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Abstract: To satisfy the requirements of five-axis processing quality, this article improves and opti-
mizes the machine tool structure design to produce improved dynamic characteristics. This study
focuses on the investigation of five-axis machine tools’ static and dynamic stiffness as well as struc-
tural integrity. We also include performance optimization and experimental verification. We use
the finite element approach as a structural analysis tool to evaluate and compare the individual
parts of the machine created in this study, primarily the saddle, slide table, column, spindle head,
and worktable. We discuss the precision of the machine tool model and relative space distortion
at each location. To meet the requirements of the actual machine, we optimize the structure of the
five-axis machine tool based on the parameters and boundary conditions of each component. The
machine’s weight was 15% less than in the original design model, the material it was subjected
to was not strained, and the area of the structure where the force was considerably deformed was
strengthened. We evaluate the AM machine’s impact resistance to compare the vibrational defor-
mation observed in real time with the analytical findings. During modal analysis, all the order
of frequencies were determined to be 97.5, 110.4, 115.6, and 129.6 Hz. The modal test yielded the
following orders of frequencies: 104, 118, 125, and 133 Hz. Based on the analytical results, the top
three order error percentages are +6.6%, +6.8%, +8.1%, and +2.6%. In ME’scope, the findings of the
modal test were compared with the modal assurance criteria (MAC) analysis. According to the static
stiffness analysis’s findings, the main shaft and screw have quite substantial major deformations, with
a maximum deformation of 33.2 µm. Force flow explore provides the relative deformation amount
of 26.98 µm from the rotating base (C) to the tool base, when a force of 1000 N is applied in the
X-axis direction, which is more than other relative deformation amounts. We also performed cutting
transient analysis, cutting spectrum analysis, steady-state thermal analysis, and analysis of different
locations of the machine tool. All of these improvements may effectively increase the stiffness of the
machine structure as well improve the machine’s dynamic characteristics and increases its machining
accuracy. The topology optimization method checks how the saddle affects the machine’s stability
and accuracy. This research will boost smart manufacturing in the machine tool sector, leading to
notable advantages and technical innovations.

Keywords: multi-axis machining tool; finite element method; vibration mode analysis; modal test;
harmonic analysis; optimizations; steady-state thermal analysis

1. Introduction

In today’s global marketplace, machine tools are vital for fostering innovation and
competitiveness. They enable producers to quickly iterate through new designs, streamline
production processes, and adapt to the ever-changing needs of the market. Thus, the goal
of this study is to bring computer-aided engineering analysis technology and utilize a
five-axis machine tool, a novel innovation tool.

