Fused Filament Fabrication of WC-10Co Hardmetals: A Study on Binder Formulations and Printing Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermal Properties
2.3. Printing Force Measurements
2.4. Printing
2.5. Debinding and Sintering
2.6. Characterization
3. Results and Discussion
3.1. Thermal Properties
3.1.1. DSC Analysis
3.1.2. TGA Analysis
3.2. Force Measurement Analysis
3.3. Samples Printed at 10 mm/s and Different Temperatures
3.4. Samples Printed at 7.5
3.5. Sintered Samples
4. Future Perspectives and Limitations
5. Conclusions
- Feedstocks with lower printing forces tended to develop more defects, which persisted through the liquid phase sintering process.
- Enhancing the ratio of PP-MA to PP within the feedstock improved particle-binder interactions, reducing material dragging and defects during the debinding and printing processes.
- Adjusting printing speeds proved to be a more effective method for reducing printing forces compared to increasing printing temperatures. This adjustment significantly impacts the mechanical properties of printed parts.
- This study provides insights into the importance of binder system compatibility with the powder surface, influencing the sintering process outcomes.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mahmoodan, M.; Aliakbarzadeh, H.; Gholamipour, R. Sintering of WC-10%Co Nano Powders Containing TaC and VC Grain Growth Inhibitors. Trans. Nonferrous Met. Soc. China 2011, 21, 1080–1084. [Google Scholar] [CrossRef]
- Farag, S.; Konyashin, I.; Ries, B. The Influence of Grain Growth Inhibitors on the Microstructure and Properties of Submicron, Ultrafine and Nano-Structured Hardmetals—A Review. Int. J. Refract. Met. Hard Mater. 2018, 77, 12–30. [Google Scholar] [CrossRef]
- Rubiano Buitrago, J.D.; Gil Plazas, A.F.; Herrera Quintero, L.K. Influence of TiC and Cr3C2 Additions on the Mechanical Properties of a (W-Ti-Cr)C-Co Sintered Hardmetal. J. Mater. Res. Technol. 2019, 8, 5736–5744. [Google Scholar] [CrossRef]
- Upadhyaya, G.S. Classification and Applications of Cemented Carbides. In Cemented Tungsten Carbides; William Andrew Publishing: Westwood, NJ, USA, 1998; pp. 288–308. ISBN 978-0-8155-1417-6. [Google Scholar]
- Quinlan, H.E.; Hasan, T.; Jaddou, J.; Hart, A.J. Industrial and Consumer Uses of Additive Manufacturing: A Discussion of Capabilities, Trajectories, and Challenges. J. Ind. Ecol. 2017, 21, S15–S20. [Google Scholar] [CrossRef]
- Xiong, Y.; Smugeresky, J.E.; Schoenung, J.M. The Influence of Working Distance on Laser Deposited WC-Co. J. Mater. Process. Technol. 2009, 209, 4935–4941. [Google Scholar] [CrossRef]
- Li, Y.; Bai, P.; Wang, Y.; Hu, J.; Guo, Z. Effect of Ni Contents on the Microstructure and Mechanical Properties of TiC-Ni Cermets Obtained by Direct Laser Fabrication. Int. J. Refract. Met. Hard Mater. 2009, 27, 552–555. [Google Scholar] [CrossRef]
- Zong, G.; Wu, Y.; Tran, N.; Lee, I.; Bourell, D.L.; Beaman, J.J.; Marcus, H.L. Direct Selective Laser Sintering of High Temperature Materials. Proc. Solid Free. Fabr. Symp. 1992, 72–85. [Google Scholar]
- Kumar, S.; Czekanski, A. Optimization of Parameters for SLS of WC-Co. Rapid Prototyp. J. 2017, 23, 1202–1211. [Google Scholar] [CrossRef]
- Uhlmann, E.; Bergmann, A.; Bolz, R.; Gridin, W. Application of Additive Manufactured Tungsten Carbide Tool Electrodes in EDM. Procedia CIRP 2018, 68, 86–90. [Google Scholar] [CrossRef]
- Vaezi, M.; Drescher, P.; Seitz, H. Beamless Metal Additive Manufacturing. Materials 2020, 13, 922. [Google Scholar] [CrossRef]
