing process.

While there are several other studies on defect detection in PCBs including the use of
deep learning models and advanced algorithms, the selected references align closely with
the focus on innovative defect detection methodologies and the application of open PCB
datasets to validate the proposed approaches.

These references collectively highlight the ongoing advancements in defect detection
for PCBs, emphasizing the significance of leveraging advanced technologies and datasets
to enhance the reliability and quality of electronic components.

Some open source datasets are available in the literature for benchmarking machine
vision-based PCB inspection techniques. Few of these datasets mimic real-world scenarios
essential for effective automated optical inspection (AOI) and classification methods. In-
spections may focus on the PCB assembly (PCBA), where all the components have been
placed and soldered, for categorizing PCBs/components and assessing the soldering and
assembling quality, or solely on the “naked” PCB to identify manufacturing defects.

Table 1 presents a comparison of the more relevant available PCB datasets.

In this context, the dataset presented in this manuscript was designed and created
since none of the datasets available in the literature are related to the production of PCBs
for aerospace applications. Therefore, none of these datasets have been designed for the
soldering and assembly defects mentioned in the specific reference standards that regulate
PCB assemblies for aerospace systems, such as ECSS-Q-ST-70-38C.

Therefore, the proposed work aims to make available an open source dataset, i.e.,
SolDef_Al, to give the possibility to carry out other research in defect detection for PCB
products considering the difficulty of having a collection of images for this specific sector
to train AI models.
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Table 1. Comparison of more relevant available PCB datasets.
Number Inspected Inspected Defect Resolution Spatial Image
Datasets Vision System Resolution A
of Images Items Target Classes [Mpx] Variation
[px/cm]
Digital Lighting
FICS-PCB [27] 9.912 6 SMT Component - microscope + 10 +45.7 462 -1+ i tensity and
components  classification DSLR camera 118 image scale
DeepPCB [28] 1500 PCB traces Dei’?d identi- 6 CCD camera 25.6 480 no
ication
PCBA-def [29] 1386 PCB traces De?ect 1.dent1- 6 D igital 16.2 n.a. PCB rotation
ication microscope
PCB-Metal [30] 984 4SMT  — Component - DSLR camera 30.4 na. PCB rotation
components  classification
PCB-DSLR [31] 748 1SMT Component ; DSLR camera 16.2 87.4 PCB rotation
components  classification
4SMT Lighting
Proposed 1115 components - Defectidenti- Digital 5 3333-6536 intensity and
+ soldered fication microscope oint of view
joints P

2. The SolDef_ AI Dataset

We contribute the SolDef_AI dataset to the community, containing 1150 soldered SMT
component images covering defective and defect-free assemblies. Each soldered SMT
component was acquired from three different points of view to provide a global view of the
soldered component and its solder joints on the PCB. Two classes of SMT assembly defects
were collected: the first includes defects related to the incorrect position of the soldered
component on the PCB (e.g., misalignment of SMT component with respect to the PCB
assembly pads), and the second is defects related to defective solder joints on the PCB (e.g.,
excessive or insufficient quantity of soldering material on the joint).

2.1. Dataset Acquisition

To ensure the representativeness of the dataset, a PCB image acquisition system was
implemented that resembles the optical inspection system used manually by the operator
in the PCB assembly process for the aerospace field.

Therefore, following the standard industrial settings, the vision system was designed
to acquire high-quality images of soldered SMT components on PCBs in a repeatable way.
The resolution of the system was chosen to acquire the smallest SMT component soldered
on the test PCBs and the smallest solder joints on the PCB pads. Additionally, these images
are free from effects such as blur and poor lighting and were taken from PCBs clear of dust
and other debris. The images in this dataset were obtained from different PCBs used to
train operators in soldering SMT components.

