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Abstract: The additive manufacturing technology powder bed fusion of metal with a laser beam
(PBF-LB/M) is industrially established for tool-free production of complex and individualized
components and products. While the in-processing is based on a layer-by-layer build-up of material,
both upstream and downstream process steps (pre-processing and post-processing) are necessary
for demand-oriented production. However, there are increasing concerns in the industry about the
efficient and economical implementation and validation of the PBF-LB/M. Individual products for
mass personalization pose a particular challenge, as they are subject to sophisticated risk management,
especially in highly regulated sectors such as medical technology. Additive manufacturing using
PBF-LB/M is a suitable technology but a complex one to master in this environment. A structured
system for holistic decision-making concerning technical and economic feasibility, as well as quality
and risk-oriented process management, is currently not available. In the context of this research,
a framework is proposed that demonstrates the essential steps for the systematic implementation
and validation of PBF-LB/M in two structured phases. The intention is to make process-related key
performance indicators such as part accuracy, surface finish, mechanical properties, and production
efficiency controllable and ensure reliable product manufacturing. The framework is then visualized
and evaluated using a practice-oriented case study environment.

Keywords: additive manufacturing; AM; laser beam melting; laser powder bed fusion; PBF-LB/M;
risk management; process quality

1. Introduction

For a long time, additive manufacturing (AM) was seen as the technology of the future
that would enable the next industrial revolution [1]. Almost unlimited freedom of design,
economical manufacturing of small lot sizes, and short lead times are achieved through
tool-free and cost-efficient production with independence from forging or casting, which
are the ideal prerequisites for mass personalization production [1–3]. However, AM is now
considered a traditional manufacturing technology [4], despite reservations and hurdles
to implementing AM, which are still evident in many sectors and hampering further
industrialization. ERENSTONE states that AM is moving beyond recent limitations as the
field seems to be advancing at a sustainable rate [5]. In addition to structured technology
analysis for implementation, it is essential to obtain qualification and certification for
the cross-sector realization of production and technology diffusion into a wide range of
applications [6].
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1.1. Motivation

Point-by-point and layer-by-layer production brings several product benefits but
also additional challenges for quality assurance [7]. In some AM technologies, over
100 process parameters influence material and part properties [8]. Particularly for products
in medical technology, it is a major challenge to manufacture a safe product for commercial
sale [9]. This is why many approaches in research and application are based on predictive
engineering [9]. Knowing that there is no risk-free product, it is about ensuring that the best
efforts have been made to offer an adequately safe product where the benefits outweigh
the risks [9]. Predominantly in highly innovative fields, inadequate risk management can
be attributed to the methods used or document-based approaches [10]. Another reason for
the use of AM is the trend toward personalized products with a large number of variants
and high quantities [11].

A special focus of previous research lies in the development of new processes and
materials for AM [12], whereas less research is being conducted into the systematic im-
plementation and validation of the AM process chain. Due to the cost structure of AM in
small quantities, mass personalized products can be manufactured economically, such as
those in demand in medical technology for customer-specific personalization on the human
body [13–15]. Mass personalization production for medical devices refers to manufacturing
medical equipment and devices tailored to individual patient needs [16]. However, the
parallel AM of multiple individualized products poses special challenges in process control
for the production of standard-compliant products. In particular, the powder bed fusion
of metal with the laser beam (PBF-LB/M) process poses considerable challenges, such as
thermal stresses, porosity, cracks, surface defects, and microstructural heterogeneity [17,18].
The structured and partially concurrent implementation and validation in coordinated indi-
vidual steps provide the advantages of cost-efficient and rapid production and distribution
of AM products.

1.2. Objective and Structure

For the reasons outlined in Section 1.1, this paper proposes a holistic framework for
the implementation and validation of AM in the production process chain of manufacturing
companies for mass personalization products. To compensate for a scarcity of financial,
personnel, or time resources, small and medium-sized enterprises, in particular, require
systematic approaches [19].

PBF-LB/M is considered to be the most widely used metal-based AM technology [20–22].
In addition, this technology is preferred for the production of medical technology products,
where there is considerable pressure on risk management. The manufacturing of mass
personalization products involves additional challenges for risk management, as only a few
methods are applicable in scenarios with difficult access to data. Due to the cost structure of
the PBF-LB/M, efficient and rapid implementation is particularly important in cost-driven
industries. For this reason, both implementation and validation must be considered in parallel
and approached holistically.

The objective of this paper is to explore and expand the state of scientific knowledge
and to focus on practical guidance in this subject area. For this purpose, the state of the art
in AM is reviewed, risk management approaches are discussed, and the special status of
individual products is outlined. The framework for implementation and validation is then
successively introduced before being tested on a laboratory scale. The results are discussed
and objectively evaluated. Finally, a summary with the key takeaways is provided, and an
outlook for future research work is drawn up.

