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Abstract: The purpose of this research was to create a predictive model for a medium-speed wire
electrical discharge machine (WEDM) utilizing an artificial neural network (ANN). Medium-speed
WEDM experiments were developed based on the I-optimal mixture design for machining, the Inconel
718 superalloy. During the experiment, the input parameters were the spark ontime, spark offtime,
wire feed, and current, with the material removal rate (MRR) and surface roughness (Ra) selected as
performance indicators. The ANN model was trained on experimental data and built using a feed-
forward backpropagation neural network with a (4-8-2) structure and the Bayesian regularization
(BR) learning approach. The model correctly predicted the relationship between the medium-speed
WEDM’s primary process parameters and machining performance. An integrated ANN model
and the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) were used to determine the ideal
parameters for the MRR and Ra, resulting in a set of Pareto-optimal solutions. The confirmation
experiment revealed that the mean prediction error between the experimental and ideal solutions
had a maximum error percentage of 1% for the MRR and 2% for the Ra, which are within acceptable
ranges. This showed that the best process–parameter combinations were better for the MRR and Ra.

Keywords: I-optimal design; artificial neural network; Inconel 718; NSGA-II; current; voltage;
wire feed rate

1. Introduction

A wire electrical discharge machine (WEDM) is a precise and advanced tool primarily
used in the molding, instrumentation, and manufacturing industries. It utilizes a high-
temperature procedure in which many electrical discharges swiftly dissolve an accurate
amount of metal. This process leads to the formation of discharge craters and recast
layers on the surface of the workpiece, which are found between the wire electrode and
the workpiece.

A WEDM can be classified into two categories, a high-speed WEDM and a low-speed
WEDM, depending on the speed at which the wire moves. A high-speed WEDM typically
runs at a wire speed ranging from 480 to 600 m per minute, utilizing recycled molybdenum
wire. In contrast, a low-speed WEDM operates at a maximum wire speed of 12 m per
minute [1].

High-speed WEDMs, an advanced Chinese product, have dominated more than 85%
of the local market owing to their cost efficiency and capability to handle thicker workpieces.
Nevertheless, a low-speed WEDM has additional advantages, such as enhanced operational
velocity, precision, surface quality, and level of automation.

Attempts have been undertaken to close the disparity between high-speed WEDMs
and low-speed WEDMs, resulting in the emergence of a novel concept referred to as a
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medium-speed WEDM. The medium-speed WEDM machine operates at a wire speed of
10 to 480 m per minute. For finish cutting, the wire speed is between 10 and 120 m per
minute, while for roughness cutting, it ranges from 200 to 480 m per minute. Medium-speed
WEDMs were developed to improve control systems, high-frequency power supplies, and
operating software based on the high-speed WEDM. This innovative concept enables the
execution of many cuts with a greater capacity, enhancing machining productivity.

A rising trend in China is the replacement of high-speed WEDMs with medium-
speed WEDMs, which is considered an upgraded product to a high-speed WEDM, often
referred to as a fast wire that can be cut multiple times. Therefore, its processing speed
is close to that of fast-moving wire, and the processing quality tends to align with that
of a slow-moving wire. However, achieving the best possible performance for any new
machine requires additional research to determine the ideal machining setups which are
essential for enabling the machine’s optimal functionality. Furthermore, the effectiveness
of this machine is affected by several main and secondary variables, including the current,
spark ontime, spark offtime, gap voltage, flushing pressure, wire feed, wire tension, and
thermomechanical properties of the workpiece and electrode wire. Unfortunately, engineers
must face all these tasks and complexities and determine the most favorable process
parameter levels for achieving a machine’s optimal performance.

To solve these issues, it is crucial to create an accurate model that can establish a
relationship between the input processing parameters and its performance characteristics,
such as its accuracy, productivity, surface quality, and other variables. Furthermore, this
model can be optimized to find the best possible machining configurations, which can, after
that, be recorded in manuals to assist engineers in industrial environments and workshops
in attaining successful machining processes, so that they can become more efficient in their
work [2].

Vijaya Bhaskara Reddy, et al. [3] developed an ANN model that was used to predict
the Ra of Cr–Mo–V alloyed special steel with a low-speed WEDM. This steel is used a lot
in the car industry. Experiment data from an L16 orthogonal array were used to build
the ANN model. The study looked at four input factors at four different levels: the spark
ontime, open voltage, wire speed, and flushing pressure.

Multiple regression analysis was used to find a mathematical relationship between
the Ra and the cutting variables in the low-speed WEDM. The expected Ra values from
the backpropagation neural network, the general regression neural networks using the
MATLAB NN tool, and regression analysis were compared to the testing results to see if
they were the same. The backpropagation neural network, which had two hidden layers,
agreed more with the experimental results than with the general regression neural network
and the multiple regression analysis.

Guojun Zhang et al. [2] established a mathematical model that utilized response
surface methodology (RSM) with a central composite design (CCD) for processing tool
steel (SKD11). Their study successfully correlated the essential process parameters of a
medium-speed WEDM with machining performance. It utilized an integrated approach
combining the RSM and NSGA-II to determine the optimal parameters for the MRR and
3D surface quality. The results demonstrated that the integrated RSM and NSGA-II method
is a successful technique for achieving multi-objective optimization. Ultimately, a collection
of Pareto-optimal solutions was acquired. Furthermore, their confirmational experiment
demonstrated that the ideal combinations of process parameters were appropriate for
achieving the best MRR and 3D surface quality.