As far as we are aware, Yutian et al. [1] presented the design and development of a
five-axis machine tool for aero-engine casing manufacturing. Machine tool development
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has always aimed for increased efficiency and precision, and some successful studies
have been conducted in this area by academics. For example, there have been studies on
geometric error modeling, identification and compensation [2–4], thermal error predic-
tion and compensation [5,6], and spindle accuracy measuring [7,8]. Among all studies,
the design and development of a machine tool [9,10] can be considered as the essential
issue. Chan et al. [11] investigated the effect of spatial moving structure and topology
optimization of CNC turning machine tools. Shen Lei et al. [12] investigated the machine
tool’s structural dynamic design, optimization, and experimental validation. Wu et al. [13]
studied a five-DOF hybrid machining tool featuring forced vibrations in a two-DOF parallel
manipulator and developed a corresponding mechatronics model. Chan et al. [14] investi-
gated the three-axis machining center’s kinematic structure performance and machining
features. Gegg et al. [15] examined the application of axial ultrasonic vibrations during
milling operations, which enhanced the process by decreasing cutting forces and increasing
surface smoothness. Zhou et al. [16] explored and introduced an innovative method for
modeling and predicting ball screw thermal deformation, moving beyond reliance solely
on CNC real-time data and temperature sensor information. A review of five-axis CNC
milling machine tool operations has also been carried out [17]. An experiential modal
analysis (EMA) method based on a frequency response function (FRF) was proposed by
Chan et al. [18] for system vibration monitoring. Modal simulation and harmonic response
analysis are conducted to predict an additive manufacturing system’s dynamic characteris-
tics and deformation errors with moving elements at different spatial positions [19]. The
spatial accuracy and compensation of the Coordinate Measuring Machine are evaluated
using the finite element method. This analysis encompasses static deformation, modal
analysis, spectral analysis, and transient assessments [20]. Vibration mode analysis was
implement to connect experimental methods with finite element simulations to enhance
the machine’s performance and look into the dynamic aspects of the design process [21].
Lima et al. (2024) [22] investigated a centrifugal compressor impeller’s modal analysis
and structural optimization. Ramesh et al. [23] conducted evaluations of a crankshaft’s
harmonic response and mode. Several stages of the manufacturing process need and
benefit from knowledge of the cutting force. Tool wear is being tracked increasingly by the
measurement of cutting force [24,25]. Ulrika et al. [26] presented an innovative approach
for forecasting the fatigue lifespan of vehicle components by combining limited in-service
vibration data with finite element modeling. Chan et al. [27] studied the construction of a
five-axis, high-speed moving column machine tool and carried out its structural optimiza-
tion and analysis. Based on the finite element analysis, a design optimization approach
for the reactive material structure is established. Topology optimization is presented to
decide the structure’s form based on the model [28]. The ideal form that can be built and
the manufacturing restrictions are taken into consideration while proposing the design
variables and optimization constraints. Lacalle et al. [29] focus on providing error-free algo-
rithms that employ the best cutting techniques for surface quality and efficiency, leading to
a more dependable production process. The CAM approach has to incorporate additional
control and optimization processes to reduce the potential for hazards such as tool breakage
and collisions that may harm ceramic bearings in the spindles. Significant advances in
industrial development are being driven by the deployment of five-axis machines through
the use of various approaches and techniques [30–33].

The manufacturing sector always looks for new and creative ways to improve machin-
ing processes’ efficiency, accuracy, and productivity. Under these circumstances, applying
sophisticated modeling and simulation methods has become a viable path toward opti-
mizing intricate machining processes. Using five-axis milling methods, which provide
greater flexibility and the capacity to produce complex geometries with improved surface
quality, is a tough challenge in modern machining. Understanding the dynamic interactions
between cutting tools, workpieces, and machine tool components requires the modeling
and simulation of these processes. Researchers and practitioners can improve machining
parameters, save production costs, and shorten lead times by properly predicting tool
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trajectories, cutting forces, chip generation, and surface finishes [34]. Palmai et al. [35]
studied the importance of accurately determining cutting forces in milling, noting the
impact of transient processes on the entire cutting cycle and developing a validated math-
ematical model for the decay process during intermittent cutting. Additionally, virtual
experimentation made possible by modeling and simulation enables the investigation of
different machining tactics and the evaluation of their effects on component quality and
process stability.

To shed light on the difficulties, chances, and potential paths forward in this impor-
tant field, in this work, we explore the most recent approaches to and developments in
simulation, including modal analysis, cutting transient analysis, cutting spectrum analysis,
optimization, and static analysis of vertical five-axis milling machine tools.

The remainder of this work is provided in the order listed below. In summary, the
Materials and Methods are explained in Section 2. This part properly explains finite element
modeling, boundary limitations, and constraints, as well as the flow chart of research
methodologies. We first create the optimized finite element model and then proceed with
the modal analysis, harmonic response, and static stiffness analysis. Experimental modal
testing is covered in Section 3. An impact hammer is used in this step for modal testing.
A comparison of the outcomes of modal analysis and modal testing is shown in Section 4.
Recommendations for further research are provided at the end of Section 5.

2. Materials and Methods
2.1. Material

The materials for the vertical milling machine in this investigation were tungsten
carbide, gray cast iron, and S40C medium carbon steel. Table 1 lists the material qualities
of these items.

