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Abstract: This study employs friction stir processing to create a surface alloy using Al1050 aluminum
as the base material, with Cu powder applied to enhance surface properties. Various parameters,
including tool rotation speed, feed rate, and the number of passes, are investigated for their effects
on the microstructure and mechanical properties of the resulting surface alloy. The evaluation
methods include tensile testing, microhardness measurements, and metallographic examinations.
The initial friction stir alloying pass produced a non-uniform stir zone, which was subsequently
homogenized with additional passes. Through the plasticization of Al1050, initial agglomerates of
copper particles were compacted into larger ones and saturated with aluminum. The alloyed samples
exhibited up to an 80% increase in the strength of the base metal. This significant enhancement
is attributed to the Cu content and grain size refinement post-alloying. Additionally, machine
learning techniques, specifically Genetic Programming, were used to model the relationship between
processing parameters and the mechanical properties of the alloy, providing predictive insights for
optimizing the surface alloying process.

Keywords: friction stir surface alloying; aluminum 1050; copper powder; machine learning; genetic
programming

1. Introduction

The technology known as Friction Stir Processing (FSP) has garnered significant at-
tention and research interest, particularly in its application to aluminum-based alloys,
composites, and copper alloys [1,2]. FSP offers a solid-state approach to enhancing the
microstructure and mechanical properties of metals, including the incorporation of various
elements such as SiC powder, akin to other solid-state thermomechanical processes [3]. The
development of materials that improve durability through the combination of high strength
and toughness has presented significant challenges. Nevertheless, high-strength aluminum
alloys have become more widely embraced due to their high strength-to-weight ratio, mak-
ing them suitable for constructing lightweight structures [4]. Modern aluminum alloys are
extensively utilized in various structural components within the aviation and automotive
industries because of their advantageous characteristics, such as a high power-to-weight
ratio, affordability, and superior wear resistance. To further broaden their application
scope, it is crucial to employ straightforward and cost-effective manufacturing techniques
for producing the majority of aluminum alloys. By integrating reinforcements and en-
hancements in the form of aluminum compounds, silicon carbide, graphite, powdered
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compounds, and other materials, the base alloy of aluminum can be easily modified using
inexpensive casting and mixing methods [5]. Copper is one of the main elements in the
alloying of aluminum alloys. Alloys rich in copper were developed and gained substantial
popularity in the commercial sector, primarily in the United States during the 1990s. These
alloys were notably utilized in projects such as the External Super Lightweight Tank of
the Space Shuttle and the F-16 fighter aircraft [6]. Successful demonstrations of producing
metal matrix composites (MMCs) reinforced with aluminum using FSP have been reported,
showcasing its potential [1].

Extensive research has been conducted on FSP, revealing its capability to improve the
properties of different alloys. For instance, in aluminum alloys, FSP significantly refines
the grain structure, leading to enhanced mechanical properties. Chainarong et al. [7]
observed increased hardness and tensile strength properties in SSM 356 aluminum alloys
processed using FSP. Similarly, FSP has shown positive effects on the microstructure and
material properties in copper alloys, as demonstrated by Hasan et al. [2], who explored the
formation of graphene-stabilized zero-valent copper nanoparticles in situ. Furthermore,
the microstructure of materials undergoes significant changes when subjected to FSP
and Friction Stir Welding (FSW). Liu et al. [8] examined the microstructure of a friction
stir welded 6061 aluminum alloy, highlighting distinct alterations induced by FSP and
FSW. Overall, the literature supports the effectiveness of FSP and FSW in enhancing
the microstructure and mechanical properties of aluminum and copper alloys [2,7–9],
offering potential benefits for various applications, including the automotive industry,
where aluminum usage is increasing. However, further research is necessary to optimize
process parameters and understand the fatigue behavior of dissimilar friction stir welds
between different alloys [10].