2. State of the Art
2.1. Additive Manufacturing Process Chain

In addition to the development of a large number of AM technologies, immense
progress has been made in the development of technologies, equipment, and materials for
AM [23–25]. The various technologies are all based on the layer-by-layer principle but differ,
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e.g., in the raw material, the process sequence, and the final state of the products. For indus-
trialization, the key characteristics are manufacturing precision (e.g., shape and dimensional
accuracy, surface quality), build volume, and process speed [23,26]. Almost every AM
technology defines the process parameters of the following three stages: pre-processing,
in-processing, and post-processing [27]. The process parameters of the pre-process are
defined in the in-processing via a slicing program and can include, e.g., geometry, wall
thickness, material provision, and machine maintenance [27,28]. The in-processing param-
eters recorded in the slicing program define the printing speed, component orientation,
layer height, infill density, and temperatures, among others [27,29]. After the actual AM
process, mechanical, chemical, or thermal technologies are used in post-processing to
modify component properties [24,27,30,31].

One of the major potentials of AM is the production of complex, individualized com-
ponents into which functions can be integrated [2,32]. Unlike conventional manufacturing
processes, no specific tools are required to produce several individualized products in one
build job. AM can be used in decentralized production networks, with short delivery routes
positively affecting transport costs and the risk of supply bottlenecks [2,33,34]. This makes
it possible to increase the resilience of value-creation systems through AM [2,35].

In PBF-LB/M, a large number of manual and complex process steps (see Figure 1)
with a low degree of automation are required to manufacture products [3]. The PBF-LB/M
process works with a laser that selectively melts a metal powder in a powder bed [36]. This
creates a melt pool that solidifies and forms a single layer [23]. Despite the freedom in the
geometric design for complex features, process qualification deters wider adoption [8].
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Figure 1. Exemplary visualization of the PBF-LB/M process chain [3].

2.2. Technical Risk Management in AM Production Processes

In the literature, various definitions of risk, sometimes also referred to as consequence,
can be found. The definitions typically differ regarding their scope and perspective [37–40].
The International Organization for Standardization (ISO) 31000, for example, states that
any effect deviating from the expected result is to be considered a risk. Therefore, the term
risk itself includes positive and negative impacts on the observed object [38]. In contrast,
ISO 14971 clearly defines risk as a negative impact and a combination of the likelihood
of its occurrence and its severity [37]. While the definition of risk differs, the definition
of risk management is similar in the literature and mostly varies in its level of detail. It
is described as a systematic order of actions to handle risk within an organization [37,38].
Different industries apply different standards for risk management. The focus of the present
paper is on the production of medical products. For details on risk management in the
automotive sector, International Automotive Task Force IATF 16949 can be viewed [41].
The standard for industry-independent risk management can be found in ISO 31000 [38].
While the above-mentioned standards focus on risk management in specific industries,
ISO ASTM 52920 describes qualification principles in the AM sector and offers a more
holistic approach. Yet the risk management section of this standard refers to ISO 14971
and ISO 31000 and does not offer additional methods and tools [42]. ISO 14971 describes
the standard for risk management in the medical product industry. Accordingly, risk
management consists of six main steps. As shown in Figure 2, the first two steps of risk
analysis and risk evaluation are summarized as risk assessment. After the successful risk
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assessment, risk control, the evaluation of overall residual risk, risk management review,
and production and post-production activities are to be carried out [37].
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Figure 2. Risk management process for medical products [37].

Additionally, manufacturers can use guideline ISO/Technical Report (TR) 24971 to
implement an ISO 14971-compliant risk management process [39]. In the following, each
step of risk management according to ISO 14971, as well as common methods used during
the steps, are described.

Manufacturers of medical products are required to implement a process to perform a
risk analysis. This process has to include the definition of the intended use as well as the
so-called reasonably foreseeable misuse of the product and the analysis of these regard-
ing potential hazards. Safety-related specifications for the product are to be defined [37].
ISO/TR 24971 offers several questions that can be used to determine the product’s require-
ments regarding its safety. In addition, the guideline lists the following methods that may
be used to run a risk analysis [39]:

• Preliminary Hazard Analysis (PHA);
• Fault Tree Analysis (FTA);
• Event Tree Analysis (ETA);
• Failure Mode and Effects Analysis (FMEA);
• Hazard and Operability Study (HAZOP);
• Hazard Analysis and Critical Control Point (HACCP).

Not all these methods cover the entire process of a risk analysis and, therefore, should
be viewed as support tools. Manufacturers of medical products are not limited to these
methods, as stated in the guideline. As shown by HUNTER, NEIL, and FENTON, Bayesian
Networks offer an alternative to the above-mentioned methods. Yet, further research is
necessary to validate the proposed use of Bayesian Networks in this context [43].