Table 1. Material properties.

Gray Cast Iron

Density (kg/m3) 7200

Young’s modulus (Pa) 1.24 × 1011

Poisson’s ratio 0.3
Hardness, Rockwell C 20

S40C medium carbon steel

Density (kg/m3) 7850

Young’s modulus (Pa) 2 × 1011

Poisson’s ratio 0.28
Hardness, Rockwell C 30

Tungsten carbide

Density (kg/m3) 15,000

Young’s modulus (Pa) 5.5 × 1011

Poisson’s ratio 0.28
Hardness, Rockwell C 70

2.2. Physical Structure of 5-Axis Machine

A 5-axis machine is made up of many essential parts that function as a unit to provide
accurate and adaptable machining as shown in Figure 1. For steady functioning, the base
and column, which are usually constructed of welded steel or cast iron, offer foundational
support and vibration absorption. The cutting tool is rotated at high speeds for precise
machining via the spindle, which is composed of materials like high-speed steel, carbide, or
ceramics. For complicated geometries, the rotary axes (A and B) and linear axes (X, Y, and Z)
made of high-strength steel or aluminum offer the required degrees of freedom. Precise and
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seamless motions are guaranteed by ball screws and linear guides composed of hardened
steel. By controlling heat and lowering friction, cooling and lubrication systems made of
different metals and alloys preserve ideal working conditions. These parts work together
to provide the 5-axis machine with the great precision and efficiency needed to complete
complex machining operations, which makes it a vital tool in advanced manufacturing.
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Figure 1. The physical structure of the 5-axis machine used for analysis.

2.3. Research Process

This proposal focuses on conducing structural optimization analysis and constructing a
multi-axis machine tool. The machine design is optimized, and performance modifications
are analyzed and compared, using the finite element approach. Figure 2 displays the
analytical and experimental architecture flowchart.

The material qualities and spring settings of the original 5-axis machine tool are
specified after it has undergone complete optimization. A 20 mm mesh size and tetrahedron
Solid 187 elements are employed with patch-conforming algorithms and quadratic element
order. Every subsequent procedure is completed in order. An impact hammer test is used to
compare the outcomes after the FEA code is used for the modal analysis. Static, harmonic,
transient, and spectrum analyses are also performed. ME’scope is used to assess the modal
assurance criteria (MAC) to compare the outcomes of modal analysis and modal testing.

A comprehensive finite element model of the 5-axis machine tool is developed using
the SolidWorks optimization tool, including detailed representations of all critical com-
ponents, joints, and interfaces. The initial step involved designing the structural model’s
appearance. Figure 3 shows the original structure of the machine tool. Then, SolidWorks is
used to optimize the structure, identifying the best solution. The model part drawing is
then adjusted according to the optimization results, as depicted in Figure 4. In the context
of structural and topology optimization, a contour plot of element densities is a crucial tool.
The design domain is discretized into finite elements, each assigned a density value from
0 (no material) to 1 (solid material), with intermediate values indicating partial material
presence. The contour plot displays the spatial variation of these densities using contour
lines or color gradients, making it easy to visualize material distribution. Such a plot helps
identify optimal material layout, highlighting areas where material is needed and where
it can be removed, thus guiding designers towards the most efficient structure. This opti-
mization led to a 15% weight reduction compared to the original design. Additionally, the
material remains unstressed, and significantly deformed areas are reinforced, enhancing
the rigidity of the machine structure. Finally, the optimized model design is prepared
Figure 5, and to address the problem, a 100 N force was applied to the center of the saddle.
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2.4. Finite Element Analysis

This work constructs a high-order five-axis machine tool, as seen in Figure 6, and
examines and optimizes its machine structure. Gray cast iron, S40C medium carbon steel,
and tungsten carbide make up the majority of the structural material. A finite element
model is created, and boundary interface settings are specified for finite element analysis
to investigate the structural features, as seen in Figure 7.