Figure 1 shows the vision system used for the dataset acquisition. It includes a
portable USB low-cost microscope by Cainda with an HD color CMOS sensor, a resolution
of 2560 x 1440 pixels, 1000x maximum magnification, and a frame rate of 30 f/s [32]. A
knob can be used to set the magnification on the microscope body. The setup also includes
a lighting system consisting of an LED ring with a diffusor that allows a 4-level adjustable
light control. The microscope and the lighting unit, mounted on a flexible arm, overlook
a manual XY linear stage where the PCBs are placed for the acquisition. The XY linear
stage allows translation of the PCB along two orthogonal axes to acquire the different SMT
components soldered on its pads. The flexible arm holding structure allows for changing
the position of the vision system to acquire the PCB and SMT components from various
points of view. The camera and the light were controlled simultaneously using a PC-based
software developed in Labview 2021. The lighting system ensures diffuse illumination,
thus avoiding shadows and specular reflections on the board caused by the environmental
lighting.
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Figure 1. The vision system designed to acquire images for the SolDef_AI dataset. Setup for (i) top
view, (ii) 45-degree view, and (iii) axonometric view of the soldered SMT components.

The dataset contains images of various SMT components soldered on different PCBs.
Each component was acquired from three points of view: top (see Figure 1i), 45 degrees
(see Figure 1ii), and axonometric view (see Figure liii). These configurations enable a
complete visualization of all details of the soldered component from all its sides to support
the identification of its position on the PCB (from the images with the top view) and the
status of its solder joints on the PCB (from the images with 45-degree and axonometric
views).

Since the dimensions of the various SMT components are different, the magnification
value and the working distance of the vision system were adjusted for the acquisitions of
each component to increase the spatial resolution and show more details, i.e., the smallest
component was set with the highest magnification.

The vision system was calibrated to compute image pixel to real-world unit transfor-
mation and to compensate for perspective, distortion, and spatial referencing errors [33].
For the current setup, a grid of black dots on a white plate was used to perform the 2D
calibration of the vision system (Low Reflect Grid Distortion Target 3” x 3”, 0.25 mm dot
by Edmund Optics, Barrington, NJ, USA).

According to the chosen setup, the field of view (FoV) was 3.92 x 2.205 mm for the
smallest SMT component (i.e., 0603 resistor in imperial unit) with a spatial resolution (Rs)
of 1.53 um/pixel, which allows for a feature resolution (Rf) of 4.6 pm considering 3 pixels
spanning the minimum size feature and a measurement resolution (Rm) of 0.153 um since
the measurement resolution capability in pixels (Mp) is 1/10 (i.e., sub-pixel capability of
the used machine vision algorithms) [34]. For the biggest component (i.e., 1206 resistor),
the FoV was 7.89 x 4.44 mm with an Rs of 3.0 um/pixel, Rf of 9 um, and Rm of 0.3 pm.

Figure 2 shows the 6 PCBs where the soldered SMTs were acquired to create the
SolDef AI dataset.
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Figure 2. This is a figure. Schemes follow the same formatting.

2.2. Dataset Statistics

The dataset includes images of 15 0805-type capacitors and 30 0603-type, 135 0805-
type, and 50 1206-type resistors, including their solder joints with the PCB pads. It can
be observed that the dataset is not balanced in the number of images for each electronic
component type. This choice ensured that the model was not biased towards a specific
type of microelectronic component but generalized to any component with a similar shape.
Since the different components in the datasheet have two leads, the dataset includes images
of 460 solder joints. Considering that each component was acquired from three different
points of view and with different lighting conditions and directions, the total number of
images in the dataset is 1150.

Two types of SMT assembly defect categories are presented in the dataset images,
as well as SMT components soldered correctly: the first includes defects related to the
incorrect position of the soldered SMT on the PCB, i.e., misalignment of SMT component
with respect to the PCB assembly pads; the second is defects related to the incorrectly
soldered joint of the SMT, i.e., excessive or insufficient quantity of soldering material and
presence of spikes on the joint.

In addition to these raw images, for a subset of 228 top view acquired images, the
dataset provides manually annotated bounding polygon locations (xy points in pixel) of
the image area that includes the component and the assembly pads on the PCB, with an
associated class binary ID to identify whether the SMT position on the PCB is correct or
not. Moreover, for a subset of 200 45-degree view acquired images, the bounding polygon
locations (xy points in pixel) of the image areas that include solder joints were annotated
with a class ID for the status of each of them (i.e., correct, excessive, insufficient quantity of
solder material, and presence of spikes), as explained in Section 3. The annotations were
quality checked by an external reviewer, i.e., a trained person who did not perform the
original annotation.