T. Singh et al. [4] created a complete way to describe the low-speed WEDM process of
AA6063 using an ANN. The experimental study had four input variables: the spark ontime,
spark offtime, servo voltage, and peak current. The MRR was used as the performance
parameter. A 3k full factorial design was used to choose the trial runs. The results showed
that the model correctly predicted the values and could be used for intelligent output
and prediction.
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Lalwani et al. [5] created two models to predict the Ra, kerf width (KW), and volu-
metric material removal rate (VMRR) during the machining of the Inconel 718 superalloy
with a low-speed WEDM process. These models analyzed operational factors such as
the spark on/offtime, servo voltage, and wire tension. The first model utilized RSM, a
mathematical model, whereas the second used an ANN. The researchers observed that the
ANN model was more accurate than the RSM model. The lower mean square error value
for the ANN model (1.49%) compared to the RSM model (5.71%) confirmed this finding,
showing that the ANN model performed better. The study revealed that the spark ontime
had the greatest impact on the low-speed WEDM process of the Inconel 718 superalloy.
The researchers employed the NSGA-II algorithm to determine the optimum parameters
for the low-speed WEDM process.

M. M. Hasan et al. [6] explored the mean percentage prediction error for five different
modeling techniques for the low-speed WEDM process. They found that models based
on an ANN with an error of 2.74% were superior in their prediction accuracy compared
to other methods. This was followed by fuzzy logic models with a 6% error, Adaptive
Neuro-Fuzzy Inference System (ANFIS) models with a 6.44% error, RSM models with a 7%
error, and regression models with an 8.01% error.

Pritam Choudhary et al. [7] used the Taguchi Grey Analysis method to find the best
process settings for a low-speed WEDM of tungsten. The main goal was to lower operating
costs, waste as little material as possible, cut down on the number of tests, and shorten
the time it took to complete the process. Seven input factors were picked for parametric
optimization: the spark ontime, spark offtime, arc offtime, flushing pressure, wire feed,
wire tension, and gap voltage. Three output factors were also considered as the following:
VMRR, KW, and Ra. The results of the parametric optimization study of the low-speed
WEDM process for single-crystal pure tungsten were a VMRR of 0.298 mm3/min, a KW of
0.346 mm, and a Ra of 1.834 µm.

The current study was motivated by the following factors, as concluded from the
content of a literature survey: Previous studies have dedicated significant attention to the
optimization of input parameters for low-speed WEDM. Furthermore, they frequently
used experimental designs such as Taguchi, CCD, or a complete factorial, which require
updating; however, newer experimental designs exist that require further studies, such
as the I-optimal design of a mixture. This design is being developed using a computer
algorithm that improves the accuracy of predictions across the design space, and it can
perfectly be employed to construct the experimental design for an accurate model of the
medium-speed WEDM process.

It was found that previous studies utilized mathematical models to simulate the
primary process parameters of a medium-speed WEDM and applied the NSGA-II algorithm
to these models to determine the optimal processing parameters. However, the survey
showed that ANN models performed better than other models in terms of their prediction
accuracy, which led to the idea that employing an ANN model with the NSGA-II algorithm
and this hybrid could produce excellent results.

Hence, this study’s objective is to systematically investigate the machining process of
Inconel 718 using a medium-speed WEDM and develop a precise prediction model based
on an ANN. The performance characteristics of the variable input parameters spark ontime,
spark offtime, wire feed, and current will be the MRR and Ra.

At first, the I-optimal design of the mixture will be used to create the experimental
design. Subsequently, the ANN model will be trained and constructed from the data
experiments, and its efficacy will be assessed by calculating the percentage prediction error.
The NSGA-II will be used to maximize the performance of the medium-speed WEDM
process and determine the ideal processing parameters.
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2. Materials and Methods
2.1. Materials

The workpiece is a cylindrical block made of Inconel 718 superalloy with a diameter
of 16 mm, a specimen that was provided by the Central Metallurgical Research and De-
velopment Institute. Inconel 718 is a high-nickel, high-chromium alloy often employed in
manufacturing steam turbine and jet aircraft interiors, rotary spindles, and other applica-
tions [8]. Inconel 718’s composition is 54% Ni, 17.7% Fe, 16.9% Cr, 4.6 wt% Nb, 2.17 wt%
Mo, and 1.49 wt% Ti. The workpiece’s physical characteristics are shown in Table 1.

Table 1. Workpiece’s physical characteristics.

Value (s) Unit

Density 8.32401 g/cm3

Hardness 48 HRC
Melting temperature 1344 ◦C
Thermal conductivity 11.4 W/m K
Electrical resistivity 1.25 µ Ω m

2.2. Experimental Setup and Procedure

This study aims to find the best machine parameter settings for a medium-speed
WEDM, and the process’s schematic design is in Figure 1, to achieve the conflicting ob-
jective of maximizing the MRR while minimizing the Ra. The research was conducted in
multiple phases.
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During the initial stage of the study, the optimal machining parameters that ensured a
stable cutting process without any wire breaks were successfully identified. In the second
stage, models for predicting a medium-speed WEDM were developed using the I-optimal
design of the mixture and ANN.

In the third stage, the prediction models were evaluated. The following step utilized
the NSGA-II algorithm to perform multi-objective optimization and determine the optimal
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conditions for achieving a max MRR and min Ra. In the final stage, the solutions obtained
by the NSGA-II algorithm were validated through real experiments, and the prediction
error calculation was carried out. All stages of the research are shown in Figure 2.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 5 of 24 
 

 

In the third stage, the prediction models were evaluated. The following step utilized 
the NSGA-II algorithm to perform multi-objective optimization and determine the opti-
mal conditions for achieving a max MRR and min Ra. In the final stage, the solutions ob-
tained by the NSGA-II algorithm were validated through real experiments, and the pre-
diction error calculation was carried out. All stages of the research are shown in Figure 2.

 
 

 

Figure 2. Schematic description of the general research work. 

Figure 2. Schematic description of the general research work.