- Gonzalez-Gutierrez, J.; Cano, S.; Schuschnigg, S.; Kukla, C.; Sapkota, J.; Holzer, C. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives. Materials 2018, 11, 840. [Google Scholar] [CrossRef] [PubMed]
- Aramian, A.; Razavi, S.M.J.; Sadeghian, Z.; Berto, F. A Review of Additive Manufacturing of Cermets. Addit. Manuf. 2020, 33, 101130. [Google Scholar] [CrossRef]
- Leary, M. Chapter 12 - Directed Energy deposition. In Additive Manufacturing Materials and Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 321–334. [Google Scholar] [CrossRef]
- Scott, S. Apparatus and Method for Creating Three-Dimensional Objects. Bunseki Kagaku 1992, 28, 195–196. [Google Scholar] [CrossRef]
- Sells, E.; Bailard, S.; Smith, Z.; Bowyer, A.; Olliver, V. RepRap: The Replicating Rapid Prototyper: Maximizing Customizability by Breeding the Means of Production. Handb. Res. Mass Cust. Pers. 2009, 568–580. [Google Scholar] [CrossRef]
- Kukla, C.; Gonzalez-Gutierrez, J.; Cano Cano, S.; Hampel, S.; Burkhardt, C.; Moritz, T.; Holzer, C. Fused Filament Fabrication (FFF) of PIM Feedstocks. In Actas del VI Congreso Nacional de Pulvimetalurgia y I Congreso Iberoamericano de Pulvimetalurgia; Herranz, G., Ferrari, B., Cabrera, J.M., Eds.; Comité Español de Pulvimetalurgia: Ciudad Real, Spain, 2017; Volume 6, pp. 1–6. [Google Scholar]
- Suwanpreecha, C. A Review on Material Extrusion Additive Manufacturing of Metal and How It Compares with Metal Injection Moulding. Metals 2022, 12, 429. [Google Scholar] [CrossRef]
- Agarwala, M.K.; Bandyopadhyay, A.; Van Weeren, R. Fused Deposition of Ceramics (FDC) for Structural Silicon Nitride Components. Int. Solid Free. Fabr. Symp. 1996, 336–344. [Google Scholar] [CrossRef]
- Agarwala, M.K.; van Weeren, R.; Bandyopadhyay, A.; Safari, A.; Danforth, S.C.; Priedeman, W.R. Filament Feed Materials for Fused Deposition Processing of Ceramics and Metals. In Proceedings of the Solid Freeform Fabrication Symposium; The University of Texas at Austin: Austin, TX, USA, 1996; pp. 451–458. [Google Scholar]
- Venkataraman, N.; Rangarajan, S.; Matthewson, M.J.; Harper, B.; Safari, A.; Danforth, S.C.; Wu, G.; Langrana, N.; Guceri, S.; Yardimci, A. Feedstock Material Property—Process Relationships in Fused Deposition of Ceramics (FDC). Rapid Prototyp. J. 2000, 6, 244–252. [Google Scholar] [CrossRef]
- Hwang, K.S.; Lin, H.K.; Lee, S.C. Thermal, Solvent, and Vacuum Debinding Mechanisms of PIM Compacts. Mater. Manuf. Process. 1997, 12, 593–608. [Google Scholar] [CrossRef]
- Kukla, C.; Cano, S.; Kaylani, D.; Schuschnigg, S.; Holzer, C.; Gonzalez-Gutierrez, J. Debinding Behaviour of Feedstock for Material Extrusion Additive Manufacturing of Zirconia. Powder Metall. 2019, 62, 196–204. [Google Scholar] [CrossRef]
- Elkins, K.; Nordby, H.; Janak, C.; Gray, R.W.; Bohn, J.H.; Baird, D.G. Soft Elastomers for Fused Deposition Modeling. In Proceedings of the Eighth Solid Freeform Fabrication (SFF) Symposium, Austin, TX, USA, 11–13 August 1997; pp. 441–448. [Google Scholar]
- Gil-Plazas, A.-F.; Rubiano-Buitrago, J.-D.; Boyacá-Mendivelso, L.-A.; Herrera-Quintero, L.-K. Solid-State and Super Solidus Liquid Phase Sintering of 4340 Steel SLM Powders Shaped by Fused Filament Fabrication. Rev. Fac. Ing. 2022, 31, e13913. [Google Scholar] [CrossRef]
- Godec, D.; Cano, S.; Holzer, C.; Gonzalez-Gutierrez, J. Optimization of the 3D Printing Parameters for Tensile Properties of Specimens Produced by Fused Filament Fabrication of 17-4PH Stainless Steel. Materials 2020, 13, 774. [Google Scholar] [CrossRef]