The machine is made up of numerous components, with a spring representing the
interaction between the slider and the slide rail. The gravitational acceleration is set at
9.8 m/s2, and the spring stiffness is set at 1960 N/µm. The degree is calculated using
a non-linear function. The use of tetrahedron Solid 187, patch-conforming algorithms,
and quadratic element order significantly enhanced the accuracy of our mesh calculations.
There are 713,791 elements and 1,101,810 nodes in the model. Figure 8 shows the FEM
model of the vertical 5-axis milling machine.
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2.5. Static Stiffness Analysis

The static stiffness of the machine tool was analyzed to determine its ability to resist
deformation under static loads. Appropriate boundary conditions were applied to simu-
late the real-world constraints of the machine tool. The model was solved to obtain the
deformation and stress distribution under the applied loads. The stiffness was calculated
by relating the applied load to the resulting displacement. Static loads were applied at
critical points to evaluate the deformation response. The static stiffness experiment aims to
measure the resistance of a machine tool or its components to deformation under a static
load, which is crucial for ensuring machining accuracy and stability. In this experiment,
the machine tool or component is securely mounted on a test rig, and a precise force appli-
cation system applies a known static load to specific points on the machine. High-precision
displacement sensors or dial gauges measure the resulting deformations, and the static
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stiffness is calculated by dividing the applied load by the measured displacement (N/µm).
The stiffness values are compared with theoretical or simulation results, such as those from
finite element method (FEM) analysis, to validate the design and optimization processes.
Figure 9a shows the simulation results of the static rigidity analysis for the horizontal
machine tool. The static stiffness experiment shown in Figure 9b provides quantitative
data on the deformation characteristics of the machine tool or component, guiding fur-
ther design improvements and optimizations to ensure high precision and reliability in
machining operations.
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During machining, a force of 1000 N is applied in the X direction at the tool tip of the
simulation machine. The analysis reveals substantial deformation in both the main shaft and
the screw, with the maximum deformation reaching 33.2 µm. The static stiffness analysis
yielded a value of 30.0 N/µm, while the experimental measurement was 26.5 N/µm,
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resulting in a discrepancy of 11.6% between the test and analysis results. The overall
static stiffness of the machine tool meets the design requirements and ensures adequate
rigidity for precise machining operations. Figure 9c shows the comparison of static stiffness
between the simulation and experiment.

2.6. Modal Analysis

The modal analysis revealed the structure’s dynamic characteristics, identifying key
natural frequencies and mode shapes. These insights are vital for design optimization and
ensuring operational safety. Based on these findings, we conducted a vibration study. We
concluded that avoiding specific frequencies or minimizing their excitation impact to the
greatest extent possible will ensure the stability of the machining equipment. The free
vibration equation for a damped system can be written as

[M]
..
x + [c]

.
x + [k]x = 0 (1)

The classical eigenvalue issue is undamped modal analysis. The kinematic equation
presented by Yu et al. (2017) [36] indicates that the structure’s free vibration is simple
harmonic vibration, meaning that the displacement is in line with the sine function.

x = x sin(ωt) (2)

substituting into Equation (1), the following can be obtained:

[K]− ω2[M][x] = {0} (3)

Equation (2) is a classic eigenvalue problem; the equation eigenvalue is ω2
i , the extrac-

tion of a root ωi is an auto-oscillation circular frequency, the natural vibration frequency
is f = ωi

2π [29]. Vector I related to ωi is a mode of vibration related to natural vibration
frequency f = ωi

2π . The model was established via SOLIDWORKS 2020. Model data were
led into ANSYS18.1 via the interfaces of ANSYS 18.1 and SOLIDWORKS 2020.

The finite element analysis machine is used to analyze the dynamic machine charac-
teristics, and the analysis frequency setting range is 1–1000 Hz. The modal analysis results
show frequencies of 97.5, 110.4, 115.6, and 129.6 Hz, and their modal analysis and modal
test results are shown in Table 2.