Researchers have widely employed SiC and alumina (Al2O3) to reinforce aluminum
alloys using FSP. Shafiei-Zarghani et al. [11] incorporated nano-sized Al2O3 particles into
an AA6082 aluminum alloy through FSP, resulting in a particulate composite surface
layer. Huang and Aoh [12] proposed a novel FSP technique involving the incorporation of
copper-coated SiC particulate reinforcement into an Al6061 alloy matrix. Similarly, Sharma
et al. [13] studied the development of hybrid surface aluminum matrix composites through
FSP, identifying distinct material flow patterns. Friction Stir Alloying (FSA) is another
promising technique in materials science and engineering, involving the use of FSW to
introduce alloying elements into a base material, enhancing its mechanical properties.
Studies have investigated the effects of different alloying elements on the microstructure
and mechanical properties of FSA joints [14,15]. Despite its advantages, such as reduced
porosity and improved joint strength compared to conventional fusion welding techniques,
FSA faces challenges related to achieving a uniform distribution of alloying elements
throughout the joint region. Nonetheless, it holds promise for various applications in
industries such as automotive, aerospace, and marine engineering, with further research
needed to optimize process parameters and overcome existing limitations for widespread
industrial adoption.

Machine learning provides a robust framework for analyzing complex datasets and
revealing intricate relationships between process parameters and material characteris-
tics, thereby facilitating more precise predictions in Friction Stir Processing (FSP) appli-
cations [16]. Verma et al. [17] examined the utility of machine learning approaches in
modeling the friction stir welding of an aviation-grade aluminum alloy, demonstrating
their potential to advance understanding and prediction within this specific welding pro-
cess. Additionally, Chadha et al. [18] conducted a comprehensive survey on the application
of machine learning in friction stir welding, addressing current advancements, unresolved
issues, and future research directions in this domain. Moreover, Anandan and Manikan-
dan [19] employed various regression models integrated with the K-Fold cross-validation
method to predict the ultimate tensile strength of friction stir welded AA 2050-T8 joints.
Acharya and Mandal [20] investigated the microstructure of a friction stir processed hyper-
eutectic Al-20Si alloy and analyzed its wear behavior using machine learning algorithms,
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aiming to discern the correlation between microstructure and wear properties. Elsheikh [21]
explored diverse applications of machine learning in friction stir welding, such as predict-
ing joint properties, real-time control, and tool failure diagnosis, highlighting its potential
to enhance the efficiency and effectiveness of friction stir welding processes.

In the present study, friction stir alloying was employed to create a surface alloy. The
base material used was Al1050 aluminum alloy, where Cu powder was introduced onto the
aluminum surface. The research focused on investigating the impact of various parameters,
including tool rotation speed (1250 and 630 rpm), feed rate (20, 50, and 80 mm/min), and
the number of passes (1, 3, and 6 passes) on the microstructure and mechanical properties of
the resulting surface alloys. The evaluation of the samples involved conducting tensile tests,
measuring microhardness, and performing metallographic examinations using optical mi-
croscopy. The machine learning technique is also applied to model the relation between the
processing parameters and mechanical properties of the alloy using Genetic Programming
(GP) methodology. Developing this model makes it possible to predict the mechanical
properties of the designed alloy without the need to do any experiments. Figure 1 shows
the graphical representation of the current research.
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2. Materials and Methods

The base metal used in this study was an Al1050 sheet with a thickness of 5 mm. The
chemical composition of the base metal can be found in Table 1, while Table 2 presents its
mechanical properties.

Table 1. Chemical composition of the Al1050 (wt.%).

Si Fe Mn P V Ti Al

0.071 0.175 0.008 0.004 0.019 0.004 >99.7
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Table 2. Mechanical properties of the Al1050 [22].

Tensile Strength Hardness (Brinell) Elongation A Density Modulus of Elasticity

105–145 MPa 34 HB 12 Min % 2.71 kg/m3 71 GPa

Cu was employed as the alloying powder for the friction stir processing, which aimed
to create a surface alloy. The SEM Image of the Cu powder and the corresponding EDS
analysis are presented in Figure 2. The copper powder consisted of 10 ± 0.5 µm particles
of 99.8% pure copper Cu. Several variants of friction stir processing exist, including the
hole method, groove method, sandwich method, and directed FSP [22]. In this paper, the
groove method was utilized. A groove with a depth of 2.5 mm and a width of 1 mm was
machined on the aluminum surface, parallel to the rolling direction. The Cu powder was
then introduced into the groove, and the groove surface was covered using a pinless tool.
The process is carried out using a universal milling machine.
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Figure 2. Cu powder: (a) SEM image of the used reinforcing Cu powder; (b) EDS analysis of the
reinforcing powder.