- Coelho, S.; Magro, A.; Texeira, P.; Ferreira, N.; Pereira, P.; Rodrigues, F.; Jorge, H.; Sacramento, J. Development of Formulations of WC-Co Filament for Fused Filament Fabrication. In Proceedings of the EURO PM 2020: European Conference on Powder Metallurgy, online, 5–7 October 2020. [Google Scholar]
- Cano, S.; Gonzalez-Gutierrez, J.; Sapkota, J.; Spoerk, M.; Arbeiter, F.; Schuschnigg, S.; Holzer, C.; Kukla, C. Additive Manufacturing of Zirconia Parts by Fused Filament Fabrication and Solvent Debinding: Selection of Binder Formulation. Addit. Manuf. 2019, 26, 117–128. [Google Scholar] [CrossRef]
- McNulty, T.F.; Mohammadi, F.; Bandyopadhyay, A.; Shanefield, D.J.; Danforth, S.C.; Safari, A. Development of a Binder Formulation for Fused Deposition of Ceramics. Rapid Prototyp. J. 1998, 4, 144–150. [Google Scholar] [CrossRef]
- Cano, S.; Gooneie, A.; Kukla, C.; Rieb, G.; Holzer, C.; Gonzalez-Gutierrez, J. Modification of Interfacial Interactions in Ceramic-Polymer Nanocomposites by Grafting: Morphology and Properties for Powder Injection Molding and Additive Manufacturing. Appl. Sci. 2020, 10, 1471. [Google Scholar] [CrossRef]
- Momeni, V.; Shahroodi, Z.; Gonzalez-Gutierrez, J.; Hentschel, L.; Duretek, I.; Schuschnigg, S.; Kukla, C.; Holzer, C. Effects of Different Polypropylene (PP)-Backbones in Aluminium Feedstock for Fused Filament Fabrication (FFF). Polymers 2023, 15, 3007. [Google Scholar] [CrossRef]
- Lengauer, W.; Duretek, I.; Fürst, M.; Schwarz, V.; Gonzalez-Gutierrez, J.; Schuschnigg, S.; Kukla, C.; Kitzmantel, M.; Neubauer, E.; Lieberwirth, C.; et al. Fabrication and Properties of Extrusion-Based 3D-Printed Hardmetal and Cermet Components. Int. J. Refract. Met. Hard Mater. 2019, 82, 141–149. [Google Scholar] [CrossRef]
- Agarwala, M.K.; Jamalabad, V.R.; Langrana, N.A.; Safari, A.; Whalen, P.J.; Danforth, S.C. Structural Quality of Parts Processed by Fused Deposition. Rapid Prototyp. J. 1996, 2, 4–19. [Google Scholar] [CrossRef]
- Agarwala, M.K.; van Weeren, R.; Bandyopadhyayl, A.; Whalen, P.J.; Safari, A.; Danforth, S.C. Fused Deposition of Ceramics and Metals: An Overview. In Proceedings of the Seventh Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 1996; pp. 385–392. [Google Scholar]
- Fayyaz, A.; Muhamad, N.; Sulong, A.B.; Yunn, H.S.; Amin, S.Y.M.; Rajabi, J. Micro-Powder Injection Molding of Cemented Tungsten Carbide: Feedstock Preparation and Properties. Ceram. Int. 2015, 41, 3605–3612. [Google Scholar] [CrossRef]
- Yang, M.J.; German, R.M. Nanophase and Superfine Cemented Carbides Processed by Powder Injection Molding. Int. J. Refract. Met. Hard Mater. 1998, 16, 107–117. [Google Scholar] [CrossRef]
- Percoco, G.; Arleo, L.; Stano, G.; Bottiglione, F. Analytical Model to Predict the Extrusion Force as a Function of the Layer Height, in Extrusion Based 3D Printing. Addit. Manuf. 2021, 38, 101791. [Google Scholar] [CrossRef]
- Mbow, M.M.; Marin, P.R.; Pourroy, F. Extruded Diameter Dependence on Temperature and Velocity in the Fused Deposition Modeling Process. Prog. Addit. Manuf. 2020, 5, 139–152. [Google Scholar] [CrossRef]
- Tarani, E.; Arvanitidis, I.; Christofilos, D.; Bikiaris, D.N.; Chrissafis, K.; Vourlias, G. Calculation of the Degree of Crystallinity of HDPE/GNPs Nanocomposites by Using Various Experimental Techniques: A Comparative Study. J. Mater. Sci. 2023, 58, 1621–1639. [Google Scholar] [CrossRef]
- Wunderlich, B. Thermal Analysis of Polymeric Materials; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 3-540-23629-5. [Google Scholar]
- ASTM B311-22; Standard Test Method for Density Determination for Powder Metallurgy (P/M) Materials Containing Less Than Two Percent Porosity. ASTM International: West Conshohocken, PA, USA, 2022.