Table 2. Mode shapes and natural frequencies of modal analysis.

Content Modal Analysis Feature

Mode shape 1
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The primary movement mech-
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The fourth modal structure’s 
primary distortion mode is the 
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Frequency 97.5 Hz +6.6%

Mode shape 2
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Table 2. Cont.

Content Modal Analysis Feature
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2.7. Harmonious Evaluation

Harmonic response analysis is employed to understand how a structure responds to
sinusoidal excitation over a particular frequency range. This technique primarily investi-
gates vibration phenomena induced via continuous frequency input and provides valuable
insights into the structure’s behavior under such oscillatory stimuli [37]. To develop a
virtual dynamic model and provide dynamic characteristics for machine tools, Wu et al.
(2010) [38] suggested merging modal analysis, harmonic response, and FEA.

The following may be obtained by replacing the dynamic Equation (4) with harmonic
force [39]:

x(s) = Z−1(s)F(s) = H(s)F(s) (4)

where X(s) is the response of the system;

Z−1(s) is the inverse of the impedance matrix;
F(s) is the applied force;
H(s) is the transfer function of the system.

The response function X(s) can be derived from the structure’s transfer functions
and the input force, even when the excitation (force) changes over time during a dynamic
analysis. Beyond machine tool numerical techniques and modal studies, harmonic response
analysis can provide a deeper understanding of dynamic characteristics. The machine
tool’s behavior can be approximated using finite element analysis (FEA). If vibration modes
and frequencies fall within a reasonable error range, this may be confirmed using frequency
spectrum analysis. The responses of different frequencies are examined by subjecting the
spinning cutting tool to an external force. For examination at frequencies ranging from
1 to 200 Hz, a 500 N force was applied to the cutting tool attached to the headstock spindle
of the 5-axis machine in this experiment. Figure 10 displays the cutting tool’s X-, Y-, and
Z-axis frequency responses based on the results.
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2.8. Cutting Transient Analysis

In the transient analysis, an impact force of 100 N was applied to the machine tool.
The base of the machine tool was fixed to ensure stability during the test. The specific
location of the impact point is illustrated in Figure 11. An extra cutting force was used for
0.05 s to replicate the cutting process. This cutting force induced a vibration response in the
machine tool, which was observed and recorded over 2 s. The transient response of the
system to the applied forces provided valuable insights into the dynamic behavior of the
machining equipment. In Figure 12, the analysis enabled us to determine the amplitude of
the tip point response in the X-axis direction. This information is crucial for understanding
how the machine tool reacts to sudden forces and for identifying any potential issues
related to vibrations that could affect machining accuracy and tool life. By analyzing the
response amplitude, we can make informed decisions about necessary design modifications
or adjustments to improve the machine’s performance and stability.
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2.9. Cutting Spectrum Analysis

Cutting tool precision is greatly dependent on the frequency and amplitude of vi-
brations of the five-axis machine tool in the Z direction, as seen in Figure 13. Elevated
vibration levels may cause tool path deviations, leading to dimensional errors and poor
surface quality. By examining the cutting spectrum, resonance circumstances that may
exacerbate vibrations and impair machining performance may be found. Critical fre-
quency peaks that need to be reduced in order to maintain process stability are shown
in Figure 12. Machining accuracy and surface quality may be significantly increased by
minimizing vibration amplitudes via dynamic balancing, dampening improvements, and
structural reinforcements.
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2.10. Effect of Moving Structure on Dynamic Structure Performance in Different Locations