The images and the annotations can be used to train and test object detection tech-
niques that would identify and localize these components with respect to the assembly
pads on the PCB to check the correctness of the SMT assembly positions on the board.
Moreover, this dataset can be used to train and test object detection techniques that check
the correctness of the solder joints on the boards. These annotations are available in a JSON
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file with a standard text format that most object/defect detection and classification machine
learning algorithms can readily manage.
Tables 2-5 present the statistics of the designed dataset.

Table 2. The distribution of position defects per SMT component.

Correct Position Wrong Position
SMT Types SMT Number Number Namber
C 0805 15 10 5
R 0603 30 20 10
R 0805 135 90 45
R 1206 50 34 16
Total 230 154 76

Table 3. The distribution of SMT components in top view images.

Top View Image Number

SMT Types Setup 1 Setup 2
(Brighter Lighting Condition) (Darker Lighting Condition)
C 0805 15 15
R 0603 30 30
R 0805 135 135
R 1206 50 50
Total 460

Table 4. The distribution of soldering defects per SMT component type.

Correct Joints with Joints with
Soldered Soldered Excessive Insufficient Joints with
SMT Types Joint . Quantity of Quantity of Presence of
Joint .
Number Number Solder Solder Spike
Material Material
C 0805 30 15 5 5 5
R 0603 60 30 10 10 10
R 0805 270 190 60 60 60
R 1206 100 40 20 20 20
Total 460 275 95 95 95

Table 5. The distribution of SMT components in 45-degree and axonometric view images.

45-Degree View Image Number

Setup 1 Setup 2 Axonometric View
SMT Types (Top-Bottom (Bottom-Top Image Number
Direction) Direction)
C 0805 15 15 15
R 0603 30 30 30
R 0805 135 135 135
R 1206 50 50 50

Total 460 230
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3. Labeling Strategies

This paper aims to monitor the soldering process of the microelectronic components
on printed circuit boards (PCBs). The most common defects of these processes are related
to the position of the components [35,36] (Figure 3) and the quantity of the soldering
material [37] (Figure 4). In Figure 4a, a perfect solder joint is represented, and Figure 4b
highlights an example where the amount of solder material is excessive (convex joint), while
Figure 4c represents a case where the amount of solder material is insufficient (concave
joint). Figure 4d presents an example of a solder joint with spikes, showing the presence of
protrusions caused by solder material disengagement.

@
1) Electrical contacts of components; 2) Pads for solder; 3) Component
(@) (b)
Figure 3. Top view of the component: (a) correctly soldered on the PCB; (b) not correctly soldered on

the PCB.

y W | D] M M

[ I —— ]

(@) (b) (©) (d)

Figure 4. Lateral view of components with (a) the correct quantity of solder material, (b) an excessive
quantity of soldering material, (c) an insufficient quantity of soldering material, and (d) the presence
of spikes.

In order to ensure the correct prediction of the instances, two different datasets were
built, one for each task. In particular, dataset_1 includes images from the top view related
to the SMT positioning, while dataset_2 contains images from the 45-degree view related to
the quantity of the soldering material of joints. Figures 5 and 6 show two representative
images of dataset_1 and dataset_2.

Figure 5. Sample of images included in dataset_1.
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Figure 6. Sample of images included in dataset_2.

Different instances were manually annotated using an open source image annotation
tool called LabelMe. This tool allowed for the precise delineation of the footprint for
each instance and assigning them specific labels. By utilizing LabelMe, it was possible to
generate a JSON file containing all the created masks for each instance.

For dataset_1, the labeling assumption was made by creating rectangular masks,
including the two pads and the entire component in the case of good placement, while
for incorrect positioning, a polygonal shaped mask was generated, including the same
elements. Figures 7 and 8 provide a representation of the labeling approach adopted for
the wrong positioning of the component on the PCB.