To achieve the previous tasks, the experimental studies were carried out on the ESUN-
TEK (EFH-CC2.0) medium-speed WEDM machine, as seen in Figure 3, and all its settings
are provided in Table 2; 20 samples were obtained from a cylindrical block made of Inconel
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718 superalloy with a diameter of 16 mm, as shown in Figure 4. The electrode was a
molybdenum wire measuring 0.18 mm in diameter, while the dielectric employed was a
combination of (JR3A emulsified + water).
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Figure 3. ESUNTEK (EFH-CC2.0) medium-speed WEDM machine.

Table 2. Medium-speed WEDM operating conditions.

Parameter Value (s) Unit

Polarity of wire Positive –
Material of wire Molybdenum –
Diameter of wire 0.18 mm

Spark ontime 7; 8; 9; 10; 11; 12 . . . 25 µ. s
Spark offtime 6; 7; 8; 9; 10; 11; 12 µ. s

Wire feed 100; 101; 102; 103 . . . 200 mm2/min
Current 3; 4; 5 A
Voltage 60 V

Head height 220 mm
Wire speed 4 m/s
Dielectric JR3A emulsified + water –

Water tank capacity 140 L



J. Manuf. Mater. Process. 2024, 8, 206 7 of 22J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 4. 20 Samples cuĴing on the medium-speed WEDM machine. 

The MRR in the medium-speed WEDM is very complicated. The system is operated 
by various key factors, including those that affect the energy discharge (such as voltage, 
current, spark duration, and spark interval), factors related to the working electrode (like 
wire speed, wire tension, and wire feed), and processing conditions characterizing the 
method and pressure of the dielectric supply [9]. 

Based on experience, some preliminary investigations, and the literature review men-
tioned above, concluded that the parameters that have the highest impact on the MRR and 
Ra in cuĴing with a medium-speed WEDM are the spark ontime, spark offtime, wire feed, 
and current. The parameter MRR was determined by dividing the lateral surface area of 
the cut sample by the cuĴing time [9]. The following formula calculates the MRR: 

MRR =
π ×  Dଶ

4 ×  t 
 (1)

where D represents the sample diameter in mm and t represents the cuĴing time in min. 
The parameter surface roughness was measured using a surface roughness meter 

(TR210, Beijing TIME High Technology Ltd，China) as shown in Figure 5. The Ra value 
was measured at five different points on the same face using a surface roughness meter 
on every cuĴing surface. The average of these five readings was then considered the actual 
Ra value. The indicator’s seĴings were configured with a digital filter (RC) and the cut-off 
length (λc) was set to 0.8 mm. 

 

Figure 4. 20 Samples cutting on the medium-speed WEDM machine.

The MRR in the medium-speed WEDM is very complicated. The system is operated
by various key factors, including those that affect the energy discharge (such as voltage,
current, spark duration, and spark interval), factors related to the working electrode (like
wire speed, wire tension, and wire feed), and processing conditions characterizing the
method and pressure of the dielectric supply [9].

Based on experience, some preliminary investigations, and the literature review men-
tioned above, concluded that the parameters that have the highest impact on the MRR and
Ra in cutting with a medium-speed WEDM are the spark ontime, spark offtime, wire feed,
and current. The parameter MRR was determined by dividing the lateral surface area of
the cut sample by the cutting time [9]. The following formula calculates the MRR:

MRR =
π× D2

4 × t
(1)

where D represents the sample diameter in mm and t represents the cutting time in min.
The parameter surface roughness was measured using a surface roughness meter

(TR210, Beijing TIME High Technology Ltd., Beijing, China) as shown in Figure 5. The Ra
value was measured at five different points on the same face using a surface roughness
meter on every cutting surface. The average of these five readings was then considered the
actual Ra value. The indicator’s settings were configured with a digital filter (RC) and the
cut-off length (λc) was set to 0.8 mm.
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2.3. Modeling Method
2.3.1. I-Optimal Design of the Mixture

The RSM is a statistical tool that enables the modeling, analysis, and optimization
of issues where the relationship of input parameters impacts the output response under
study. This strategy is well regarded for its effectiveness and flexibility [10]. The I-optimal
design of a mixture enables a precise characterization and optimization of a given process.
Using an I-optimal design of a mixture offers several benefits compared to a conventional
RSM design, such as requiring fewer trials than conventional RSM methods and being very
valuable for resolving problems with numerous constraints.

For example, it can manage situations where parameter levels are limited to specific
values or when parameters have different amounts of levels. This is performed by taking
out a specific area of study where responses could not be evaluated well (e.g., in medium-
speed WEDM parameter optimization) [11].

The I-optimal design of a mixture was employed to determine the ideal combination
of parameters for machining Inconel 718 superalloy using a medium-speed WEDM. The
independent control variables selected for this investigation were the spark ontime, spark
offtime, wire feed, and current. The I-optimal design of the mixture consisted of a total
of 20 experimental trials. Out of these, 15 trials were dedicated to the basic model, 1 trial
was allocated for central points, 2 trials were used for measuring a lack of fit, and the other
2 trials were replication points.

The Design-Expert program was employed for the design, which utilized a computer
algorithm to enhance the precision of forecasts throughout the design domain. Table 3
displays the complete DOE matrix and the responses for the MRR and Ra.

Table 3. DOE matrix and the responses for the MRR and Ra.

