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Abstract: The use of an electron beam (EB) as a heating source in EB-based powder bed fusion
(PBF-EB) has several limitations, such as reduced powder recyclability, short machine service intervals,
difficulties with heating large areas and the limited processability of charge-sensitive powders. Near-
infrared (NIR) heating was recently introduced as a feasible replacement and/or complement to EB
heating in PBF-EB. This work further investigates the feasibility of using NIR to eliminate the need
for a build platform as well as to enable easier repairing of parts in PBF-EB. NIR-assisted Ti-6Al-4V
builds were successfully carried out by starting from a loose powder bed without using a build
platform. The results do not only confirm that it is possible to eliminate the build platform by the aid
of NIR, but also that it can be beneficial for the process cleanliness and improve the surface quality of
built parts. Furthermore, a 430 stainless-steel (SS) component could be repaired by positioning it in a
loose 316L SS powder bed using a fully NIR-heated PBF-EB process.

Keywords: electron beam; powder bed fusion; near-infrared heating; process manipulation; additive
manufacturing; 316L; stainless steel; Ti-6Al-4V

1. Introduction

Electron-beam powder bed fusion (PBF-EB) is an additive manufacturing (AM) tech-
nology, in which metal components are produced layer by layer from a powder feedstock.
The fast movement of the electron beam (EB) inside a controlled vacuum atmosphere
renders very good control over cleanliness and as-built material properties [1,2]. The cost of
the process has so far limited the use to mainly high-performance parts and crack-sensitive
alloys [3–9], but recently even ceramic materials have been processed [10,11]. As the process
is performed at elevated temperatures inside a vacuum [12], it is known for producing
dense parts with low residual stresses due to the minimal thermal gradients during solidifi-
cation [13–15]. One of the benefits of this technology is that the powder can be reused in
later processes, thereby minimizing the process waste [16,17].

The negative charge build-up, arising from the incident electrons upon impact with
the powder, must be limited or extracted from the build area to avoid disruptions to the
powder bed, known as “smoke” [17–22]. To allow fast heating rates, PBF-EB processes
rely on a high-mass build platform which minimizes issues with smoke during the initial
build stage. The build platform allows the full beam power to be applied during the
initial heating up to a process temperature between 40% and 80% of the melting point
of the processed alloy [23,24]. In the majority of industrial applications, 10 mm thick
stainless-steel build platforms are used, although the shape and material can be governed
by the specifics of the process and the targeted build material [25]. It is a foreseen issue
that the build platform material may contaminate the manufactured alloy if the chemical
compositions are not identical, which they often are not. Most PBF-EB processes are
conducted on stainless-steel build platforms regardless of the feedstock alloy. Although
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there are countless investigations on, for instance, how the mechanical properties are
affected by varying the location of the parts in the build chamber [26–29], no publication
could be found on how contamination from the build platform affects the built parts.
Further, Derimow et al. noticed an increased O2 pickup in the powder cake close to the
build platform [30], and it is not unlikely that the plate could cause outgassing, which can
further activate smoke events in some cases [31].

LASER-based PBF (PBF-LB) also utilizes build platforms, but in such cases, there are
no issues with powder charging. The motivation for using build platforms in PBF-LB
is commonly to increase the thermal transfer, reduce warpage by providing mechanical
support and decrease the cracking susceptibility of the built parts [32–34]. As PBF-EB is
a hot process and the powder cake provides some support for the parts, these functions
of a build plate are not as critical. To the best knowledge of the authors, there are no
publications available which describe PBF AM having been performed without a build
platform; thus, it is not entirely clear what the potential drawbacks of removing the build
platform would be.

The use of build platforms also complicates the possibility for cold restarts or for
repairing parts in PBF-EB. Repairing parts by AM has been researched [35–43], and the-
oretically PBF-EB should be good at creating a solid repair even on the microstructural
level. However, pre-heating a large volume of loose, cold powder with an EB is difficult
compared to PBF-LB, where the fixtures for the parts to be repaired can be placed in the
loose powder [36,39]. Parts to be repaired by PBF-EB commonly have to be in the form
of a build platform or press-fitted into a modified build platform before the repairing
process starts [25,40,44–46]. Replacing and leveling the build platform before each build
also adds to the process preparation time and manufacturing costs. Further adding to
the cost, alloys similar to the build platform material will fully fuse to it, meaning that
processes such as mechanical cutting and electric discharge machining (EDM) are needed
post-manufacturing. This increases the post-processing cost and must be considered when
designing the build layout so that the parts are not damaged upon removal.