*egw 2

Figure 7. Incorrect positioning of the component (1)—no_good label.
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Polygon Labels
no_good ¢

Figure 8. Incorrect positioning of the component (2)—no_good label.

Figures 9 and 10 provide a representation of the labeling approach adopted for the
correct positioning of the component on the PCB.

- & x|

Figure 9. Correct positioning of the component (1)—good label.

Polygon Labels
good ¢

Figure 10. Correct positioning of the component (2)—good label.
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A different methodology was employed to monitor joints regarding solder material
quantity and the presence of spikes. The labeling approach involved the creation of masks
with distinct profiles for each instance. Specifically:

e  For properly executed solder joints, a mask with an upward concavity and a specific
area was built (Figure 11);

e  For solder joints characterized by an excessive amount of material, a mask with a
downward concavity was built (Figure 12);

e  For joints with insufficient solder material, a mask with a downward concavity was
built but with a lower area in comparison to the properly executed solder joint
(Figure 13);

e  For solder joints characterized by spikes, a mask with a protrusion on its profile was
generated (Figure 14).

Figure 11. Labeling of a good solder joint.

Polygon Labels
‘ exc_solder ¢
‘ exc_solder ¢

Figure 12. Labeling of an excessive solder joint.
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Polygon Labels
' poor_solder o

Figure 13. Labeling of a poor solder.

- Polygon Labels
| @ spike

Figure 14. Labeling of a solder joint with spike.

4. Model Configuration

This study used a convolutional neural network called Mask-RCNN (short for mask
region-based convolutional neural network). This network extends the Faster RCNN by
incorporating an additional branch for predicting pixel-level segmentation masks for each
detected object. It is suitable for the application studied in this paper since it integrates both
object detection and instance segmentation tasks. The architecture consists of three main
components: a convolutional backbone for feature extraction, a region proposal network
(RPN) for suggesting regions of interest (ROIs) for object segmentation, and a box head and
ROI head for selecting proposed regions and refining their boundaries for more precise
segmentation. The implementation utilized the Detectron2 library. A visual representation
of the Mask-RCNN architecture is depicted in Figure 15.

In Mask R-CNN configuration, hyperparameter settings are crucial aspects influencing
the behavior of the Mask R-CNN model during both the training and inference stages.
These hyperparameters, including learning rate, batch size, and number of iterations,
significantly influence the model’s performance. In Table 6, the specific hyperparameters
are reported and detailed.
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Head part
A

Convolutional backbone

Q
o
a
ixed size
) feature map &
Feature map ROIAlign 5l
b
ResNet Fully connected layers
Figure 15. Mask R-CNN configuration.
Table 6. Model hyperparameters.
Variables Setting
Batch size 128
Learning rate 0.001
Learning rate schedule Adagrad
Rotation None
Weight decay None

5. Model Evaluation

Evaluation of the CNN performance was carried out using the average precision
(AP) metric. Furthermore, the model’s ability to identify defect locations was assessed
by comparing it to the ground truth using the intersection over union (IoU) metric. This
metric measures the overlap between the ground truth and the predicted mask, and it is a
dimensionless value that can also be employed for segmentation mask predictions. Typi-
cally, a threshold of 0.5 is utilized to differentiate between valid and invalid detections [38].
True positives (TPs), false positives (FPs), and false negatives (FNs) were determined based
on the criteria outlined in Table 7. Precision and recall metrics were computed using
Equations (1) and (2), respectively:

TP

Precision (P) = TP+ FP (1)
TP
Recllll (R) = TP-‘,-—FZ\I (2)

The AP for evaluation of the PCB defect detection was calculated from the graph
plotted between precision and recall values, as shown in Equation (3):

n—1
AP =Y [R(k) — R(k —1)]-P(k) (3)
k=0

where 1 is the number of defects identified.
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Table 7. Definition of true positive (TP), false positive (FP), and false negative (FN).