- Gonzalez-Gutierrez, J.; Duretek, I.; Kukla, C.; Poljšak, A.; Bek, M.; Emri, I.; Holzer, C. Models to Predict the Viscosity of Metal Injection Molding Feedstock Materials as Function of Their Formulation. Metals 2016, 6, 129. [Google Scholar] [CrossRef]
- Singh, P.; Balla, V.K.; Tofangchi, A.; Atre, S.V.; Kate, K.H. Printability Studies of Ti-6Al-4V by Metal Fused Filament Fabrication (MF3). Int. J. Refract. Met. Hard Mater. 2020, 91, 105249. [Google Scholar] [CrossRef]
- Ghasemi-Mobarakeh, L.; Cano, S.; Momeni, V.; Liu, D.; Duretek, I.; Riess, G.; Kukla, C.; Holzer, C. Effect of Increased Powder–Binder Adhesion by Backbone Grafting on the Properties of Feedstocks for Ceramic Injection Molding. Polymers 2022, 14, 3653. [Google Scholar] [CrossRef]
- Hwang, K.S. Common Defects in Metal Injection Molding (MIM); Woodhead Publishing Limited: Sawston, UK, 2012; ISBN 9780857096234. [Google Scholar]
- Hsueh, M.H.; Lai, C.J.; Wang, S.H.; Zeng, Y.S.; Hsieh, C.H.; Pan, C.Y.; Huang, W.C. Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed Pla and Petg, Using Fused Deposition Modeling. Polymers 2021, 13, 1758. [Google Scholar] [CrossRef]
- Heaney, D.F. Designing for Metal Injection Molding (MIM). Handb. Met. Inject. Molding 2012, 29–49. [Google Scholar] [CrossRef]
- Enneti, R.K.; Park, S.J.; German, R.M.; Atre, S.V. Review: Thermal Debinding Process in Particulate Materials Processing. Mater. Manuf. Process. 2012, 27, 103–118. [Google Scholar] [CrossRef]
- Lotfizarei, Z.; Mostafapour, A.; Barari, A.; Jalili, A.; Patterson, A.E. Overview of Debinding Methods for Parts Manufactured Using Powder Material Extrusion. Addit. Manuf. 2023, 61, 103335. [Google Scholar] [CrossRef]
- ASTM B276-21; Standard Test Method for Apparent Porosity in Cemented Carbides. ASTM International: West Conshohocken, PA, USA, 2021; pp. 1–19. [CrossRef]
- German, R.M.; Suri, P.; Park, S.J. Review: Liquid Phase Sintering. J. Mater. Sci. 2009, 44, 1–39. [Google Scholar] [CrossRef]
- García, J.; Collado Ciprés, V.; Blomqvist, A.; Kaplan, B. Cemented Carbide Microstructures: A Review. Int. J. Refract. Met. Hard Mater. 2019, 80, 40–68. [Google Scholar] [CrossRef]
Binder | PP-MA | PP | TPE | PW 1 | SA |
---|---|---|---|---|---|
wt. % | wt. % | wt. % | wt. % | wt. % | |
M1 | 18.62 | 12.42 | 46.56 | 18.00 | 4.40 |
M2 | 15.60 | 10.40 | 51.60 | 18.00 | 4.40 |
M3 | 12.42 | 18.62 | 46.56 | 18.00 | 4.40 |
M4 | 10.40 | 15.60 | 51.60 | 18.00 | 4.40 |
Infill Pattern | Number of External Lines | Infill Overlap | Retraction | Bed Temperature | Cooling Fan |
---|---|---|---|---|---|
Lines | 1 | 50% | No | 95 °C | Off |
Description | T Onset | T Endset | |||