Recently, near-infrared (NIR) heating was shown to be a promising complement to
the PBF-EB process by allowing quick, charge-free heating of the powder in each layer [47].
The introduction of NIR technology also reduced the EB build cost, improved powder
recyclability by reducing scrap and increased the service intervals of electron gun parts [47].
Due to the promising results, NIR may also allow additional benefits in PBF-EB processes,
such as bulk heating of the powder around a component to be repaired or quick heating
of a loose powder bed, which could eliminate the need for a build platform. This work
evaluates how NIR can assist PBF-EB to solve the issues discussed above, for instance, by
making the process or as-built material properties better, and to simplify the repairing of parts.

The experiments involved processing Ti-6Al-4V and 316L powders, as they present differ-
ent challenges and have important roles in PBF-EB. Ti-6Al-4V is one of the “original” materials
for PBF-EB and has been highly researched [48,49]. This material is currently used in indus-
try, where upscaling and optimized processes are of the essence [50]. The microstructure of
PBF-EB-produced Ti-6Al-4V commonly consists of columnar beta grains separated by
alpha-grain boundaries. Due to the transformation upon cooling from the β phase (BCC)
to α (HCP) and α′ phases (sheared HCP due to rapid cooling, sometimes referred to as the
martensitic phase), the beta grains contain an intergranular α “basket-weave” structure
known as the Widmanstätten structure [51–53], where smaller laths have been reported to
yield a higher strength [51]. The amount of β phase will depend on the thermal conditions,
where areas with high heat retention (such as close to a build plate) will tend to result in
more β phase [53]. Some α′ phase can be retained [53], but due to the high temperatures
of PBF-EB the amount is generally quite small and located close to the top section of the
build where less annealing is possible [53,54]. Although not as well researched as Ti-6Al-4V,
the austenitic (FCC) 316L stainless-steel alloy has been produced by PBF-EB for almost
10 years [14,55]. PBF-EB-produced 316L commonly forms columnar grains with Cr- or
Mo-enriched σ-phase (primitive tetragonal) precipitation in the grain boundaries [56]. The
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σ phase will act to both embrittle the material and reduce the corrosion properties, as
the surrounding area is depleted of Cr. Inside the austenitic grains, there is a cellular
substructure, usually aligned with the build direction, outlined by Cr- and Mo-segregated
boundaries [56,57].

2. Materials and Methods
2.1. Powders

Two feedstock powders were used in the experiments: alloy Ti-6Al-4V and 316L. The
plasma-atomized Ti-6Al-4V of the 45–105µm fraction was delivered by Arcam (Arcam
AB, Mölndal, Sweden, now a part of GE Colibrium Additive, Pittsburgh, PA, USA). The
gas-atomized 316L powder of fraction 53–150 µm was delivered by Carpenter (Carpenter
powder products AB, Torshälla, Sweden). The flowability of both powders was evaluated
according to ASTM B213 and yielded 20 s/50 g for 316L and 24 s/50 g for Ti-6Al-4V. The
apparent density according to ASTM B213 was 4.89 g/cm3 for 316L and 2.49 g/cm3 for
Ti-6Al-4V.

2.2. Sample Manufacturing

Samples were produced by conventional PBF-EB as well as by variations of NIR-
assisted PBF-EB in the Arcam S12 system modified according to a previous publication [47]
and equipped with a 6 kW NIR heater [47]. The different variants of NIR assistance for
each experiment are described in Sections 2.2.1 and 2.2.2.

2.2.1. Build without a Build Platform with the Aid of NIR Heating

To test NIR-assisted PBF-EB without a build platform, the loose Ti-6Al-4V powder
bed was heated by 6 kW NIR for 13 min, which created a hard and hot (red-glowing)
quasi-platform for the build. The Arcam S12 system is conventionally only equipped with
a K-type thermocouple (TC) placed under the build platform for monitoring the process
temperature. Corresponding TC control in this case was problematic due to the limited
thermal conduction of powder in a vacuum. Thereby, the color and glow intensity of the
top layer relative to standard PBF-EB builds were used as indicators for the temperature.
Further, 6 kW NIR heating applied for 13 min on a 150 mm × 150 mm × 10 mm build
platform in the PBF-EB chamber corresponded to a TC reading of ~800 ◦C. This is slightly
higher than the standard 730 ◦C processing temperature, but a higher temperature lowers
the smoke sensitivity, which was the main concern when removing the build platform. It
was assumed that the plate-free melting would require a higher starting temperature, as
the thermal ballast commonly provided from the mass of the build platform was missing.
After NIR heating, the standard PBF-EB process as provided by Arcam was used both for
pre-heating and melting each layer on top of the quasi-platform. Samples were produced
from the Ti-6Al-4V precursor powder. PBF-EB reference builds with EB heating and melting
were conducted with the same build files on top of a 150 mm × 150 mm × 10 mm build
platform in 304 stainless steel. Figure 1a shows the setup used for the reference builds, and
Figure 1b shows the experimental setup used for NIR sintering a quasi-platform.