Label Description Representation
The object is there, and the model
TP detects it
with an IoU > 0.5.
= Ground Truth
Prediction
The object is there, but the model
detects it
with an IoU < 0.5.
FP = Ground Truth
Prediction
The object is not there, and the model
detects one.
== Ground Truth
Prediction
N The object is there, and the model

does not detect it.

= Ground Truth
Prediction

The COCO (common objects in context) detection metrics provide a way to evaluate
the performance of object detection algorithms. These metrics include average precision
(AP) and average recall (AR) values, which can be calculated using different intersection
over union (IoU) thresholds, different numbers of detections, and different object scales.

Table 8 gives a breakdown of these metrics for various scenarios. The table includes
different IoU thresholds, such as 0.5, 0.75, or higher, which determine the level of overlap
required between the predicted and ground truth bounding boxes for a detection to be
considered correct. It also includes results for different object scales, which refer to the
dimensions of the identified objects, enabling an assessment of how well the algorithm

performs across different object sizes.
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Table 8. Performance metrics used (area expressed in pixels).
Average Precision (AP)
AP Percentage of AP at IoU = 0.50:0.05:0.95
AP 10U =050 Percentage of AP at IoU = 0.50
AP oU=075 Percentage of AP at IoU = 0.75
Average Precision Across Scales
AP small Percentage of AP for small objects: area < 322
AP medium Percentage of AP for medium objects: 322 < area < 967
AP large Percentage of AP for large objects: area > 967
APl Percentage of AP not considering the size of the detection

In object detection tasks, AP is calculated by plotting a precision—recall curve for each
class and computing the area under the curve (AUC). AP measures how well the model
identifies objects of a specific class and assigns them accurate bounding boxes.

However, mAP (i.e.,, mean average precision) extends this concept by averaging the
AP values for all classes. This provides a single and comprehensive score that reflects the
model’s overall performance across all object classes. It gives a more holistic view of the
model’s ability to detect objects in various scenarios, accounting for precision and recall
across multiple classes simultaneously.

In Detectron2, several models come pre-trained. These models have already learned
from existing datasets, and their weights can be fine-tuned to custom datasets. This allows
them to be readily usable for specific tasks. During the training phase, a multi-loss function
is employed to evaluate how well the model adapts to new datasets. The loss function incor-
porates three components with varying weights (as indicated in Equation (4)): classification
error (loss_cls), localization error (loss_box_reg), and segmentation error (loss_mask).

losstor = loss,s + lOSShoxmg + 108S 45k 4)

In particular, loss_cls (classification loss) measures the differences between the pre-
dicted class probabilities and the actual class labels for each object in the training data.
It is used to train the model to classify objects into their respective categories correctly.
Loss_box_reg (bounding box regression loss) measures the difference between the predicted
bounding box coordinates and the ground truth bounding box coordinates for each object
in the training data. It is used to train the model to localize objects within the image
accurately. Then, loss_mask (mask prediction loss) measures the similarity between the
predicted segmentation masks and the ground truth masks for each instance in the training
data. It is used in instance segmentation tasks to train the model to segment objects from
the background accurately. Finally, total_loss represents the sum of all individual loss
components (loss_cls, loss_box_reg, and loss_mask) and is used as the objective function to
optimize the model’s parameters.

6. Training and Validation
6.1. Model Settings

This paper implemented two different Mask R-CNNs: the first trained on dataset_1
and the second trained on dataset_2. In both cases, the first step was to import Default-
Trainer from the Detectron2 engine module. Then, the main parameters were defined as
follows:

Batch size = 128;

Number of classes = 2 for dataset_1 (good and no_good);

Number of classes = 4 for dataset_2 (good, exc_solder, poor_solder, spike);
Learning rate = 0.0025;

Max iteration parameter = 500.
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The number of iterations depended on the dataset size and the complexity of the
task. The model performance when trained on dataset_1 and dataset_2 can be evaluated
through loss (computed on the training dataset) and AP values (calculated on the validation
dataset).

6.2. Result for Dataset_1

In this section, results related to dataset_1 are shown. In Figure 16, it can be noted that
during the model training, the loss function decreases and becomes stable with the increase
in the number of iterations.
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Figure 16. Loss function trends for classification (a), detection (b), segmentation (c), and total loss
(d)—dataset_1.