An acceptable risk has to be determined before the risk evaluation can be performed.
Afterward, the previously analyzed risk is compared to the acceptable risk. For addi-
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tional information, ISO/TR 24971, which offers a framework to establish criteria for risk
acceptability, can be viewed [39].

The risk control step contains several sub-steps, as seen above in Figure 2. First, risk
control options need to be analyzed. The guideline separates between risk control options
for the design and the manufacturing process. In addition to this, the FMEA method,
the HACCP method, and international standards like the International Electrotechnical
Commission IEC 60601-1 are mentioned and explained [44]. Once the risk control options
have been analyzed, the selected options have to be implemented and their effectiveness
verified. To verify the effectiveness of risk control options in the design, testing the product
with users can be necessary. The guideline refers to several standards for the testing of
medical products, such as ISO 14155 [39], all of which need to be documented in the risk
management plan. After the implementation of all risk control options, the residual risk
needs to be evaluated using the same method and criteria used for the initial risks, and a
benefit–risk analysis has to be conducted. According to ISO 14791, the benefit–risk analysis
may only be used to compare the residual use and technical risks with the benefits for
users of the product. Economic benefits are explicitly excluded from this analysis [37,39].
ISO/TR 24971 offers a guideline and examples for the benefit–risk analysis. As the final
steps of risk control, the risk resulting from risk control measures needs to be evaluated,
and the previously conducted actions need to be checked for their completeness. The risk
emerging from risk control measures can be determined by updating the risk analysis [39].

According to ISO 14971, manufacturers have to evaluate the overall residual risk [37].
The standard also states that the criteria for accepting the overall residual risk need to
be indicated in the risk management plan, as well as the method used to determine the
overall residual risk. ISO/TR 24971 offers a variety of methods for the overall residual
risk evaluation, such as FTA and ETA [39]. Afterward, the risk management needs to
be reviewed, and pre-, in-, and post-production process steps need to be conducted. In
this context, post-market surveillance (PMS) should be mentioned, which refers to the
monitoring and evaluation of medical products after they have been placed on the market.
PMS aims to identify potential risks and undesirable side-effects so that they can be
iteratively fed back into the risk management process to re-evaluate the benefit–risk ratio of
the product and, if necessary, incorporate mitigation measures. For the latter, the guideline
offers approaches to gather relevant data and information as well as questions to review
the gathered information. Furthermore, actions for events like hazardous situations are
provided [39].

2.3. Special Features with Individual Products and Mass Personalization

One key trend in industrial manufacturing is personalization, in which manufacturing
technologies are combined with user information to create products [45]. These customer
benefits can generate competitive advantages, which is why companies are strategically
aligning themselves accordingly [45]. Due to technological advances in recent years, cus-
tomization with customers choosing between different configurations has become popular,
and the personalization of products has developed as a competitive factor. The technologies
that enable the mass personalization of products include, for example, open software ar-
chitectures along the supply chain and highly flexible manufacturing technologies such as
AM [46,47]. In contrast to mass customization, mass personalization products are not only
based on the configuration of the product by the customer but also on the customer creating
their design, for example [46]. One way to differentiate between mass customization and
mass personalization is to look at the target group. Mass personalization products are
individual products precisely designed for the customer’s needs [47]. These products are
aimed at a single customer at a time, while mass customization targets several customers
at the same time due to its configuration options [47]. The trend of offering personalized
products is not new. In fact, for the last two decades, companies have been offering mass
personalization products [47]. These products include, for example, personalized t-shirt
designs and personalized artwork in healthcare facilities [47]. To distinguish between mass
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production, mass customization, and mass personalization, HU considers the four per-
spectives: production goal, desired product characteristics, customer role, and production
system [46,48]. The summarized key differences can be viewed in Table 1.

Table 1. Differentiation of mass production, mass customization, and personalized production [46,48].

Product Strategy

Mass
Production

Mass
Customization

Personalized
Production

Comparison
Attributes

Production Goal Scale Scale
Scope

Scale
Scope
Value

Desired Product
Characteristic

Quality
Cost

Quality
Cost

Variety

Quality
Cost

Variety
Efficacy

Customer Role Buy Buy
Choose

Buy
Choose
Design

Production
System

Dedicated
Manufacturing Systems

Reconfigurable
Manufacturing Systems

On-Demand
Manufacturing Systems

AM is a technology with great potential for personalized products (see Section 2.1) [49,50].
In particular, the combination of 3D scanning, subsequent optimization, and rapid manufactur-
ing opens up special added value for the production of customer-specific products [51]. Unlike
traditional manufacturing processes, AM does not require any specific tools to manufacture or
process steps to assemble the final part [52]. AM is particularly suitable for geometrically com-
plex structures and individual adaptations, allowing products to be manufactured economically
and irrespective of the quantity.