Exp. No. Build
Type

Spark
Ontime (µ.s)

Spark
Offtime (µ.s)

Wire Feed
(mm2/min) Current (A) MRR

(mm2/min)
Ra

(µ.m)

1 Model 20 6 100 3 34.666 2.77
2 Model 12 12 100 5 33.887 3.3575
3 Model 24 8 100 5 34.666 4.2375
4 Model 7 6 189 3 43.709 1.625
5 Model 7 6 100 4 34.666 1.78
6 Model 17 12 156 3 36.78 2.8125
7 Model 16 9 175 4 47.872 2.9025
8 Model 7 10 100 3 27.831 2.2595
9 Model 25 9 200 3 47.872 2.955
10 Model 7 9 157 5 40.756 2.5335
11 Lack of fit 7 10 171 3 32.084 2.03
12 Model 16 6 200 5 60.319 3.1025
13 Model 25 6 156 4 54.835 3.1425
14 Model 25 12 100 4 33.173 2.7603
15 Center 16 9 150 4 45.696 2.975
16 Model 25 12 190 5 51.117 4.1175
17 Model 7 12 200 4 31.092 1.5075
18 Replicate 16 9 150 4 45.696 2.925
19 Lack of fit 14 6 128 5 45.014 3.045
20 Replicate 16 9 175 4 47.872 2.8797
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2.3.2. Artificial Neural Networks (ANN)

An ANN is a machine learning method commonly employed in manufacturing to
forecast responses correctly. The tool functions as a brain and generates a continuous
output variable based on discrete input variables. It is a vital technique for representing
complicated non-linear connections. In a standard ANN design, there are three types of
layers, the input, output, and hidden layers, all of which are interconnected.

Each neural network layer consists of one or more neurons and serves as a fundamental
component. Each neuron is assigned a weight for every input, which alters the magnitude
of each input. The neuron collects all the inputs processed through an activation function
and computes an output to be transmitted further. The third layer is the hidden layer,
where neurons are not in the input or output layers. To enhance the system’s accuracy,
one can improve its computational and processing capabilities by adding more hidden
layers containing neurons [12]. However, Dr. Ping-Hsien Chou et al. [13] conducted a
comparative analysis of ANN models for predicting wire rupture in WEDM showing a
range of architectures, including 1 to 4 hidden layers and neuronal counts varying from
100 to 300. Variability in the results indicated that simply increasing the number of hidden
layers or neurons did not ensure an improvement in the accuracy. The process of developing
an ANN model for the prediction and optimization of the MRR and Ra was followed using
the flow chart shown in Figure 6.
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The current study employed a single input, hidden, and output layer for the ANN
model; the model is expected to have a structure of (X–N1–Y), where X denotes the number
of neurons in the input layer, N1 denotes the number of neurons in the first hidden layer,
and Y denotes the number of neurons in the output layer. Figure 7 displays the structure of
the constructed ANN model. In this case, the input layer consisted of four neurons: the
spark ontime, spark offtime, wire feed, and current. The output layer, on the other hand,
had two neurons representing the MRR and Ra. The ANN models were constructed using
MATLAB R2024a. Various models were devised and evaluated to explore the most effective
architectures. The primary factors for evaluation were the root mean square error (RMSE)
and the coefficient of determination (R2) value for all the networks.
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3. Results and Discussion
3.1. Artificial Neural Network (ANN) Prediction Model for MRR and Ra

An ANN was employed to model the experimental data and analyze the influence
of input parameters, including the spark ontime, spark offtime, wire feed, and current,
on the MRR and Ra. The challenges in choosing the best ANN model, as highlighted by
Yusliza Yusoff et al. [14], result from the lack of specific instructions in the current literature.
Consequently, many researchers rely on random and extensive trials to discover effective
configurations. This study conducted a series of random trials that led to a model with
an R2 value exceeding 99%. It took around one month to develop the final structure of
this ANN model, which is a feed-forward backpropagation neural network with a (4–8–2)
structure using the Bayesian regularization (BR) learning technique.

The dataset used a random splitting method and was divided into 20% with four
experiments (6, 8, 9, and 10) for testing and 80% with 16 other experiments for training.
Then, it was used to predict medium-speed WEDM attributes. The model’s evaluation is
based on the R2 (representing the amount of variability in the data that the model accounted
for), the adjusted R2 (taking into consideration the number of predictors in the model),
and the predicted R2 (measuring how well the model predicts new data) to determine
the model’s accuracy. The values span from zero to one. A zero value indicates a bad
model prediction, whereas a value of one suggests an ideal forecast. Ultimately, the mean
percentage error is computed, which is the percentage disparity between the predicted
results and the actual experimental values.

An actual (experimental) and predicted value plot is a graphical method for comparing
the data obtained from experiments with the values predicted by an ANN model. This
enables measuring the model’s performance and observing the proximity between the
predicted values and actual values.

Before plotting the actual and predicted value plot, the model needs to collect the
experimental and predicted values for each data point. By plotting the actual value on the
x-axis and the predicted value on the y-axis, one can compare the two plots to determine
the proximity of the points. The model is considered perfect not if the actual and predicted
values are permanently aligned but if the actual plot and predicted values align around the
diagonal line. In that case, it indicates that the model performs well in predicting values,
and the prediction error is the vertical distance between the point and the line of perfect
predictions. Furthermore, it was observed in Figure 8 that as the actual values (X) obtained
from experiments increased, so did the predicted values (Y) by an ANN model, indicating
a positive correlation between the two. This positive correlation suggests that the model
accurately represents the underlying relationship between the input and output variables.
On the other hand, if the plots show an extensive and unequal distribution, it indicates that
the model cannot predict values accurately. This difference can be attributed to various
factors, including model overfitting, underfitting, or the presence of outliers in the data [15].
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Figure 8. The actual (experimental) values versus the predicted values for the (a) MRR and (b) Ra.

The graph in Figure 8a displays the relationship between the actual value and the
predicted values of the MRR. It can be noted that all the data points aligned accurately
with the predictions. The R2 value for MRR predictions was 99.94%, with an adjusted R2

value of 99.93% and a predicted R2 value of 99.91%, as shown in Table 3. These high values
indicate that the model’s predictions were highly accurate.

The graph in Figure 8b displays the relationship between the actual values and the
predicted values of Ra. It can be noted that all the data points aligned accurately with the
predictions. The R2 value for the predictions made by the Ra model was 99.87%, with an
adjusted R2 value of 99.86% and a predicted R2 value of 99.84%, as shown in Table 4. These
high values indicate that the model’s predictions were highly accurate.

Table 4. The total percentage error and regression analysis for the ANN model.