The total loss function decreases to 0.282 (500 iterations). The loss function related to
the classification task assumes a value close to zero (0.114) and the loss mask (0.041). The
loss function referring to the detection (loss_box_reg) also tends to zero (reaching the value
of 0.114), but it increases until the 80th iteration.

The model framework obtained good results regarding the precision of the detections
and segmentations. The AP (100 max items detected, i.e., maxDets) for detection and
segmentation yielded values of 62.11 and 68.57, respectively. Table 9 displays the evaluation
metrics for the trained Mask R-CNN model (dataset_1).
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Table 9. Evaluation of AP metric—dataset_1.

Detection
Maetric IoU Area maxDets Value [%]
mAP @IoU = 0.50:0.05:0.95 All 100 62.11
mAP @IoU = 0.50 All 100 71.05
mAP @IoU =0.75 All 100 71.05
mAP @IoU = 0.50:0.05:0.95 Small (area < 322) 100 NaN
mAP @IoU = 0.50:0.05:0.95 Medium (322 < area < 96%) 100 NaN
mAP @IoU = 0.50:0.05:0.95 Large (area > 967) 100 62.113
Segmentation
mAP @IoU = 0.50:0.05:0.95 All 100 68.57
mAP @IoU = 0.50 All 100 71.05
mAP @IoU =0.75 All 100 71.05
mAP @IoU = 0.50:0.05:0.95 Small (area < 322) 100 NaN
mAP @IoU = 0.50:0.05:0.95 Medium (322 < area < 96%) 100 NaN
mAP @IoU = 0.50:0.05:0.95 Large (area > 962) 100 68.57

Figures 17-20 display four examples of results in detecting and segmenting the po-
sitioning of SMT components in the validation dataset (i.e., inference examples). The
validation dataset consists of data not used to train the model. This subset of data enables
evaluation of the model’s performance on previously unseen data. The figures showcase
bounding boxes, predicted shapes, and AP percentages.

Figure 17. Inference example 1—dataset_1.
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Figure 18. Inference example 2—dataset_1.

Figure 19. Inference example 3—dataset_1.



J. Manuf. Mater. Process. 2024, 8, 117

19 of 26

Figure 20. Inference example 4—dataset_1.

6.3. Result for Dataset_2

As conducted for the dataset referring to the position of the component on the PCBs,
the performance metrics of the Mask R-CNN trained on dataset_2 (referring to the amount
of solder material) are shown. The loss function trends related to classification (i), detec-
tion (ii), segmentation (iii), and total loss (iv) are illustrated in Figure 21. Differently from
the previous case, the loss values are slightly higher. In particular, the loss function related
to classification assumes a value of 0.226, the loss for detection is 0.295, the loss mask
reaches a value of 0.138, and the total loss reaches a value of 0.745.

Concerning the precision of the detections and segmentations, the mAP (100 max items
detected) values were equal to 42.70 and 48.30, respectively. All the evaluation metrics for
the trained Mask R-CNN model’s performance on dataset_2 are provided in Table 10.

These results also reflect the lower accuracy percentage of the predictions. Figures 22-27
show five examples of the detection and segmentation inferences for soldering defects
performed on the validation dataset.

Table 10. Evaluation of AP metric—dataset 2.

Detection
Metric IoU Area maxDets Value [%]
mAP @IoU = 0.50:0.05:0.95 All 100 42.70
mAP @IoU =0.50 All 100 56.90
mAP @IoU =0.75 All 100 56.90
mAP @IoU = 0.50:0.05:0.95 Small (area < 322) 100 NaN
mAP @IoU = 0.50 Medium (322 < area < 962) 100 NaN
mAP @IoU = 0.75 Large (area > 967) 100 42.70
Segmentation
mAP @IoU = 0.50:0.05:0.95 All 100 48.30
mAP @IoU =0.50 All 100 56.90
mAP @IoU =0.75 All 100 56.90
mAP @IoU = 0.50:0.05:0.95 Small (area < 322) 100 NaN
mAP @IoU = 0.50 Medium (322 < area < 962) 100 NaN

mAP @IoU =0.75 Large (area > 962) 100 48.30
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Figure 21. Loss function trends for classification (a), detection (b), segmentation (c), and total loss

(d)—dataset_2.