3. Approach and Methodology
3.1. Framework Overview

The described initial situation underscores the necessity for efficient and economi-
cal implementation and validation of AM for mass personalization products in medical
technology. From an economic perspective, the success of a company hinges on its abil-
ity to accurately gauge the effort and the effects of implementing and validating AM. A
structured W-model approach was developed to address this need, offering a path toward
economic prosperity.

The W-model offers an easy-to-use method to examine the applicability of a product for
AM. It combines suitable decision-making for product, technology, and material selection as
well as methods for qualitative, production-orientated, and economic analyses. In addition
to implementation, the fundamental steps of technical risk management and validation of
the process chain are demonstrated.

The W-model consists of two consecutive V-models (see Figure 3), which can overlap
in parts on a time axis and proceed in parallel. The first V-model contains the essential
steps and considerations for implementing AM following ILG [53]. The starting point is
the interest of a company in AM products to check eligibility for the company’s product
portfolio in the next step. This strategic decision forms the basis for the selection level, the
technical adaptation, the AM of a prototype of the reference components, and the evaluation
level. The transition from the first to the second V-model is the linking of a technology
calendar (internal view) with the market/customer (external view). The second V-model
provides a structured framework for the product and process development process, starting
with a risk identification derived from the customer requirements. The key to a successful
and structured V-development process is the implementation and iterative consideration
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of identified risks, both use-induced and technical, in the risk management process. If
the product has been developed with sufficient reliability according to the specifications
and meets customer requirements through qualification, verification, and validation, it
can be approved for production. This approach is capable of having a significant impact
on the quality prediction of product characteristics and minimizing the need for rework
and re-production.
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3.2. Phase 1: Implementation of AM in Production Process Chains

The core objective of the first V-model is the selection and evaluation of suitable
products, technologies, and materials for planning the implementation of AM into the
surrounding production system. Therefore, the starting point is the strategic decision
to analyze and subsequently implement AM. Various standards provide guidance for
the use of AM processes and, thus, for parts of the framework. VDI 3405 provides a
general overview of AM, while DIN EN ISO/ASTM 52910 supports the design strategy
and potential analysis, for example [54,55]. The holistic concept described in the following
is closely orientated to ILG’s preliminary considerations [53].

The first step of the selection level is to determine which products or product groups
may be suitable for AM. For this purpose, the structure of the product portfolio should be
disaggregated and subsumed into new categories: product groups for AM (PGfAM). To
categorize products and components in PGfAM, they are evaluated according to require-
ment criteria, which in turn can be refined in sub-criteria. Criteria can vary depending on
the industry and relate, for example, to technical requirements, costs, or times in develop-
ment, procurement, production, or distribution. This procedure is typically structured as
a matrix with a suitable rating scale. The aggregated values of the criteria in relation to a
product/component identify the suitable PGfAM (see Figure 4).

After the components have been evaluated according to the criteria and categorized
into criteria-specific product groups, the next step is to select components as case studies
for closer analysis. The objective is to select components with the greatest possible potential
benefits. A potential benefit is defined on a company-specific basis and can, for example,
consist of the transferability of the analysis results to the largest possible number of other
components. Other usual elements for analyzing the potential benefits are manufacturing
costs, quantities, component complexity, throughput time, lightweight construction po-
tential, component consolidation, and, particularly in the context of medical technology,
individualization (see Figure 5). A utility value analysis can be used to calculate the benefit
effect of an additively manufactured component and compare it using suitable visualization
(e.g., network diagrams). Especially for companies that are new to AM, it has been shown
that they should start with a small number of case studies.
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Figure 5. Effect analysis and case study selection.

The next step is to analyze and select suitable materials and technologies for the com-
ponents identified as case studies (see Figure 6). Whether the material or the technology
is selected first depends on the requirements of the component. The various materials
differ in terms of their properties, for example, in their tendency towards residual stresses
and distortion. Complex geometries also depend heavily on the properties of the tech-
nologies, such as resolution and minimum wall thicknesses. Furthermore, the geometry
leads to various challenges that must be taken into account when selecting materials and
technologies and assessed depending on the requirements. In PBF-LB/M process-related
thermal influences in combination with certain materials can cause stresses and distortion.
A customer requirement could be, for example, the specification of a certain material in
the component. In this case, the material is predetermined, and only technologies are
considered that can process exactly this material. If the customer requirement consists of
the fulfillment of certain requirements (e.g., mechanical properties, surface quality, bio-
compatibility), a technology and its post-processing methods that fulfill the requirements
are selected first. Then, the material that can be ideally processed with this technology is
selected. Both approaches are equally effective and run in individual cases in the same way.
ILG has prepared appropriate matrices for analyzing the suitability of the technologies and
materials [53].