This study determines the frequency changes at three different locations. Position A
is the leftmost end of X, the most forward point of Y, and the uppermost point of Z on
the five-axis machine, and mode shapes are 43.9, 60.4, 89.3, and 105.4 Hz, as shown in
Figure 14a. Position B is the center of X, the center of Y, and the center of Z, and intermediate
mode shapes are 45.6, 70.5, 82.5, and 103.4 Hz, as shown in Figure 14b. Position C is the
rightmost end of X, the rear end of Y, and the bottommost point of Z, and mode shapes
are 60.2, 95.9, 98.4, and 129.6 Hz, as shown in Figure 14c. The machine modal frequency
changes at different positions, as shown in Figure 15a.
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Figure 14. (a–c) shows five-axis machine tool at positions A, B, and C, respectively.
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Impact of Dynamic Structure on the Accuracy of the Static Structure

In the X-, Y-, and Z-axis moving distance range, we observe the X, Y, and Z axes
separately, as shown in Figure 15b–d. The amount of relative deformation between the tool
and the work platform and the deformation changes at different processing pointsenables
us tosee that the most significant difference is in the Y-axis. Because the machine has a
single-axis oscillating mechanism, the magnitude of the relative deformation of the Y-axis
is 8.9 µm.

The quantity of space distortion is essentially constant at all angles since the machine’s
center of gravity does not change much when the rotating shaft rotates. As a result, during
cutting, the machine’s precision varies continuously. The rotary table is −30, 30, 45, 60,
and 90◦, and the variability is not substantially different, according to the data. As seen in
Figure 15e, the difference is within 1 µm.
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2.11. Force Flow Explore

Figure 16 illustrates the force transmission path between the action and response forces
inside the structure, which is referred to as the force streamline. When designing structural
parts, the shorter the force streamline, the higher the rigidity. When a force of 1000 N is
applied in the X-axis direction, the relative deformation amount from the rotating base (C)
to the tool base is 26.98 µm, higher than other relative deformation amounts. The relative
deformation amount is shown in Table 3. Therefore, if you want to increase the rigidity
of the whole machine, you need to adjust the rotating table and improve the structure of
the spindle head. The relative maximum deformations (µm) of the machine tool’s different
components are analyzed in Figure 17.
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Table 3. Relative static rigidity analysis results of the complete machine.

Sl. No. Component Structure Relatively Maximum Deformation (µm)

1 Rotating seat (C)to Tool holder 26.98

2 Tool holder to Spindle seat 16.31

3 Spindle seat to Upright (Z) 3.85

4 Upright (Z) to Rail table 4.17

5 Rail table to Base 2.5

6 Base to Rotating seat (B) 0.16

7 Rotating seat (B) to Rotating seat (C) 0.01

8 Overall 33.23

2.12. Steady-State Thermal Analysis

The principal aims of conducting a steady-state thermal analysis on a 5-axis verti-
cal milling machine are as follows: ascertaining the temperature distribution throughout
crucial components, including the spindle, tool holder, worktable, and drive motors; recog-
nizing possible hot spots that may result in thermal distortion or component degradation;
and optimizing the cooling and thermal management systems to guarantee optimal pre-
cision and dependable performance. We use the FEM model of the 5-axis machine tool
in Ansys 19.2 to perform steady-state thermal analysis. Figure 18 presents the simulation
which determines possible hot spots and computes the temperature distribution. The
ambient temperature and the film coefficient are two significant elements in this investiga-
tion. Considering a film coefficient of 80 W/m2 ◦C and an ambient temperature of 60 ◦C,
the thermal analysis of the spindle in a 5-axis vertical milling machine offers important
insights into its thermal behavior. The spindle’s performance and dependability may be
improved, guaranteeing accurate and effective machining operations, by comprehending
and optimizing these temperature characteristics. This investigation highlights how cru-
cial efficient heat management is for preserving the high-performance milling machines’
operational integrity.
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3. Experimental Modal Testing