Figure 22. Inference example 1—dataset_2.
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Figure 23. Inference example 2—dataset_2.

Figure 24. Inference example 3—dataset_2.

In this first image, one can appreciate the network difficulty in segmenting and classi-
fying the left joint while achieving an accuracy value of 97% on the right joint, generating a
perfectly adherent mask according to the labeling specifications. The associated label is
also correct, as it represents excessive soldering material, as indicated by the convex profile
of the joint’s contour.

In the second image of the validation dataset, the network perfectly segments both the
right and left joints, even if achieving different accuracy values (98% for the right joint and
78% for the left joint).

In the third image, the network fails to segment the correct joint. Additionally, the
prediction accuracy for the left joint is not very high either (64%). However, the associated
label still corresponds to the actual condition, and the generated mask successfully segments
the reference area with great precision.
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Figure 25. Inference example 4—dataset_2.

Figure 26. Inference example 5—dataset_2.

In the fourth image of the validation dataset, the best result in terms of accuracy is
achieved. The generated masks fit perfectly with the actual solder joints, and the associated
labels are as expected. The accuracy values for the left and right masks reach 96% and 97%,
respectively.

In the fifth image of the validation set, the algorithm continues to provide correct
results, although with lower accuracy values. Specifically, 60% is achieved for the poor
solder and 82% for the properly executed joint. The generated masks also appear to be
appropriately generated.

Further, in the last image example of the validation set, the algorithm continues to
provide correct results, even with lower accuracy values. Specifically, 86% is achieved for
the spike and 84% for the properly executed joint. The generated masks also appear to be
appropriately generated.
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Figure 27. Inference example 6—dataset_2.

6.4. Result Discussion

As described before, dataset_1 includes top view images related to SMT positioning,

while dataset_2 contains 45-degree view images related to the quantity of soldering material
on joints. The obtained results for the defined datasets (dataset_1 and dataset_2) can be
summarized with the following considerations:

The algorithm better manages the top view images (dataset_1). In this case, the metrics
highlight the robustness of the model. Indeed, for dataset_1, the total loss function
decreased to 0.282, while in the 45-degree view (dataset_2), the total loss function was
0.745.

The better performance for dataset_1 was also confirmed by other metrics (loss to the
classification task, loss mask, loss to the detection, mAP for detection, and mAP for
segmentation).

For dataset_1, the algorithm managed only two classes (good and no_good); mean-
while, in the case of dataset_2, the number of classes was four (good, exc_solder,
poor_solder, spike).

The algorithm performances are interesting for the two datasets. However, the re-
sults highlight some limits to managing the soldering defects in the 45-degree images
(dataset_2). Indeed, the algorithm had more difficulty detecting especially the class
poor_solder. For the other classes (good, exc_solder, and spike), the algorithm, on av-
erage, gave better performances, but with rare cases in which the inference was lower
than 70%. This behavior probably depends on boundaries that are not identifiable
clearly due to the defects’ characteristics and the point of view of the image.

Further studies should be carried out for the exc_solder and poor_solder classes to
overcome the aforementioned limitations.

Nevertheless, the obtained results are surely interesting and introduce several elements

of innovation for the context of the application (i.e., PCB manufacturing for the aerospace
sector), and the presented solution is a candidate to be a valid support to technicians for
quality control in compliance with the stringent standards. Indeed, these processes are
currently performed manually and, therefore, are subject to human errors.

To improve the performance of the algorithm, specifically in the exc_solder and

poor_solder classes, future studies will be conducted on the following:

Updating the SolDef_Al dataset with a new experimental campaign to acquire new
images with different points of view: 15 degrees, 30 degrees, 45 degrees, 60 degrees,
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and 75 degrees. Indeed, the SolDef_AI dataset represents a dynamic open source
dataset with scheduled updates.

e  Optimizing the training phase with improvements in the labeling strategies, dimension
of the training sub-datasets, and model settings.