This concludes the selection level, and a transition step to the evaluation level begins.
This is where the design of the component is optimized for AM, the process parameters are
determined, and the entire process chain is configured. This transition step is necessary
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because the products are typically optimized for conventional production. Consequently,
comparability is not given at this stage, as it results from the products optimized for the
respective manufacturing processes. The step is completed by the physical realization of
the component in the previously defined AM process chain. The steps of the evaluation
level can be carried out based on this physically present component.
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The evaluation level consists of the qualitative, production-related, and economic
assessment of the case studies (see Figure 7). In the qualitative assessment, quality-relevant
requirements for the components of the case studies are analyzed and evaluated for their
degree of fulfillment (e.g., tolerances). The manufacturing technology evaluation analyses
the additive process chain with regard to further optimization potential, e.g., the saving of
post-processing steps by adjusting parameters in the in-process. The economic assessment
of the production of the case studies is based on the manufacturing costs and the throughput
time of the additive process chain.
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The findings from the evaluation level are incorporated into the selection level through
adjustments. As a result, some of these steps are repeated in a cycle of continuous improvement.

The final step of the first V-model summarizes the knowledge gained in a technol-
ogy calendar, which includes the systematic synchronization of products and technolo-
gies over time (see Figure 8). This allows for deriving short-term optimization potential
and recommendations for action as well as long-term development trends and strategies
for application.

Figure 8. Technology calendar.

Taking account of those assessments, a profound decision can be made on the question
of whether a product or product group may or may not be suitable and profitable for AM
in the production company.

3.3. Phase 2: Validation of AM in Production Process Chains

In addition to functional integration and the production of complex component struc-
tures, the special field of the W-model application is personalized production with lot size
one (see Section 2.3). By analyzing all the cause-and-effect interactions between process
parameters and process characteristics, this approach offers a significant advantage in
ensuring the required quality in each process characteristic of the final product.

The second V-model provides a structured framework for the product and process
development process (see Figure 9). Derived from the specified customer requirements from
the market, the Hazard Identification for use-induced risks is carried out, in which potential
risks associated with the product are identified. The User Requirements Specification (URS)
defines the requirements of the product from the user’s perspective, while Design Input
captures and documents these requirements. Subsequently, the requirements of the product
are transferred to technical specification sheets. The requirements of the product and
functional specifications form the basis for deriving technical risks. There is a regulatory
requirement within medical technology to prepare evidence of a holistic risk management
approach that provides evidence of a detailed consideration of technical risks from the
design to the production process and control plan, as mentioned in Section 2. Compared to
the given qualification principles by ISO ASTM 52920, the framework picks up on existing
cross-industry approaches for implementation and validation and combines them in a
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process model [42]. The overall objective of a residual risk assessment of the product
to be developed requires complete and traceable information on all use-induced and
technical risks.
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Risk management plays a crucial role in identifying, evaluating, and mitigating techni-
cal risks throughout the product’s lifecycle [57]. Functional requirements enable product
development to analyze design, prototypes, and product tests regarding the qualification
that a system or product functions properly and delivers the expected results. In most
cases, a qualification comprises an installation qualification (IQ), an operational qualifica-
tion (OQ), and a performance qualification (PQ) [58]. The technical specification “Addi-
tive manufacturing—Qualification principles—Installation, operation and performance
(IQ/OQ/PQ) of PBF-LB equipment” provides recommended practices for machine-related
process qualification [59]. The six elements of process validation are process mapping,
risk assessment, validation planning, installation qualification, operational qualification,
and performance qualification. While the first three elements are outside the scope of this
specific technical specification, it does not address risk management in the manner that is
required to ensure the necessary level of quality assurance for strictly regulated branches.
To fulfill the procedure model for a consistent, complete, and traceable risk management
process for technical risks, design verification and validation are necessary to ensure that
the product meets the functional requirements, which can be carried out by measuring
certain properties (e.g., via the external shape of a product) as well as the user’s needs and
the intended use in its environment.

To focus on the concept of quality-centered risk analysis of technical risks, there
is a need to identify the product and process parameters as well as their cause–effect
relationship (see Figure 10). A statement about the process’s capability of generating a
product characteristic without testing can only be made if all process parameters are known
to match congruent product characteristics per process step.

The process parameters are clustered into three categories: control variables, distur-
bance variables, and material attributes. Those parameters that can be actively adjusted or
set are referred to as control variables. Disturbance variables can not be actively influenced,
but their impact might be reduced by technological measures. A common example of a
disturbance variable is the ambient temperature. Material attributes describe, for example,
characteristics of the processed raw material, such as particle size distribution. Three
different ratings are available for each cause–effect relationship between the relevant prod-
uct characteristic and all process parameters. The ratings are “no influence”, “influence
assumed, verification required”, and “influence verified”, while there is no weighting
between those. A control variable rated with “no influence” has the same weight for the
determination of the process capability as a variable rated with “influence verified” or
“influence assumed, verification required”. Different sources, such as statistical analysis
and literature reviews, can be used to determine the rating of each cause–effect relationship.
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4. Verification

In this Section, the proposed methodology is executed using a case study from medical
technology to test the individual steps and the approach in its entirety. To this end, the
general circumstances of the case study are described, and the industry environment
and technological realization are addressed. Following the description of the relevant
background information on the testing procedure, the methodology is traced step by step,
and the results are described.