The build file was the same as presented in an earlier publication [47] and contained
the following: four 15 mm × 15 mm × 15 mm cubes, four
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6 × 15 mm cylinders, one
55 mm × 2 mm × 15 mm block, one 25 mm × 25 mm × 14 mm triply periodic minimal
surface (TPMS) lattice and one 25 mm × 55 mm × 2 mm block.

2.2.2. Repairing by NIR-Assisted PBF-EB

Repairing a part by PBF-EB can be problematic, as it involves heating a large volume
of cold powder. To evaluate the feasibility of repairing parts by NIR-assisted PBF-EB, a
special build was proposed, with the component “in need of reparation” having a non-
planar upper surface. The component was a 125 mm long commercial teaspoon made from
430 stainless steel. The teaspoon was loaded at room temperature into the Arcam S12/A2
build chamber and placed in a loose 316L powder bed, as shown in Figure 1c, so that only a
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small area was level with the powder-bed top surface. By centering the beam on the exposed
area of the teaspoon, it was possible to align a build file to be built in the desired location. In
this case, there was no need to further align the position of the object and the build file, but
in other cases more points could be needed to align the build file axis with the object. The
build file in this case contained a 10 mm high logotype for the research center. The experiment
aimed at adding a solid 316L structure over the convex surface (oval 35 mm × 28 mm) of the
teaspoon. NIR (6 kW) was applied both for initial heating and in each layer during the build;
EB was used only for melting. The initial NIR heating was performed until the spoon was
observed to be glowing red hot (4 min).
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Figure 1. Illustrations of the standard PBF-EB setup that was used for manufacturing reference
samples (a), the experimental setup used for melting parts without a build platform (b) and the
experimental setup used for repairing parts (c).

2.3. Sample Characterization

Samples were characterized in terms of morphology and microstructure by scanning
electron imaging (SEM; Tescan Maia 3, Brno, Czech Republic) energy-dispersive X-ray
imaging (EDX; Oxford Instruments, Oxfordshire, UK) and in terms of hardness by micro-
Vickers indentation (emcoTEST, DuraScan, Kuchl, Austria) according to SS-EN ISO 6507-
1:2023 [58] for bulk sample hardness.

The micromechanical properties of selected areas on the Ti-6Al-4V samples were
determined by nanoindentation (KLA, iMicro, Irvine, CA, USA) in load control mode. A
diamond Berkovich tip was calibrated using a standard fused silica sample. The Nano-
Blitz® 3D technique was used for mapping the elastic modulus (E) and hardness (H). A
map of 200 µm × 200 µm was performed, with 200 × 200 nanoindentations with 1 µm
spacings at a maximum load of 2 mN. The indentation depth was in the range of 80 nm to
110 nm depending on the location.

3. Results and Discussion
3.1. Build without a Build Platform with the Aid of NIR Heating

The NIR quasi-platform functioned as a starting platform, although there were some
issues with warping of the first melted layers. This was to be expected, as sintered powder
lacks the mechanical properties of a solid build platform and thereby cannot withstand the
forces of thermal shrinkage as the layers solidify. In further development of this method,
it is suggested to include a multi-layer starting platform, where support structures can
be added to minimize the warping issues. However, even the single-layer quasi-platform
performed well in this experiment, as shown in Figure 2a. As can be seen in Figure 2a,b,
the powder cake is divided into three layers, whose interfaces are indicated by arrows in
the figures. The top layer is sintered by the EB during the PBF-EB process, the middle layer



J. Manuf. Mater. Process. 2024, 8, 211 5 of 12

is the NIR-sintered platform and the lower layer is a result of thermal sintering (TS) during
the full process. The middle layer is the most sintered (the hardest) of the three layers, and
the lower layer is the least sintered. As can be seen in Figure 2c, there is a distinct difference
between the EB-sintered powder, which has visible lines from the EB rastering, while the
NIR-sintered area has an even texture. Similar observations were also made for NIR versus
EB heating in earlier publications [47]. Figure 2d shows that the quasi-platform is easily
removed by PRS, which simplifies post-processing, as the parts can be built unattached to
any build platform. This also shows the potential of varying the powder-cake hardness by
NIR sintering without causing partial melting, which is often the case when too-intense EB
sintering is applied [47].
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Figure 2. The parts built on a quasi-platform inside the resulting powder cake (a). A piece of the
powder cake showing the structure of the NIR-sintered area, the EB-sintered area and the thermally
sintered (TS) area below the quasi-platform (b). The powder removal process in the PRS system is
shown from top (c) and bottom (d).