MRR Ra

Total percentage error 0.22955% 0.49993%
R2 99.94% 99.87%

Adj R2 99.93% 99.86%
Predicted R2 99.91% 99.84%

Finally, a high positive correlation factor in the ANN model indicates a strong relation-
ship between the input parameters (spark ontime, spark offtime, wire feed, and current)
and the output parameters (MRR and Ra). This strong correlation is important for paramet-
ric analysis because it shows that the input parameters have a significant and predictable
influence on the output parameters. As a result, the analysis becomes more reliable and
accurate and provides precise insights into how variations in inputs affect outputs.

Furthermore, the high positive correlation factor makes the optimization process
easier by establishing a clear relationship between the parameters. This clarity enables
optimization algorithms to navigate the parameter space more efficiently, resulting in
optimal solutions with less computational effort and time. As a result, the optimization
process becomes more reliable and efficient, leading to more accurate results.

Pareto analysis of variance (ANOVA) is a simplified method that applies the Pareto
principle to assess the individual impact of each process parameter on the MRR and Ra.
This statistical technique does not require an ANOVA table or an F-test, making it more
accessible for practical applications. By focusing on the most significant parameters, it
allows engineers and industrial practitioners to identify and prioritize the factors that
contribute the most to the outcomes.

For instance, in this study, the input parameters chosen, spark ontime, spark offtime,
wire feed, and current, are the most important in machining processes with a medium-speed
WEDM. The Pareto analysis helps calculate each parameter’s percentage contributions,
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providing a clear and straightforward way to understand their relative importance. For
instance, Figure 9 shows that the most crucial parameter in this study was the wire feed,
which significantly impacted the MRR, while the spark ontime was the most influential
on Ra, and this has led engineers in industrial environments and workshops to monitor
these two input parameters carefully during the machining process with a medium-speed
WEDM. Finally, this analytical approach benefits those who need to make data-driven
decisions without delving into complex statistical procedures [16]. According to Figure 9a,
the wire feed is the most significant factor in the MRR, accounting for 41.63% of the overall
contribution. The wire feed, by which the wire is supplied to the workpiece, has a major
impact on the MRR. This is because it leads to a rise in the applied current, resulting in
a higher rate of heat energy transfer and, consequently, an increased rate of melting and
evaporation [17].
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Moreover, the spark ontime accounted for a substantial proportion of 20.07%, and the
pulse duration substantially affected the MRR, because higher discharge energy causes
more material to melt from the workpiece [18].

In addition, the current parameter significantly contributed 15.06% to the MRR. This
suggests that the current had a strong impact on the MRR. The higher current leads to an
increase in the rate of heat energy and, hence, in the rate of melting and evaporation. As a
result, larger amounts of material melt, leading to an increase in the MRR [19]. In addition,
the parameter spark offtime contributed 9.51%, showing that a longer spark offtime led
to a decrease in the MRR. This is because a longer spark offtime results in a lower spark
intensity. On the other hand, reducing the duration between sparks in a medium-speed
WEDM increases the strength of the sparks. This results in a greater amount of material
being melted and vaporized in the machining area, leading to an increase in the MRR [20].

The wire feed and spark ontime had the greatest impact on the MRR of the medium-
speed WEDM machine. These parameters must be tuned to achieve maximum efficiency
and effectiveness in the medium-speed WEDM process.

As seen in Figure 9b, it was determined that the spark ontime had the greatest impact,
accounting for 52.99% of the Ra. This suggests that altering the timing of the spark can
have an extensive negative impact on the Ra. Increasing the duration of spark activation
leads to a rise in the strength of the spark and enlarges the craters on the machined surface,
ultimately leading to poor surface quality [21].

Moreover, the current contribution percentage was 22.95%. This suggests that the
present condition has a detrimental effect on the Ra, as the Ra rises in relation to the increase
in current value caused by the rise in discharge energy. This leads to an increase in the
size of craters on the machine surface, resulting in poor surface quality [22]. However, the
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contribution percentages for the spark offtime and wire feed are relatively low, specifically
0.57% and 1.04%, respectively. These parameters have a negligible influence on the Ra
compared to the spark ontime and current.

The prediction performance of the training set and test set for the MRR and Ra is shown
in Figures 10 and 11, respectively. Figure 10 illustrates the MRR values obtained from actual
(experimental) data and ANN predictions. It is inferred that the ANN predictions were
significantly closer to the actual values. The error rates were also computed. The average
percentage error obtained was 0.22955%, while the maximum percentage error of 3.252836%
for the MRR was reported by comparing the experimental and ANN-predicted values.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 13 of 24 
 

 

The wire feed and spark ontime had the greatest impact on the MRR of the medium-
speed WEDM machine. These parameters must be tuned to achieve maximum efficiency 
and effectiveness in the medium-speed WEDM process. 

As seen in Figure 9b, it was determined that the spark ontime had the greatest impact, 
accounting for 52.99% of the Ra. This suggests that altering the timing of the spark can 
have an extensive negative impact on the Ra. Increasing the duration of spark activation 
leads to a rise in the strength of the spark and enlarges the craters on the machined surface, 
ultimately leading to poor surface quality [21]. 

Moreover, the current contribution percentage was 22.95%. This suggests that the 
present condition has a detrimental effect on the Ra, as the Ra rises in relation to the in-
crease in current value caused by the rise in discharge energy. This leads to an increase in 
the size of craters on the machine surface, resulting in poor surface quality [22]. However, 
the contribution percentages for the spark offtime and wire feed are relatively low, spe-
cifically 0.57% and 1.04%, respectively. These parameters have a negligible influence on 
the Ra compared to the spark ontime and current. 

The prediction performance of the training set and test set for the MRR and Ra is 
shown in Figures 10 and 11, respectively. Figure 10 illustrates the MRR values obtained 
from actual (experimental) data and ANN predictions. It is inferred that the ANN predictions 
were significantly closer to the actual values. The error rates were also computed. The aver-
age percentage error obtained was 0.22955%, while the maximum percentage error of 
3.252836% for the MRR was reported by comparing the experimental and ANN-predicted 
values. 