A cylindrical pin tool was employed to blend the powder and stir it within the matrix.
The dimensions of the equipment can be found in Figure 3a,b. FSP was carried out using a
cylindrical pin of 5 mm in diameter and 3 mm in height, along with a shoulder of 16 mm
diameter. The FSP zone in both the metallography and tensile specimens are also presented
in Figure 3c.
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Figure 3. The tools used for the process and schematic of processed sample: (a) detailed dimensions
of the friction stir processing tool; (b) detailed dimensions of the pinless tool; (c) locations where
metallography and tensile test specimens were extracted, (all dimensions are in mm).
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To avoid excessive penetration of the FSP tool into the workpiece caused by additional
heating and plasticization, the plunging force was carefully adjusted. A plunging force of
12 kN was specifically employed to maintain a stable FSP. After each pass, the rotational
direction of the welding tool was changed, and the specimen was cooled to room tempera-
ture. The investigated parameters in this study were the tool rotation speed, feed rate, and
the number of passes, as presented in Table 3. The rest of the process parameters remained
constant for all specimens. A tool tilt angle of 3◦ and shoulder plunge depth of 0.3 mm
were used for all specimens.

Table 3. The experiment design.

No. Tool Rotation
Speed (rpm)

Feed Rate
(mm/min)

Number of
Passes Hardness Strength

(MPa)

1 1250 80 1 77 94
2 1250 80 3 64 103
3 1250 80 6 51 120
4 1250 50 1 92 111
5 1250 50 3 55 134
6 1250 50 6 46 166
7 1250 20 1 115 98
8 1250 20 3 95 181
9 1250 20 6 95 192

10 630 80 1 103 87
11 630 80 3 56 98
12 630 80 6 64 110
13 630 50 1 68 130
14 630 50 3 88 112
15 630 50 6 59 123
16 630 20 1 85 87
17 630 20 3 69 149
18 630 20 6 63 160

To analyze the mechanical properties of the samples, tensile and microhardness tests
were carried out. Longitudinal tensile specimens were fabricated by ASTM-E08 stan-
dards [23]. The tensile test was performed using the Sanctum machine with a by Zwick-
Roell GmbH & Co. KG, Ulm, Germany, following the ASTM-E08 guidelines, with a tensile
speed of 1 mm/min. The strength of the alloyed samples is presented in Table 3.

Table 3 presents the average mechanical properties of the metal within the stir zone,
including ultimate tensile strength (UTS) and mean stir zone microhardness. For each
set of parameters, three specimens were tested to determine the ultimate tensile strength,
and the mean value is reported in Table 3. Microhardness testing was conducted using
the Mega Vickers test machine with a 100 g load. To ensure consistency, microhardness
measurements were taken at seven points by indenting across the stir zone and along the
RS-to-AS midline for each sample, as depicted in Figure 4.
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The reported microhardness value in Table 3 represents the average of these mea-
surements. Figure 4 illustrates the typical measurement path used for all specimens. An
OLYMPUS optical microscope was employed to analyze the microstructure evolution of
the samples.

The machine learning methodology employed in this study utilizes Genetic Program-
ming (GP), a symbolic optimization technique. GP is an evolutionary computation method
that uses a tree representation for potential solutions, which can represent computer pro-
grams, mathematical equations, or complex process models. While the details of the GP
algorithm are well-known, we focus on key aspects in this paper. This study employs the
standard GP algorithm, primarily using arithmetic operations and mathematical functions
for model representation.

In GP, models are represented by organized trees containing functions and terminals.
Functions are chosen from a predefined set of operators, while terminals are selected from
a set of arguments. For linear-in-parameters models, terminals exclude parameters and
only include variables. GP population individuals represent nonlinear functions, and
parameters are later assigned using the Orthogonal Least Squares (OLS) algorithm. The
OLS algorithm efficiently identifies important terms in a linear-in-parameters model by
computing error reduction ratios.