The samples manufactured on an NIR-sintered starting platform came out similar to
those produced via the standard PBF-EB process, except for the previously mentioned warping
of the first layers and a slight swelling on some of the parts (visible in Figures 2c and 2a,
respectively). This indicates that the power input was slightly too high during the process,
but it could also be an indication that the process temperature was too high for the selected
printing parameters. Considering that the parameters were developed for a scenario where
the thermal extraction is likely to be higher due to the difference in density between a build
platform and a quasi-platform, this is a logical outcome.

In cross section, some very interesting features could be observed, indicating that it
can be beneficial to avoid a build platform. The sample manufactured on a build platform
showed significant contamination from contact with the build platform, as shown in
Figure 3a,b. Elements from the build platform (304 stainless steel) were mixed and diffused
into the Ti-6Al-4V, causing inhomogeneities in the microstructure (Figure 3c). Bruno et al.
observed similar microstructures close to the build platform but did not mention or analyze
any contamination [29]. The contamination was confirmed by EDX data (Figure 3d), where
elements from the stainless steel could be found both in the grain boarders and as islands
inside the grains in the lower parts of the samples. A significant number of pores could also
be found in these regions, as can be seen in Figure 3b. The density of pores was highest in
the region close to where the contamination stopped. It is not clear why the pores formed
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here, but as nothing similar could be seen in the samples manufactured without the build
plate, it is assumed to have arisen due to the incompatibility between the two alloys.
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Figure 3. Cross section of the lower part (a,b) of one sample manufactured on top of a build platform,
with a higher-magnification image of the microstructure (c) and EDX mapping results for the same
region (d). Cross section of the lower part of one sample manufactured without a build platform
(e,f), with a higher-magnification image of the microstructure, where the Widmanstätten structure is
visible at the very bottom of the build (g). Cross sections showing the surface roughness of samples
manufactured with a build platform (h) and without a build platform (i).

Samples manufactured on the quasi-platform did not show any clear inhomogeneities
in their microstructures, and there was a significantly smaller number of pores, as shown
in Figure 3e–g. The few pores that did exist were also on a smaller scale when compared to
samples manufactured on a build platform (e.g., Figure 3g vs. Figure 3f). A large amount
of semi-melted powder particles originating from the quasi-platform could be observed to
be attached to the bottom of the sample (Figure 3e,f). Another interesting observation was
that the vertical surfaces came out smoother in the build performed on a quasi-platform
(Figure 3h vs. Figure 3i). This observation could be made in several locations on all
examined samples. Unfortunately, the samples produced in this work were too small to
perform profilometry, and the warping of the lower layers made further analyses of the
surface roughness difficult, so it should be further studied when producing larger samples.

Figure 4a,b further show how the contamination was distributed throughout the lower
part of the samples built on top of a build platform. As can be seen from the EDX map
in Figure 4b, the contamination was quite evenly distributed in the lower region of the
sample and gradiently decreased as the build progressed, where some islands of cleaner
Ti-6Al-4V appeared before moving into “uncontaminated” material. Cracks were observed
in the contaminated areas, one example of which is shown in Figure 4a. Nanoindentation
(Figure 4c,d) confirmed that the mechanical properties were skewed close to the build
platform and would decrease the performance of any part manufactured in this region.
The low parts of Figure 4c,d show significantly harder and stiffer material where the
contamination is present. It is likely that this increase in hardness in combination with
defects between Ti-6Al-4V and the 304 stainless steel resulted in the cracks originating in
the interface at the build plate. An interesting note is that no cracks could be observed
in the quasi-platform case, even though there were plenty of possible initiation sites, as
shown in Figure 3f. A less likely contribution to the cracks may be made by oxygen pickup
close to the build plate [52].
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Figure 4. Cross section of the contamination in the samples built on a build platform (a) overlaid by
EDX mapping (b). (c,d) Results from 200 × 200 nanoindentations in a similar region.

A smoother surface could also be noted on the overhanging surfaces of the TPMS
lattices when comparing the samples manufactured on a quasi-platform (Figure 5a) to the
ones manufactured on a stainless-steel build platform (Figure 5b). The close-up images
in Figure 5c,d indicate that this difference seems to be mainly due to a smaller amount
of powder particles add-sintered to the surfaces of the samples produced without build
platforms. This is believed to be due to the more focused and short application of the EB in
each point, resulting in large local thermal peaks (as opposed to the NIR heating, which
is more evenly applied over the whole area). It can also be speculated that more heat is
retained in the build volume when a build platform is not present.