 

 

Figure 10. Experimental result comparison of the ANN predictions for the MRR. 

The actual Ra values were compared to the predictions made by the ANN, as de-
picted in Figure 11. The predictions made by the ANN were determined to be highly ac-
curate, and the corresponding error percentages were also calculated. The average per-
centage error produced was 0.49993%, and the greatest error percentage of 4.425758% for 
the Ra was observed when comparing the experimental and predicted values using the 
ANN. 

Figure 10. Experimental result comparison of the ANN predictions for the MRR.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 14 of 24 
 

 

 

 

Figure 11. Experimental result comparison of the ANN predictions for the Ra. 

In conclusion, the model that combined the I-optimal design of the mixture technique 
with the feed-forward backpropagation neural network with a (4–8–2) structure, trained 
using the BR learning technique, successfully aligned closely with the trend of the actual 
value curve. A small number of the specific values of the model exhibited only a minor 
deviation from the predicted values. Thus, the model did not exhibit any apparent over-
fiĴing phenomena and consequently possessed a higher level of accuracy in predicting 
the MRR and Ra. 

3.2. Response Surface Analysis of MRR and Ra with Developed ANN Model 
A parametric analysis was conducted to analyze the effects of the input parameters 

(spark ontime, spark offtime, wire feed, and current) on the output parameters MRR and 
Ra. Three-dimensional response surface plots were generated using the ANN model. The 
graphs of surfaces provided additional clarification on the correlation between the input 
process parameters and responses and demonstrated the ability of the ANN model to es-
timate the MRR and Ra accurately. 

Based on Figure 12a, it was found that the MRR rose as the spark ontime value in-
creased. This is because a higher discharge energy resulted in more material melting from 
the workpiece, leading to higher MRR values [18]. Nevertheless, it was observed that 
when the spark offtime was short, increasing the spark ontime had a lesser impact on the 
rise in MRR than the spark offtime being long. This is because there was insufficient time 
for the molten material to be flushed out [23]. At a low spark ontime, it was seen that the 
MRR declined as the spark offtime increased. This is because there was greater time between 
two consecutive electrical discharges [24]. This can be seen in Figure 12a. However, at a high 
spark ontime, it was found that the spark offtime had little effect on the MRR. 
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The actual Ra values were compared to the predictions made by the ANN, as depicted
in Figure 11. The predictions made by the ANN were determined to be highly accurate,
and the corresponding error percentages were also calculated. The average percentage
error produced was 0.49993%, and the greatest error percentage of 4.425758% for the Ra
was observed when comparing the experimental and predicted values using the ANN.
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In conclusion, the model that combined the I-optimal design of the mixture technique
with the feed-forward backpropagation neural network with a (4–8–2) structure, trained
using the BR learning technique, successfully aligned closely with the trend of the actual
value curve. A small number of the specific values of the model exhibited only a minor de-
viation from the predicted values. Thus, the model did not exhibit any apparent overfitting
phenomena and consequently possessed a higher level of accuracy in predicting the MRR
and Ra.

3.2. Response Surface Analysis of MRR and Ra with Developed ANN Model

A parametric analysis was conducted to analyze the effects of the input parameters
(spark ontime, spark offtime, wire feed, and current) on the output parameters MRR and
Ra. Three-dimensional response surface plots were generated using the ANN model. The
graphs of surfaces provided additional clarification on the correlation between the input
process parameters and responses and demonstrated the ability of the ANN model to
estimate the MRR and Ra accurately.

Based on Figure 12a, it was found that the MRR rose as the spark ontime value
increased. This is because a higher discharge energy resulted in more material melting from
the workpiece, leading to higher MRR values [18]. Nevertheless, it was observed that when
the spark offtime was short, increasing the spark ontime had a lesser impact on the rise in
MRR than the spark offtime being long. This is because there was insufficient time for the
molten material to be flushed out [23]. At a low spark ontime, it was seen that the MRR
declined as the spark offtime increased. This is because there was greater time between
two consecutive electrical discharges [24]. This can be seen in Figure 12a. However, at a
high spark ontime, it was found that the spark offtime had little effect on the MRR.
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According to Figure 12b, the Ra increased when the spark ontime value was raised.
The reason for the poor surface quality is the higher discharge energy, which leads to larger
craters on the machined surface [21]. Nevertheless, it was discovered that the spark offtime
had minimal impact on the Ra.

As shown in Figure 13a, it was found that the MRR rose as the spark ontime value
increased. This is because a higher discharge energy resulted in more material melting
from the workpiece, leading to higher MRR values [18]. Nevertheless, the MRR increased
when the current value was raised. The higher current leads to an increase in the rate of
heat energy and, hence, in the rate of melting and evaporation. As a result, larger amounts
of material melt, leading to an increase in the MRR [19]. According to Figure 13b, the Ra
increased when the current value was raised, which was caused by the rise in discharge
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energy. This leads to an increase in the size of craters on the machine surface, resulting in
poor surface quality [22].
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According to Figure 14a, the MRR rose as the wire feed value increased. This is
because the wire supplied to the workpiece significantly impacted the MRR. This is because
it leads to a rise in the applied current, resulting in a higher rate of heat energy transfer and,
consequently, an increased rate of melting and evaporation [17]. Nevertheless, the higher
current leads to an increase in the rate of heat energy and, hence, in the rate of melting
and evaporation. As a result, larger amounts of material melt, leading to an increase in the
MRR [19]. According to Figure 14b, the Ra increased when the current value was raised
due to the rise in discharge energy. This leads to an increase in the size of craters on the
machine surface, resulting in poor surface quality [22]. Nevertheless, it was discovered that
the wire feed had minimal impact on the Ra.
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3.3. The Surface Burning Phenomenon of the Machined Samples with the Medium-Speed
WEDM Process

During cutting with a medium-speed WEDM, the rapid change in the direction of the
wire movement impacts the machining conditions. As a result, the surface of the workpiece
often displays an unusual pattern, which researchers call zebra stripes or burn stripes [25].
This can be observed in Figure 4, where numerous reversal stripes are visible on the surface
of the samples; this burn happens when significant amounts of energy are utilized, which
leads to the evaporation of dielectric liquids. Consequently, a limited quantity of dielectric
liquid is present during the wire and workpiece export process, leading to burning on the
surface of the workpiece. As mentioned above, the medium-speed WEDM process changes
the direction of the wire movement, which means there are two types of cutting: forward
and reverse.