The GP fitness function evaluates potential solutions based on their accuracy in fitting
the data, often using mean square error (MSE) or correlation coefficients. To balance model
complexity and accuracy, a penalty term is incorporated into the fitness function. This
penalty discourages overly complex models and promotes simplicity. Additionally, “tree
pruning” is used to manage model complexity. GP-generated trees are decomposed into
function terms, and lower significant terms are eliminated using error reduction ratios,
resulting in simpler, more interpretable models while preserving the overall tree structure.
The pruning process can be adjusted with an error reduction ratio threshold to control
simplification levels. This methodology combines GP with OLS and tree pruning to enhance
the quality and interpretability of generated models.

The parameters for the GP model are carefully selected to balance complexity, compu-
tational feasibility, and effective solution space exploration. Table 4 presents the selected
parameters, ensuring robustness and reliability in both hardness and ultimate tensile stress
prediction models:

Table 4. The hyperparameters of GP for prediction of hardness and strength.

Parameter Value Description

Functions {‘+’, ‘*’, ‘/’} Basic arithmetic operations used to build the GP model equations
Terminals {‘x1′, ‘x2′, ‘x3′} Input variables representing features of the dataset

Population size 40 Number of individual programs (models) in the population
Maximum tree depth 50 Maximum depth of the tree structures representing the GP models
Crossover probability 0.8 Probability of combining two parent models to create offspring
Mutation probability 0.7 Probability of randomly altering parts of a model

Selection pressure 0.3 Controls the likelihood of selecting fitter individuals for reproduction
Maximum generations 20 Number of generations (iterations) the GP algorithm runs

Initial temperature 2 Used in simulated annealing processes
(if applicable)

Cooling rate 1 Parameter for simulated annealing to reduce the temperature over time
(if applicable)

Subpopulation size 30 Size of subpopulations in the algorithm
Tolerance 0.05 Tolerance level for the stopping criterion

Functions: {‘+’, ‘*’, ‘/’}—Basic arithmetic operations provide a versatile foundation for
constructing complex mathematical models while maintaining simplicity.
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Terminals: {‘x1′, ‘x2′, ‘x3′}—Correspond to the input features of the dataset, ensuring
the model utilizes all available information for prediction.

Population size: 40—Balances computational efficiency and genetic diversity, fostering
varied evolutionary paths without excessive computational costs.

Maximum tree depth: 5—Controls model complexity, allowing for sufficient depth to
capture nonlinear relationships without overfitting.

Crossover probability: 0.8—Promotes combining existing solutions, potentially yield-
ing better offspring models.

Mutation probability: 0.7—Introduces significant variation into the population, pre-
venting premature convergence and encouraging the exploration of the solution space.

Selection pressure: 0.3—Balances selecting the best models for reproduction with
maintaining diversity by occasionally selecting less fit models, facilitating broader solution
exploration.

Generations: 20—Provides sufficient time for the population to evolve and improve,
considering computational constraints.

Simulated annealing (if applied):

• Initial temperature: 2
• Cooling rate: 1—Controls the acceptance of worse solutions initially, avoiding local

optima and gradually reducing acceptance to promote convergence.

Subpopulation size: 30—Enhances diversity within the overall population, leading to more
varied and potentially better solutions through different evolutionary paths.
Tolerance level: 0.05—Ensures the algorithm halts when improvements in the models
become minimal, saving computational resources while maintaining solution quality.

These parameters ensure robustness and reliability in the GP approach, effectively
balancing complexity, computational feasibility, and optimal solution search.

3. Results and Discussions

Friction stir alloying (FSA) is an innovative technique that has garnered considerable
attention in the field of materials science and engineering. This study investigates the
friction stir alloying of Al1050 with Cu powder. The findings are presented and discussed
in two main sections. The first section discusses the experimental results, while the second
section describes the employed machine learning method.