Instead of obtaining modal parameters using finite element models (FEMs) like in
analytical modal analysis, experimental modal analysis determines modal parameters
via physical testing [40]. Vibrational characteristics are obtained via the impact hammer
test [19]. Figure 19 shows that the modal experiment used a triaxle acceleration gauge, an
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impact hammer, and a spectrum analyzer. The accelerometer’s tapping and measuring
spots must first be marked on the model. As seen in Figure 20, the saddle, slide table,
column, spindle head, and worktable served as the accelerometer’s primary measuring
locations. Each part was cleaned, and the accelerometer was firmly attached at predeter-
mined locations. Accelerometers are available with different degrees of sensitivity; the
selection process is based on the structure’s vibration magnitude. The triaxial accelerometer
(Endevco MODEL 65-100) utilized in this investigation is described in Table 4. A few places
along the specimen received impact hammer impacts. The placements of the sensor are
shown by numerical. The impact hammer is specified in Table 5. Every hit was intended to
trigger a variety of vibration modes. The data-collecting system recorded the vibrations that
resulted from the accelerometers. The Fast Fourier Transform (FFT) was used to process the
raw vibration data to transform time-domain signals into frequency-domain data. Figure 21
shows the natural frequencies of the specimen, which were found to be represented by
the peaks in the frequency spectrum. Vibration data from many accelerometer locations
were analyzed for phase and amplitude, and the mode shapes corresponding to these
natural frequencies were retrieved. The test results’ natural frequencies and mode shapes
were compared to theoretical forecasts derived from FEA models and earlier experimental
findings. The impact hammer test results showed that the specimen’s natural frequencies
were 104 Hz, 118 Hz, 125 Hz, and 133 Hz as shown in the Table 6 modal test column.
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Table 5. Specifications of impact hammer (KISTLER 9728A200000).

Range of working temperature −20.671.1 ◦C

Force range 0–4448 N

Nominal sensitivity 0.2 mv/N

Measuring strength range 0~22.41 N pk

Measuring force peak range 26.689 N pK

Resonance frequency 20 kHz

Rated current 4~20

Impact hammer weight 1.5 Kg
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Table 6. Comparison of modal analysis and experimental modal testing results.

Content Modal Analysis Modal Testing Feature

Mode shape 1
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Frequency 129.6 Hz 133 Hz +2.6%

4. Results

Consistency between experimental and analytical results is crucial for engineering
verification. When analyzing a model, boundary conditions, material characteristics,
outside disturbances, and human activity connected to the signal-measuring apparatus
may all result in significant mistakes. Thus, mode shapes between analysis and test
results were compared to verify the five-axis machine tool. The measured resonance
frequency discrepancies clearly defined the printer structure’s natural resonant frequency
and validated the frequency range and theoretical assessments of the structural testing.

4.1. Modal Comparison

The results of the modal test and modal analysis show that the maximum and lowest
error ratios are 2.6% and 8.1%, respectively. The pertinent analytical parameters aligned
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with the real-world scenario. Table 6 presents the comparison between finite element
analysis and test findings.

4.2. Modal Assurance Criteria (MAC) Analysis [41]

The modal assurance criteria (MAC) serve as a gauge for the degree of linearity (or
consistency) between modal vector estimations. This offers an extra degree of confidence
when assessing a modal vector using various excitation (reference) points or modal parame-
ter estimate techniques. When the MAC value is 1, the two forms are linearly independent,
and when it is less than 1, the two shapes are on the same straight line. The majority of
computer systems often use color to display magnitude data, such as MAC, in a 2D or 3D
graphic, as shown in Figure 22. The details of FEA, EMA, and MAC values are shown in
Table 7. We use ME’scope to perform a MAC analysis, and one can better understand the
results by seeing the MAC matrix in Figure 23.
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Table 7. Specifications of EMA, MAC, and FEA values.