4.1. Phase 1: Implementation of AM in Production Process Chains

In the examined company, the strategic decision was made to analyze the potential
implementation of AM and to make a decision based on the findings. The case study is
based on a real, industrially manufactured product from implant prosthetics in the dental
industry. Due to confidentiality agreements, the first two steps, which are the results of the
product portfolio screening and the component selection, cannot be presented in detail but
correspond with the criteria set out in Figure 6.

The product analyzed in depth is an abutment for dental applications, which serves
as a personalized connecting element between the dental implant and prosthesis. For
this investigation, the design of the component was adapted based on confidentiality
agreements. Due to the individuality of human dentition, the orientation of the teeth and,
therefore, the angle of the abutment varies. Figure 11 shows the product with exemplary
orientations of 60◦ (a), 75◦ (b), and 90◦ (c) for the denture.
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Figure 11. Examples of the abutments designed for the case study: (a) abutment with orientation of
60◦, (b) abutment with orientation of 75◦, (c) abutment with orientation of 90◦.
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As the material for manufacturing the abutment is predetermined, the appropriate
technology is selected to match the material. The titanium alloy TiAl6V4 is a common
material in the field of dental medical technology and is also applied in conventional
abutment manufacturing (see Figure 12) [60]. According to TSHEPHE ET AL., the AM
technologies shown in Figure 12 are particularly suitable for this material [61].
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Figure 12. Material and technology analysis.

The available technologies are discussed in terms of their advantages and disadvan-
tages in expert workshops, and technologies are selected grounded on in-depth techno-
logical knowledge.. Due to its demonstrated suitability for medical technology products
(especially implants) and its potential for manufacturing the required mechanical properties
and dimensional stability, the PBF-LB/M is used for further analysis [62,63]. If the analyses
of the next steps show that this technology–material combination is not expedient, the
relevant information is fed back for a second run of the subsequent steps.

In the next step, the design of the abutment is optimized for AM (see Figure 11), and
the process chain is set up with all relevant pre-, in-, and post-processing production steps.
The production process chain is strongly oriented towards the form described in Section 2.1.

The product is then manufactured in the predefined production process chain and
subjected to assessments in terms of quality, production, and economic efficiency. Figure 13
shows the aggregated results—qualitative and manufacturing assessment (left diagram)
as well as economic evaluation (right diagrams). The degree of fulfillment of the relevant
quality characteristics achieved by the additive production technology ensures the technical
feasibility of the product. In addition to technical feasibility, economic feasibility was
assessed based on production costs and cycle time. This compares the entire process chain
of AM with the process chain of conventional manufacturing in terms of the indicators
relevant to the company.

All three analyses confirm the qualitative, manufacturing, and economic feasibility of
the abutment produced by the PBF-LB/M process. Consequently, implementation is rec-
ommended and can be extended by the analysis results of other products and technologies.

In the final step, the implementation strategy is developed based on all results of
previous analysis and visualized in the form of a technology calendar (see Figure 14).
The implementation of the abutment should be checked instantly, and the first steps of
validation (see Section 4.2) should be initiated. In addition to the abutment, three other
products were analyzed in this case study. Two of these products can be consolidated into
an assembly and additively manufactured as one product. The consolidated component is
to be manufactured using the same material and technology, which means that the learning
effects of the short-term additively manufactured abutment can be utilized. As a result, the
implementation of AM for the abutment should take place within the next year, and the
consolidated component is to follow in the next five years. For Component 3, production
using a different AM technology, stereolithography, is the target. The implementation
of this technology is planned for a long-term time horizon of seven years and should,
therefore, be reviewed again (resubmission).
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Figure 13. Aggregated results for the qualitative, manufacturing, and economic evaluation of the
case study.

Figure 14. Technology calendar for the considered case study.