3.1. Experimental Results

Friction stir alloying has demonstrated successful application across various alloys,
such as aluminum-based alloys, magnesium alloys, and titanium alloys [22]. The present
investigation adds Cu powder to an Al1050 aluminum sheet. FSA enhances material
properties such as microhardness and tensile strength. Additionally, FSA has shown
promise in improving corrosion resistance by creating a more homogeneous distribution of
alloying elements. One major limitation is the difficulty in achieving a uniform distribution
of alloying elements throughout the entire material during processing. This issue can lead
to localized variations in mechanical properties and hinder widespread industrial adoption.

Figure 5 presents the cross-sections of four processed specimens, specifically specimens
3, 5, 6, and 7.

In the cross-section of the friction stir alloyed specimens, different zones, including the
thermomechanically affected zone (TMAZ), stir zone (SZ), heat affected zone (HAZ), and
base metal (BS), can be detected. Figure 6 presents different zones on the microstructure
of the alloyed specimens. The solution of copper particles also is evident in the cross-
section, which indicates the success of the alloying process. However, in some cases, a big
agglomerated Cu powder could be detected, an example of which is presented in Figure 7.
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Figure 7. Cu trace on the processed zone of specimen No. 3.

The main question that should be answered is which microstructural factor or factors
govern the hardness in the Cu alloyed Al1050, and how does it change when the processing
parameters change? According to Figure 8, the effects of processing parameters on the
hardness are as follows: in general, it could be said that the higher tool rotation speed results
in a higher hardness. As mentioned in the literature, with increasing tool rotational speed,
heat input increases, which indicates that recrystallized grains will grow more and the
hardness will drop [24,25]. However, in this case, the results are opposite, which could be
attributed to the Cu trace and the powder agglomeration. Here, there is another mechanism
together with the grain size that affects the hardness, namely powder distribution. With
an increase in tool rotation speed, the powder is distributed well and both solution and
intermetallic component formation are accelerated, which results in a higher hardness.
More passes result in lower hardness. When the specimen is processed in three passes, the
total heat input to the processed zone increases, which increases the grain growth. While
more passes result in a more homogeneous powder distribution, which is typically assumed
to enhance the mechanical properties of the produced surface alloy, this is not always the
case. For example, Figure 8 shows that increasing the number of passes often results in
a decrease in hardness. This reduction in hardness can be attributed to the higher heat
input associated with additional passes, which promotes grain growth and subsequently
reduces hardness.
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Figure 8. Hardness of FSPed specimens. For each feed rate, three different specimens processed in
three different passes are presented. The microhardness values are in HV: (a) processed at a tool
rotation speed of 630 rpm; (b) processed at a tool rotation speed of 1250 rpm.
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In general, it is predicted that any increase in the feed rate results in an increase in
hardness. This is because an increase in feed rate means lower heat input to the alloyed
zone, resulting in limited grain growth [26,27]. However, as presented in Figure 8, the
hardness changes in some cases deviate from this general behavior. This discrepancy can
be explained by powder agglomeration, which occurs when the feed rate is high. The
increase in pass number results in a strength increase. A higher pass number means more
powder distribution and a more homogenous microstructure, which is one reason for an
alloy to have a higher strength. The strength of the base metal is 115 MPa, which could
be increased by the surface alloying procedure up to 192 MPa. Any decrease in the feed
rate results in an increase in strength. When the feed rate decreases, the alloying zone is
subjected to heat and mechanical work for a longer time, which provides enough time for
the diffusion and formation of hard IMCs, which are the main reason for the increasing
strength in aluminum alloys. Any increase in the tool’s rotation speed results in an increase
in strength. Again, this is the opposite result of the alloying procedure in comparison to the
welding. In the welding of aluminum alloys, any increase in the tool rotation speed while
providing more heat results in a bigger grain size and solution of hard carbides, which
decreases the strength of the specimen. However, in the present study, because it involves
alloying in this case, increasing the tool rotation speed accelerates the alloying procedure
and the formation of hard IMCs, which increase the strength of the produced alloy. The
variation in the strength of the produced alloy versus processing parameters is presented
in Figure 9.
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Figure 9. Tensile strength of FSPed specimens. For each feed rate, three different specimens processed
in three different passes are presented. The strength values are in MPa: (a) processed at a tool rotation
speed of 630 rpm; (b) processed at a tool rotation speed of 1250 rpm.