---|---|---|---|---|---|
PP | 148.59 | 133.5 | 155.7 | 91.03 | 43.98% |
PP-MA | 161.05 | 153.7 | 168.5 | 105.18 | 50.81% |
TPE | - | - | - | - | - |
M1 | 145.93 | 123.76 | 153.54 | 41.19 | 54.32% |
M1 + P | 145.63 | 128.18 | 151.51 | 1.72 | 43.20% |
M2 | 144.22 | 130.40 | 149.86 | 29.33 | 46.24% |
M2 + P | 144.43 | 123.42 | 150.32 | 1.04 | 31.20% |
M3 | 145.76 | 135.56 | 153.74 | 32.46 | 45.25% |
M3 + P | 145.69 | 125.76 | 151.48 | 0.88 | 22.07% |
M4 | 146.06 | 133.25 | 151.68 | 18.23 | 28.76% |
M4 + P | 143.59 | 126.31 | 149.55 | 0.83 | 24.77% |
Source of Variation | Degrees of Freedom | Sum Sq | Mean Sq | p Value |
---|---|---|---|---|
Temperature | 2 | 5.88 | 8.78 | 5.65 × 10−4 |
Feedstock | 3 | 8.38 | 8.33 | 1.46 × 10−4 |
Temperature: Feedstock | 6 | 15.18 | 7.55 | 9.89 × 10−6 |
Residuals | 48 | 16.09 |
Source of Variation | Degrees of Freedom | Sum Sq | Mean Sq | p Value |
---|---|---|---|---|
Velocity | 1 | 0.156 | 0.1563 | 0.32372 |
Feedstock | 3 | 2.183 | 0.7277 | 0.00806 |
Velocity: Feedstock | 3 | 1.372 | 0.4572 | 0.04800 |
Residuals | 32 | 4.978 | 0.1556 |
Source of Variation | Degrees of Freedom | Sum Sq | Mean Sq | p Value |
---|---|---|---|---|
Velocity | 1 | 17,672 | 3.782 | 0.0696 |
Feedstock | 3 | 47,619 | 10.192 | 0.0005 |
Velocity: Feedstock | 3 | 5685 | 1.217 | 0.3358 |
Residuals | 16 | 4672 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubiano Buitrago, J.D.; Gil Plazas, A.F.; Boyacá Mendivelso, L.A.; Herrera Quintero, L.K. Fused Filament Fabrication of WC-10Co Hardmetals: A Study on Binder Formulations and Printing Variables. J. Manuf. Mater. Process. 2024, 8, 118. https://doi.org/10.3390/jmmp8030118
Rubiano Buitrago JD, Gil Plazas AF, Boyacá Mendivelso LA, Herrera Quintero LK. Fused Filament Fabrication of WC-10Co Hardmetals: A Study on Binder Formulations and Printing Variables. Journal of Manufacturing and Materials Processing. 2024; 8(3):118. https://doi.org/10.3390/jmmp8030118
Chicago/Turabian StyleRubiano Buitrago, Julián David, Andrés Fernando Gil Plazas, Luis Alejandro Boyacá Mendivelso, and Liz Karen Herrera Quintero. 2024. "Fused Filament Fabrication of WC-10Co Hardmetals: A Study on Binder Formulations and Printing Variables" Journal of Manufacturing and Materials Processing 8, no. 3: 118. https://doi.org/10.3390/jmmp8030118
APA StyleRubiano Buitrago, J. D., Gil Plazas, A. F., Boyacá Mendivelso, L. A., & Herrera Quintero, L. K. (2024). Fused Filament Fabrication of WC-10Co Hardmetals: A Study on Binder Formulations and Printing Variables. Journal of Manufacturing and Materials Processing, 8(3), 118. https://doi.org/10.3390/jmmp8030118