4.2. Phase 2: Validation of AM in Production Process Chains

The product analyzed in this case study has several critical quality attributes (CQA).
To determine these, the requirement specification was scrutinized. Among several CQAs,
the angle between the base of the abutment and its body, as well as the roughness of the
angled area, were chosen for the following in-depth analysis. After the determination of
the relevant CQAs, all control variables, disturbance variables, and material attributes with
a potential influence on the production of the CQAs were collected. For this step, a process
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walk-through on shopfloor level was conducted. The initial set of potentially relevant
process parameters was determined during the walk-through. In several expert interviews,
the initial set of parameters was reviewed and complimented. This approach led to a total
of 28 potentially relevant process parameters clustered into the three categories, while two
additional parameters of post-processing steps were found. Control variables include, for
example, the laser power of the PBF-LB/M machine, the flow rate of the inert gas, and the
set layer thickness. Disturbance variables include the degree of pollution of the optical
protection glass and the ambient temperature. Material attributes, post-processing, and
the design of the support structures, which is a control variable, are parameters that are
considered out of scope for this research. Table 2 shows a selection of process parameters
and their respective rating.

Table 2. Analysis of relevant CQAs and process parameters.

Critical Quality Attributes

Angle between
Base and Body Source Surface

Roughness Source

Control
Variable

Angle between base and body 2 Expert
Interviews 2 [64–68]

Layer thickness 2 Expert
Interviews 2 [69–71]

Laser power 2 [72] 2 [68,70,71]

Scanning speed 2 [72] 2 [68,70,71]

Hatching distance 1 Expert
Interviews 1 [73]

Scanning strategy 2 [74–76] 2 [77]

Disturbance
Variable

Condition of recoating blade
during process time 2 Expert

Interviews 2 [78]

1—Influence assumed, verification required; 2—influence verified.

For reasons of confidentiality, process data cannot be published in this case study;
instead, the evaluation is based on accepted methods such as expert interviews and liter-
ature. Typical measurements of surface roughness (Appendix A), dimensional accuracy
(Appendix B) in dependence of the angle, and the aggregated results (Appendix C) can
be found in the appendices. Among several disturbance variables, the condition of the
recoating blade during the processing time has a critical impact on the product attributes,
especially the surface roughness. HOFMANN ET AL. display the impact of a worn-out or
damaged recoating blade on the surface of the component [78]. Therefore, the influence of
this disturbance variable on the CQA is verified, which results in a score of two in Table 2.
The influence of the configured laser power and the scanning speed received a score of two
for their influence on each of the CQAs. PACURAR, BALC, and PREM show that among
other control variables such as layer thickness and the temperature of the powder bed,
the laser power and scanning speed have an impact on the accuracy of the process, which
can lead to dimensional deviations of the component [72]. The impact of these control
variables on the roughness of the surface has also been shown in the literature [68,70,71].
Therefore, it can be derived that there is a verified influence on the analyzed component.
While the literature review has shown that several control and disturbance variables and
their impact on different CQAs have already been verified, the influence of variables like
the hatching distance on the angle between the base and the body of the component has yet
to be verified. Therefore, Table 2 shows a score of one. KRAUSS conducts further studies
on all key process parameters and examines their influence on quality characteristics. For
example, he emphasizes the importance of heat dissipation in overhanging component
areas [79]. YAVARI ET AL. examine the porosity and microstructure [80].



J. Manuf. Mater. Process. 2024, 8, 158 16 of 22

Based on this procedure, targeted data can now be recorded to analyze the process
capability of the system concerning the individual relevant process parameters. In addition,
initial statements can be made about the extent of the influence of individual variables
on the CQAs in the form of correlation analyses. Instead of analyzing every potential
control and disturbance variable, the effort can be highly reduced by narrowing down the
relevant variables.

5. Discussion of Results and Limitations

The industrial testing of the methodology described in Section 4 is subject to several
limitations, as a complete validation of the methodology would go beyond the scope of a
single publication. The methodology was initially developed for application in an industrial
environment. Publication of company-specific data and results is only possible in part and
under conditions of anonymization. This means that not all steps can be displayed in depth.
However, valuable findings on applicability and potentially missing components can be
drawn on this basis.

In the first phase, it was shown that the analysis results of the product portfolio
screening could be used as a basis for selecting suitable components for AM. A suit-
able material–technology combination was identified based on the requirements for the
component based on regulatory and customer-induced specifications. The subsequent
explanations of the first and second phases focus on the selected case study. On the one
hand, this allows the results of this case study to be discussed in more detail; on the other
hand, verification of transferability through further case studies is pending. Although the
effort required to set up the AM process chain for the comparative analyses of quality,
manufacturing technology, and economic feasibility is comparatively high, this is the only
way to obtain reliable data for deciding whether to implement the production or adapt
the previous steps. By manufacturing the case study in the developed production process
chain, it can be examined for economic analysis by recording the throughput time of the
individual process steps (incl. pre- and post-processing) and assigning the corresponding
costs. The production costs calculated can be supplemented by other cost types and com-
pared with the process chain of conventional production. In the example case study, the
production costs of AM are lower than those of conventional manufacturing, which means
that implementation is recommended from an economic perspective, taking into account
the cost types used. After production, the products can be examined for their requirements.
The case study requires, among other things, tensile tests, examinations of micrographs,
and examinations of surface roughness. In particular, technology-specific challenges such
as thermal gradients, heat accumulation, and their effects on residual stresses and part
distortion need to be considered in more detail (see, for example, [79,81,82]). Most require-
ments could be fulfilled directly or require a further post-processing step. This is the basis
for the AM strategy for the next seven years, in which the implementation of the PBF-LB/M
process chain is due in the short term.