Hardness measurements and further microscopical studies in Figure 6 show that the
microstructural evolution throughout the builds is different. The hardness close to the build
platform is significantly higher coupled to the heterogeneous microstructure (as shown earlier
in Figure 4c). The hardness close to the quasi-platform is instead lower, and the typical
PBF-EB [52,59] acicular α laths with β phase along the borders are already present. Higher
up in the builds, the main difference between the samples manufactured with or without
a build platform is the β-phase grain size and the α-lath size. It can be speculated that the
presence of a build platform allows quicker heat transfer and thereby a smaller grain size, as
the solidification time of each layer is faster. This directly indicates that the heat retention is
better in the quasi-platform case, which correlates well with the differences in surface finish
observed earlier. The resulting microstructure towards the top in Figure 6c,f is likely due to
the difference in annealing time leading to fewer transformations and potentially the retention
of some α’ phase, as explained by Davids et al. [53].
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Figure 6. Vickers HV01 hardness plots of samples built on a build platform and on a quasi-platform
overlaid by microstructural images of each sample at various heights (a,b,c and d,e,f respectively).
The horizontal lines spanning the plot correspond to the average bulk hardness of the sample built
on top of a build platform, 403 HV01 (standard deviation: 20), and the sample built without a build
platform, 383 HV01 (standard deviation: 29). The bulk hardness was calculated from the average
between 2000 and 6000 µm from the build platform.
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3.2. Repairing by NIR-Assisted PBF-EB

The brief sintering of the loose powder bed (4 min) allowed a powder cake to form,
as shown in Figure 7a. However, as shown by the emittance in Figure 7b, the main heat
was confined to the spoon and melt area, which seemed to absorb more of the NIR energy.
Figure 7c shows the teaspoon with the logo built on top, as it was removed from the
build chamber. As can be seen in Figure 7d, the “repair” was successful in fusing the two
materials on a microstructural level. The fine, equiaxed microstructure of the teaspoon
was mostly preserved up to about ~100 µm from the interface, where columnar grains
formed towards the 316L material. These columnar grains were likely the result of a slight
remelting of the spoon surface and later annealing with a directional heat flow away from
the heated area (top). The preservation of the original microstructure in the lower section
indicates that an optimized process could be tuned to unite the two material structures,
as PBF-EB is known for good microstructural control [43,60–62]. The EDX analysis of the
transition in Figure 7e utilized the fact that 316L has a higher Ni content than 304 stainless
steel. By overlaying the Fe signal with the Ni signal, the mixing of compositions throughout
the transition can be estimated. This indicates that in some areas the transition was direct,
and in some areas the two alloys were mixed together and created a gradient transition, as
shown in Figure 7e.
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Figure 7. Spoon placed in powder bed after initial NIR heating (a). Logo melted on top of spoon,
showing that only the spoon and melted parts were hot (b). Spoon with logo built on top after the
process (c) and a cross section of the transition (d) as well as an energy-dispersive X-ray analysis of
the transition (e).

4. Conclusions

The aim of this work was to investigate some of the benefits of using NIR in the PBF-EB
process. This work shows that heating by NIR enables elimination of the build platform
as well as repairs of parts placed in a loose powder bed in PBF-EB. The elimination of the
build platform lowers the preparation time, waste and cost for one build, which represents
a competitive enhancement. Removing the build platform was also shown to lower the risk
of component or powder contamination, yielding an even cleaner process. The samples
manufactured without a build platform showed similar hardness properties to standard
PBF-EB samples. However, the surface was noted to be smoother and the microstructure
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coarser and less heterogeneous in the initial millimeters, which could prove beneficial for
components close to the bottom of a build. The improvement in surface finish is likely
the effect of having a homogeneous constant heating input compared to the fast sweeping
of the electron beam. The main drawback is the slight warpage of the lower layers; it is
suggested that further developments of the NIR-sintered quasi-platform could solve this by
integrating several heating steps in combination with EB support. It was also shown that
NIR heating allows builds on top of parts placed in the loose powder bed. This simplifies
repairing by PBF-EB as compared to the previous method of machining a build platform to
fit the part in need of repairing. In the presented case, the build file was aligned simply by
centering the beam in a predefined location. For complex repairs, more points of reference
could be needed.

There are further optimizations still needed, such as adjusting the process themes,
which in this case resulted in swelling due to excessive heat input. Furthermore, the heat
model is not valid without the build platform, so adjustments in the control system, as well
as additional temperature sensors, are needed before full automatization of the process.
However, the presented results prove the feasibility of the suggested processes.
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