As shown in Figure 15, the cutting conditions for the two cutting types vary. In
forward cutting, a working fluid is introduced into the processing area using a wire
electrode. Moreover, the quantity of the working fluid between the electrodes improves
due to the force of gravity, which facilitates the removal of discharge debris. In this way,
the burn of the workpiece surface is considered minimal compared to reverse cutting [26].
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Based on the above study, the leading cause of surface burning is the significant
vaporization of working fluid due to high cutting energy and the inability to remove
the discharge debris promptly. To prevent burns during the generation of high energy
levels, it is necessary to ensure an adequate amount of inter-electrode working fluid or to
minimize the vaporization of the working fluid during the cutting process with a medium-
speed WEDM.

3.4. Utilizing a Non-Dominated Sorting Genetic Algorithm (NSGA-II) for
Multi-Objective Optimization

Optimizing machine parameter settings is critical for effective medium-speed WEDM
machining. This includes the difficult issue of maximizing the MRR while minimizing the
Ra. As a result, the constructed ANN model was optimized using the NSGA-II technique.

This efficient method employs repeated alteration in point populations using the
Genetic Algorithm to find non-dominant optimal Pareto solutions for various objective
functions. This is because the medium-speed WEDM process is complicated, requiring two
or three goals to be achieved simultaneously to pick the optimal solution.

In single-objective optimization, the best choice is often made by determining the
global maxima or global minima, depending on the optimization problem’s special features.
Multiple-objective optimization requires various solutions. There are many conventional
approaches for identifying solutions to a multi-objective issue, including the min–max,
distance function, and weighted sum processes [5].

However, these techniques have additional problems, such as weighing objectives
determined by their relative significance. Authors must thoroughly understand ranking
target functions before utilizing traditional optimization strategies. Genetic Algorithm
techniques explore the design space without relying on gradient information or essential
parallelism, giving them an effective and adaptable optimization strategy.

NSGA-II was created utilizing the Pareto technique and has shown to be an effective
algorithm for resolving many optimization problems. NSGA-II is a useful optimization
approach because of its speedy, non-dominated sorting, fast crowded distance estimation,
and easy crowded comparison operator [2]. A flow chart of the NSGA-II algorithm is
shown in Figure 17.
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The MATLAB Genetic Algorithm multi-objective toolbox was utilized to predict the
optimal process parameters. The ANN model was created using the MATLAB toolbox, and
the goals were to maximize the MRR and minimize the (Ra). The objective functions were
formulated as Algorithm 1.
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Algorithm 1

The objective function (1)
Max MRR = –Min MRR = Fun ((Spark _ ontime), (Spark _ offtime), (Wire feed), (Current)) (2)
The objective function (2).
Min Ra = Fun ((Spark _ ontime), (Spark _ offtime), (Wire feed), (Current)) (3)
Constraint_to.
7 µs< (Spark _ ontime) < 25 µs
6 µs < (Spark _ offtime) < 12 µs
100 mm2/min < (Wire feed) < 200 mm2/min
3 A < (Current) < 5 A

3.4.1. Results from Multi-Objective Optimization Using (NSGA-II)

The NSGA-II generated 20 optimal solutions, presented in Table 5, based on the
independent control variables. Figure 18 illustrates the Pareto front of the optimization
results, representing the exploration space.

Table 5. Optimal combination of the process parameters and non-dominated solutions with the
NSGA-II algorithm.

Sol. No. (Spark
Ontime) (µ.s)

(Spark
Offtime) (µ.s)

(Wire Feed)
(mm2/min) Current (A) MRR

(mm2/min)
Ra

(µ.m)

1 25 6 200 5 66.0619 3.0966
2 22 6 200 5 64.9346 3.0896
3 24 6 196.3595 4.3136 62.7876 3.02
4 23 6 197 4 60.5589 2.8566
5 22 6 200 4 60.0182 2.8282
6 24 6 195.6724 3.7637 59.2713 2.7415
7 22 6 194.1112 3.6087 57.4043 2.5268
8 21 6 195.581 3.3984 55.2933 2.296
9 21 6 194.2474 3.2852 54.4557 2.1961
10 20 6 195.0947 3.2127 53.4469 2.0888
11 20 6 198 3 51.8354 1.9275
12 20 6 200 3 51.7784 1.9253
13 16 6 200 3 50.0908 1.7616
14 14 6 200 3 49.0749 1.6972
15 13 6 200 3 48.525 1.6693
16 12 6 199 3 47.9098 1.6492
17 9 6 199 3 45.9805 1.5887
18 7 6 200 3 44.6561 1.5496
19 7 10 199.9283 3.5799 36.5808 1.5085
20 7 11 199.8674 3.5933 33.8288 1.4593

Upon analysis, it was clear that Solution 1 was the most efficient solution for achieving
the highest MRR, with an MRR of 66.0619 mm2/min and a Ra of 3.0966 µ.m. Experiment
12 produced the highest MRR among all the experiments, with a value of 60.319 mm2/min.
Additionally, it had a Ra of 3.1025 µ.m. These data highlight the importance and effective-
ness of the optimization process.