Once the process chain is set up, the process steps are validated, starting with ana-
lyzing the process capability for each of the previously determined process variables and
producing a standard product similar to the mass personalization products. After vali-
dating all variables and determining the nature of their impact on the CQAs, an in-depth
analysis can be conducted. The objective of this analysis is to determine which adjustments
of the CQAs can still be produced with the current process. In this way, a statement can
be provided at an early stage for each related mass personalization product regarding
the process capability for manufacturing a specification-compliant component. The small
sample size of the measurements in Appendices A–C does not serve to prove statistical
significance but merely to illustrate exemplary measurements. Statistical tests on individual
CQAs were not carried out in the context of this case study, as the relevant literature is
already available. Overall, the proposed framework in this paper offers a holistic approach
to the implementation and validation of AM for mass personalization products within
medical technology. Compared to the methods mentioned in ISO 14971, like FMEA or FTA,
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this approach provides answers to all required stages of the risk management process for
medical devices [37]. Instead of choosing individual methods for each stage of the risk
management process, one approach can be used to meet the requirements of standards.

6. Conclusions and Outlook

In summary, this paper provides insight into the structured and systematic implemen-
tation and validation of mass personalization products in medical technology. Supported
by an approach model for a consistent, comprehensive, and traceable risk management
process throughout the product lifecycle, the integration of the implementation and valida-
tion processes creates a holistic framework that ensures the effectiveness and compliance
of mass personalization production for additively manufactured medical devices. The
W-model provides an approach that already takes the validation steps into account when
implementing the technology, which can reduce the validation process. The individual
steps were explained and examined as examples in a case study. This has demonstrated that
the approach works in an industrial context and allows efficient implementation and valida-
tion of AM in complex and highly regulated products. The basic design of the framework is
structured to allow its flexible use. This applies, on the one hand, to the area of application
and, on the other, to the expertise of the user. Individual steps can vary in terms of effort
required depending on the preparatory work and available information/data. This, in turn,
lowers the barriers to exploiting the potential of AM processes and enables diffusion into
this sector. Due to the high variance in the product requirements and process parameters
of different machines and technologies, this study did not aim to validate all elements.
Therefore, the next step is to quantitatively validate the process characteristics (control and
influencing variables) using statistical methods, computational models, and algorithms. To
further increase efficiency in the implementation and validation of AM, automated analyses
can be used to support various steps of the framework. Machine learning algorithms or
simulations can be applied to prepare the tests, or multi-objective optimization approaches
can be used to take into account the various requirements of the product when selecting
materials and technologies in the implementation phase. Finally, the methodology is to be
validated in a long-term study with a larger number of industrial application partners to
assess the effectiveness of the model from a cost and time perspective.
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Appendix A

Three different angles of 60◦ (corresponds to 150◦ in the measuring product), 75◦

(corresponds to 165◦), and 90◦ (corresponds to 180◦) were used to carry out roughness
measurements following ISO 4287/4288 [83,84]. For this purpose, the parts are measured
enlarged 40 times with λc = 2.5 mm—divided into five sections and using a high-pass
filter. The surface was analyzed using the profilometer VR5200 (Keyence Deutschland
GmbH Neu-Isenbrug, Germany) with the measurement software VR-Series Viewer (Version
3.3.2.2337; Keyence Deutschland GmbH, Neu-Isenbrug, Germany) in combination with
the VR-Series Analyzer (Version 3.3.3.282; Keyence Deutschland GmbH, Neu-Isenbrug,
Germany). The example measurement of the 75◦-component can be found in Figure A1.
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Appendix C

Table A1 provides an overview of the manufacturing parameters used. Table A2
summarises the results of the sample measurements. As the focus of the case study is on the
exemplary execution of the measurements, the sample size was limited to one per angle.

Table A1. PBF-LB/M parameters.

Parameter Value

Laser power 119.25 W
Scan speed 700 m/s

Laser spot diameter 40.00 µm
Hatch distance 50.00 µm
Layer thickness 25.00 µm

Scan strategy Bidirectional (ZigZag)
Shielding gas Argon

Table A2. Summary of the results of the sample measurements.

Angle Nominal Ra Rz Angle Measured

180◦ (Figure 11c) 8.79 µm 67.26 µm 179.99◦

165◦ (Figure 11b) 9.23 µm 64.31 µm 165.36◦

150◦ (Figure 11a) 10.29 µm 49 µm 150.26◦
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