Future developments will aim to improve the performance of the model in order to
perform its integration within an embedded system for defect detection to be used in real
industrial applications.

7. Conclusions

This paper presents a new open source dataset (SolDef_AlI) for the implementation of
an innovative methodology for PCB defect detection exploiting the Mask R-CNN algorithm.
SolDef_AI aims to overcome the barriers that characterize the development of tools for
defect recognition in the case of PCBs for aerospace applications. Indeed, in this case, the
soldering of micro/meso electronic components must respect specific standards such as
ECSS-Q-ST-70-38C.

This research required a preliminary activity to define the components of interest (i.e.,
SMT types C0805, R0603, R0805, and R1206) and the related PCB board. After this, the
system of acquisition was defined and configured. Each component was acquired from
three points of view (top, 45-degree, and axonometric views).

Starting from the dataset acquisition, a labeling campaign was carried out to create
the training sub-dataset. The labeling strategies were defined considering the constraints
defined by the ECSS-Q-ST-70-38C standard.

The dataset was used to train a Mask R-CNN model. Indeed, it stands out in pixel-
level precision and accuracy, for instance, in segmentation. Its ability to deliver detailed
segmentation masks enhances its effectiveness in scenarios where a nuanced understanding
of object boundaries is critical.

The results of the work allow to introduce some innovative elements, such as the
development and introduction of a new open source dataset in the scientific community
for this specific context. Indeed, the new dataset will allow the testing of new solutions for
aerospace applications, considering the requirements defined by the stringent standards.
Moreover, due to the training with the latest open source dataset (SolDef AlI), the Mask R-
CNN allowed the recognition of the main PCB defects of interest for aerospace applications
with a specific focus on soldering STM components. Indeed, the Mask R-CNN provides
superior pixel-level precision and accuracy compared to alternative models such as YOLO
(you only look once) and SSD (single shot multi-box detector). This is particularly crucial
in scenarios where precise boundary recognition, such as in the case of soldering materials
or SMT components, is required in the segmentation process. On the other hand, YOLO
and SSD might surpass models such as Mask R-CNN concerning speed and applications
requiring real-time processing owing to their single-shot approach, which analyzes the
entire image in a single iteration.

The performance evaluation of the Mask R-CNN models trained on dataset_1 and
dataset_2 revealed notable results. For dataset_1, the loss function trends indicated a
steady decrease with increasing iterations, achieving a total loss of 0.282. Precision metrics,
including mean average precision (mAP), for detection and segmentation demonstrated a
strong performance with values of 62.11 and 68.57, respectively. Conversely, for dataset_2,
slightly higher loss values were observed, with total loss reaching 0.745. Despite this,
the mAP values for detection and segmentation remained respectable at 42.70 and 48.30,
respectively. These findings suggest that the Mask R-CNN models effectively captured and
classified components on PCBs, showcasing promising capabilities for defect detection and
segmentation tasks in electronic manufacturing processes.

This study lays the foundation for the implementation of an embedded solution to
monitor soldering defects in the manufacturing of PCBs for aerospace applications.

The implemented model highlights notable results in detecting assembly defects
for the two datasets. Indeed, the obtained metrics show the robustness of the model in
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recognizing assembly defects. However, there are some limits to managing the soldering
defects in the 45-degree images (dataset_2). To overcome the observed limitations, future
developments will be focused on improving the performance of the algorithm, updating
the SolDef_AI dataset with new images, and carrying out studies for the optimization of
the training phase.

In real industrial scenarios, the possibility for technicians to have valid support to
detect whether solder joints comply with aerospace standards or not is already an important
enhancement considering that these processes are often performed manually based on the
knowledge of the operators. Future developments will allow to improve the performance
of the model and, therefore, increase the support that this solution can provide to the
technicians. The goal, indeed, is to develop an embedded system that consists of a vision
camera with software for defect detection.
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