Shape Table 1

Mode Shape Frequency (or Time) FEA Frequency (or Time) EMA MAC Values
Shape 1 25.3 Hz 22.5 Hz 1 0.636 0.0942 0.0666
Shape 2 35.3 Hz 31.3 Hz 0.636 1 0.142 0.0444
Shape 3 45.5 Hz 49.4 Hz 0.0942 0.142 1 0.151
Shape 4 80.4 Hz 78.1 Hz 0.0666 0.0444 0.151 1

Modal Assurance Criterion (MAC) Unity

If the modal assurance criterion (MAC) is near unity, it indicates that the modal vectors are
consistent but not necessarily correct. Consistency may arise due to the following phenomena:

• Incomplete measurement of modal vectors, with too few response stations included;
• Forced excitation from an unintended source, such as unbalanced rotating equipment;
• Modal vectors consist primarily of coherent noise, potentially reflecting random noise

or bias;
• Modal vectors representing the same mode with different arbitrary scaling, differing

only by a complex-valued scale factor when normalized.

4.3. Coordinate Modal Assurance Criterion (COMAC)

The Coordinate Modal Assurance Criterion (COMAC) is an expansion of the modal
assurance criterion [42]. The COMAC looks for degrees of freedom in measurements that
are adversely correlated with low MAC values. A collection of mode pairings, such as
analytical versus analytical, experimental against experimental, or experimental versus
analytical, are used to compute the COMAC. The set of mode pairs represents all modes of
interest in a specific frequency range, but the two modal vectors in each mode pair represent
the same modal vector. A value of COMAC will be calculated for each (measurement)
degree of freedom for two sets of modes that are to be compared. We use ME’scope to
perform the analysis, and one can better understand the results by seeing the COMAC
matrix in Figure 23. The threshold analysis COMAC values close to 1 indicate high
coherence, while values significantly less than 1 suggest inconsistencies or noise.

5. Conclusions

Currently, with rapid industrial development, the accuracy and efficiency of the five-
axis machine structural design configuration requirements and the structural parts design
and analysis are extremely important. For overall machining accuracy, this research uses
finite element analysis to analyze the entire machine structure, including static and dynamic
analyses to improve the machine design method.

(1) The machine’s weight was 15% less than in the original design model, the material it
was exposed to was not strained, and the region of the structure where the force was
considerably deformed was reinforced. All of these improvements may effectively
increase the stiffness of the machine structure;

(2) The static analysis was performed when 100 N of force was applied to the blade tip
in the X-axis direction. The maximum deformation obtained was 28.7 µm. We also
discussed a comparison of the dynamic machine structure trends when it is in different
positions. The static stiffness analysis confirms that the designed five-axis machine
tool meets the required rigidity standards for precise machining;

(3) The outcomes of the modal trials were contrasted with the FEA findings. Based on
a real modal analysis, the basic FEA parameters and material characteristics were
confirmed. The differences in the modal testing findings between the first-order model
analysis and the model testing were +6.6%, and for the second, third, and fourth
orders the differences were +6.8%, +8.1%, +2.6%, respectively; all of these differences
were within acceptable bounds. A high degree of correlation between the mode forms
under comparison is indicated by a good MAC result;
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(4) The COMAC analysis provided valuable insights into the consistency and reliability
of the modal vectors for the five-axis machine tool design. The high COMAC values
across most DOFs confirm the robustness of the modal analysis, while the lower values
at certain locations highlight areas for potential improvement. Overall, the COMAC
results reinforce the validity of the structural dynamics assessment conducted in
this research;

(5) The optimization of the five-axis machine tool design successfully met the objectives of
weight reduction, stiffness enhancement, and cost efficiency. Advanced optimization
techniques and finite element analysis provided a robust framework for improving
machine tool performance. These findings demonstrate the potential of optimization
in advancing engineering design and achieving superior outcomes;

(6) To comprehend the thermal behavior of a five-axis vertical milling machine, steady-
state thermal analysis is essential. This research aids in the optimization of thermal
management systems, assuring accurate and dependable operation by detecting tem-
perature distributions and possible hot spots. In order to maximize thermal distortion
reduction, achieve high precision in machining processes, and prolong machine life, it
is imperative to maintain stable temperature conditions;

(7) Future work could explore further refinements in enhancing the FE model, material
selection, and structural configurations to achieve additional improvements.
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