3.2. Machine Learning Results

The proposed methodology in the previous section is implemented using MATLAB
R2022a software under the freely provided Toolbox [28]. After the implementation of the
proposed method, the functions below are extracted to calculate hardness and ultimate
tensile stress based on the process input parameters, including tool rotation speed (rpm),
feed rate (mm/min), and number of passes. The dataset is divided into 13 and 5 (out of
18, as shown in Table 3) for the purpose of training and testing of the proposed GP. The
following formulas are extracted as a mathematical way to calculate the hardness and stress
using every possible process parameter as follows:

Hardness = 0.91 × Tool rotation speed + Feed rate
Feed rate × Number of passes

+ 62.48
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Stress = 0.31 × Tool rotation speed × Number of passes
Feed rate

+ 98.87

The regression plot during the training/testing process of the methodology is shown
in Figure 10 for the prediction of hardness and tensile stress. Based on the represented
results on Figure 10a, the R2 between the observed and predicted hardness during the
training and testing process of the proposed GP are 0.5277 and 0.1633, respectively. Also,
Figure 10b shows that the R2 between the observed and predicted tensile stress are 0.7621
and 0.7288, respectively.
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Figure 11 shows the experimentally recorded and predicted hardness and tensile
stress of the final products of the friction stir alloying. Based on the represented results
in Figure 11a, the CC between the experimentally recorded and predicted hardness of
the final FSA products is 0.7016. In addition, Figure 11b shows that the CC between the
experimentally recorded and predicted hardness of the final FSA products is 0.8693.
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Figure 12 shows the error between the experimentally recorded and predicted hardness
and tensile stress of the FSA final products. Based on the represented results in Figure 12a,
MAE, MSE, and RMSE, the experimentally recorded and predicted hardness of the final
FSA products are 10.65, 1.88, and 13.70, respectively. In addition, Figure 12b shows that the
MAE, MSE, and RMSE between the experimentally recorded and predicted hardness of the
final FSA products are 12.95, 2.39, and 15.47, respectively.
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Finally, the variation in hardness and tensile stress based on the extracted formulas by
GP based on the different number of passes are shown in Figures 13 and 14, respectively.
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4. Conclusions

In conclusion, this study underscores the effectiveness of friction stir processing in
fabricating a surface alloy with Cu powder, showcasing notable improvements in the me-
chanical properties of the Al1050 aluminum alloy. By investigating various parameters such
as tool rotation speed, feed rate, and the number of passes, we have gained insights into the
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microstructural evolution and mechanical behavior of the resulting surface alloy. The initial
non-uniform stir zone was successfully homogenized with subsequent passes, facilitating
the compaction of copper particles and their integration with aluminum. This process led to
a significant enhancement in the strength of the base metal, attributed to both the presence
of copper and the refinement of grain size post-alloying. Moreover, integrating machine
learning techniques has further enriched our understanding of friction stir processing for
surface alloying applications. Specifically, Genetic Programming was adeptly employed to
model the intricate relationship between processing parameters and mechanical properties,
offering predictive capabilities for optimizing the surface alloying process. By leverag-
ing machine learning, we have deepened our insights into the underlying mechanisms
governing alloy formation and streamlined the process optimization efforts. In summary,
these findings mark a significant stride in materials science and engineering, providing
valuable insights into developing high-performance surface alloys for diverse industrial
applications. Notably, utilizing machine learning techniques offers a promising avenue for
future research and development endeavors, paving the way for enhanced efficiency and
precision in alloy design and fabrication processes. Here are the main findings:

• Increasing the tool rotation speed leads to higher hardness.
• A greater number of passes results in lower hardness.
• Increasing the feed rate leads to a decrease in hardness.
• The strength increases with an increase in the number of passes.
• Decreasing the feed rate results in higher strength.
• Increasing the tool rotation speed leads to higher strength.
• The base metal has a strength of 115 MPa, but it can be increased to 192 MPa through

the surface alloying process.
• The system’s real-time capabilities ensure the effective identification of material defects

during live production processes.
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