Similarly, Solution 20 was the most efficient solution for achieving the minimal Ra. It
had an MRR of 33.8288 mm2/min and a Ra of 1.4593 µ.m. Experiment 17 produced the
lowest Ra value among the experimental results, with an MRR of 31.092 mm2/min and
a Ra of 1.5075 µ.m. These data further confirm the significance and effectiveness of the
optimization process.

A widely accepted understanding of a direct correlation between the MRR and Ra
indicated that an increase in the MRR would lead to a rise in the Ra and a worse surface
quality. Nevertheless, there are instances where this is not true, as demonstrated by
Experiment 3, which produced the poorest surface quality but did not surpass an MRR
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of 34.666 mm2/min. In addition, Experiment 8, which had the lowest MRR, did not yield
the optimal surface finish. These observations emphasize the crucial significance of the
optimization process in attaining the highest MRR while minimizing the Ra and obtaining
the finest surface finish, which improved the machining performance productivity and
roughness significantly.
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Ultimately, it was seen that there was a compromise between the MRR and Ra, indicat-
ing that no alternative was fundamentally superior to another. All of these issues depend
on the requirements of the engineer responsible for controlling a medium-speed WEDM. If
a more productive MRR is preferred, solutions ranging from 1 to 7 can be chosen, even if it
means compromising the Ra. Alternatively, if the Ra is in considerable demand, appropriate
solutions ranging from 17 to 20 can be selected. Solutions 8–16 can be utilized to achieve an
ideal equilibrium between high production and good surface quality. The decision-maker
must choose the most advantageous results based on specific criteria. This highlights the
intricate and subtle nature of the optimization process in industrial operations.

3.4.2. Experimental Confirmation with Optimal Solutions of Machining Settings

To validate the precision and importance of the optimal solutions obtained through the
utilization of the NSGA-II, as indicated in Table 5, a total of 12 solutions can be performed.
The other is incapable of functioning in the machine. However, these solutions may help in
the manufacture of a medium-speed WEDM in the future. Table 6 shows the results of a
confirmation test conducted on four optimal solutions (No. 1, No. 5, No. 13, and No. 18)
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using different input–parameter combinations and the four samples cut on a medium-speed
WEDM machine for the confirmation test as seen in Figure 19.

Table 6. Experimental confirmation with optimal machining settings.

Sol. No. MRR (mm2/min) Ra (µ.m)

(Spark
Ontime)

(µ.s)

(Spark
Offtime)

(µ.s)
(Wire Feed)
(mm2/min)

Current
(A) Predicted Exp. Percentage

Error Predicted Exp. Percentage
Error

1 25 6 200 5 66.0619 66.3612 0.45305 3.0966 3.1253 0.92682
5 22 6 200 4 60.0182 60.4263 0.67996 2.8282 2.7973 1.0926
13 16 6 200 3 50.0908 49.7878 0.60490 1.7616 1.7811 1.1069
18 7 6 200 3 44.6561 44.9123 0.57371 1.5496 1.5767 1.7488

Mean
prediction

error
0.57790 1.2187
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The confirmation experiments were conducted, documented, and compared with the
relevant Pareto optimum solutions in Table 6. The relative error between the experimental
results and the ideal values of the MRR and Ra was calculated from Equation (2), and it
was found that the error was within acceptable limits, with a maximum of 1% for MRR and
2% for Ra.

Prediction error =
Abs(Experimental results − Predicted results)

Predicted results
× 100% (2)

4. Conclusions

This study aimed to create a predictive model for machining the Inconel 718 superalloy
utilizing the medium-speed WEDM process. The experimental design for the medium-
speed WEDM process was established using the I-optimal design of the mixture.

An ANN model was created to predict performance characteristics. The efficiency of
the process optimization was assessed using the NSGA-II algorithm on an ANN model.
The results suggested that the enhanced technique might reduce processing time and
increase cost efficiency. The following conclusions were made from the findings derived
from this study:

1. The results of the analysis demonstrated that the percentage contributions of input
parameters (wire feed, spark ontime, current, and spark offtime) to the MRR were
41.63%, 20.07%, 15.06%, and 9.51%, respectively.

2. The results of the analysis also demonstrated that the spark ontime and current were
the most vital factors influencing the Ra, with percentages reaching 52.99% and 22.95%,
respectively.

3. The I-optimal design was effectively employed to determine the correlation between
the output parameters (MRR and Ra) and process parameters (spark ontime, spark
offtime, wire feed, and current). This made the ANN model with a 4–8–2 structure
exceptionally accurate in fitting with the actual (experimental) values for the MRR
and Ra, which had total percentage errors of 0.22955% for the MRR and 0.49993% for
the Ra.
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4. The multi-objective optimization technique identified the most favorable combinations
of process variables to achieve the optimum performance to obtain the max MRR and
min Ra. Twenty optimal solutions were selected from the Pareto frontiers. Twelve
possible solutions could be performed on the machine, and others could not be
operated. Nevertheless, this could be taken into account by manufacturers of medium-
speed WEDMs and developed in the future.

5. The optimal combination parameters for attaining the greatest MRR of 66.0619 mm2/min
and Ra of 3.0966 µm on a medium-speed WEDM were the following: spark ontime of
25 µs, spark offtime of 6 µs, wire feed of 200 mm2/min, and current of 5 A.

6. The best combination settings that could be applied on the medium-speed WEDM
were a spark ontime of 7 µ.s, spark offtime of 6 µ.s, wire feed of 200 mm2/min, and
current of 3 A to achieve the lowest Ra of 1.5496 µm and MRR of 44.6561 mm2/min.

7. Confirmation experiments were compared to the relevant Pareto optimal solutions.
The relative error between the experimental findings and the optimal solutions of the
MRR and Ra were within acceptable limits, with a maximum prediction error of 1%
for the MRR and 2% for the Ra.
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