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Abstract: Thermal simulation is essential in wire-arc-directed energy deposition (W-DED) to accu-
rately estimate temperature distributions, impacting residual stress and distortion in components.
Proper calibration of simulation models minimizes inaccuracies caused by varying material proper-
ties, machine settings, and environmental conditions. The lack of standardized calibration methods
further complicates thermal predictions. This paper introduces a novel calibration method integrat-
ing both machine learning, as the high-fidelity (HF) model, and response surface modeling, as the
low-fidelity (LF) model, within a multi-fidelity (MF) framework. The approach utilizes Bayesian opti-
mization to effectively explore the search space for optimal solutions. A two-tiered model employs
the LF model to identify feasible regions, followed by the HF model to refine calibration parame-
ters, such as thermal efficiency (η), convection coefficient (h), and emissivity (ε), which are difficult
to determine experimentally. A three-factor Box–Behnken design (BBD) is applied to explore the
design space, requiring only thirteen parameter configurations, conserving resources and enabling
robust model training. The efficacy of this MF model is demonstrated in multi-layer W-DED cali-
bration, showing strong alignment between experimental and simulated temperatures, with a mean
absolute error (MAE) of 7.47 ◦C. This method offers a replicable framework for broader additive
manufacturing processes.

Keywords: additive manufacturing; wire-arc-directed energy deposition (W-DED); thermal simulation;
calibration methods; machine learning; multi-fidelity modeling

1. Introduction

Additive manufacturing (AM) has revolutionized the manufacturing landscape by
offering unparalleled flexibility in producing complex geometries with a wide range of ma-
terials. Among the various AM techniques, wire-arc-directed energy deposition (W-DED),
also known as wire-arc additive manufacturing (WAAM), has emerged as a promising
method for producing large metal components due to its fast deposition rate, particularly
benefiting the aerospace, automotive, and marine industries [1,2]. W-DED employs an
electric arc as the heat source to melt metal wire, which is deposited layer-by-layer to build
a part. This process is cost-effective for large-scale fabrications and is also well-suited
for repair and remanufacturing applications [3]. Despite its significant advantages, chal-
lenges are faced in the W-DED process, particularly in controlling thermal processes that
significantly impact the microstructure, mechanical properties, and dimensional accuracy
of the manufactured parts. The inherent complexity of thermal management in W-DED
arises from the need to balance heat input to ensure good adhesion between layers while
minimizing distortions and residual stresses [4,5].
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Thermal analysis using finite element modeling (FEM) has been extensively applied
to understand and optimize the W-DED process across various critical areas of application.
For instance, process parameters, such as heat input, travel speed, and material feed rate,
could be fine-tuned using FEM thermal analysis, which is crucial for ensuring the structural
integrity and mechanical properties of fabricated parts [6,7]. Additionally, FEM can be
used to predict and mitigate residual stresses and distortions caused by differential cooling
rates across deposited layers [8,9]. Moreover, thermal simulations play a crucial role in the
development of effective deposition strategies. Optimal tool paths that minimize thermal
gradients and ensure uniform layer deposition are determined, which is particularly critical
when dealing with complex geometries and overhanging structures [10,11].

However, the effectiveness of these simulations critically depends on the accurate
calibration of the model. Accurate calibration of simulations involves replicating the ex-
perimental setup and estimating heat source parameters, including the effective power
used in welding. While physical entities, such as geometry size, bead geometry, layer
count, bead height and width, and temperature measurement locations, can be directly
measured or estimated, obtaining parameters such as the thermal efficiency factor (η),
convection film coefficient (h), and emissivity (ε) presents significant challenges. These
parameters are difficult to measure accurately and are subject to variability due to changes
in materials, machine settings, and environmental conditions [12–15]. Traditionally, these
critical parameters are manually adjusted through an iterative trial-and-error process based
on empirical estimates. For instance, Zhao et al. and Yang et al. have both demonstrated
iterative calibration of η, h, and ε, adjusting these parameters through trial-and-error until
their simulation models aligned with experimental outcomes [16,17]. This traditional ap-
proach, foundational yet inflexible, demands extensive recalibrations when experimental
conditions vary, consuming considerable time and computational resources [18–20]. Such
challenges highlight the need for more efficient and systematic calibration techniques. To
address these challenges, the application of advanced modeling techniques can signifi-
cantly streamline the calibration process. These techniques have already shown promise in
various areas, such as process modeling, optimization, and process monitoring, particularly
within W-DED [21–25]. However, efforts to standardize the calibration of thermal analysis
in W-DED are still lacking. Recent work by Strobl. et al., employing a proper generalized
decomposition (PGD) model for estimating parameters in WAAM simulations, represents
a promising starting point [26]. While this approach helps to bypass some of the computa-
tional burdens typical of FEM in the initial phase, it also introduces its own computational
complexities early in the process. Additionally, the calibration is primarily validated for
single-layer applications, which may limit its utility for multi-layer depositions without
further adjustments. In the broader field of AM, initiatives to calibrate uncertain param-
eters in the melt pool, address deformations caused by residual stresses, and to develop
meta-models for predicting melt pool dimensions under specific configurations have been
undertaken [27–30]. Yet, there remains a notable gap in directly validating simulation
models against experimental temperature distributions.

To bridge the gap between simulation and actual process outcomes in W-DED, this
study aims to develop and validate a novel calibration method that incorporates a machine-
learning-based multi-fidelity (MF) model. Recognizing the inherent limitations of current
calibration practices, marked by computationally intensive procedures and high suscepti-
bility to errors, our study focuses on integrating advanced computational tools to enhance
the simulation accuracy and reduce resource consumption. The objective is to design a
dynamic calibration framework that can adapt to varying operational conditions and mate-
rial properties, thus providing a reliable basis for predicting thermal behavior in W-DED
processes. By leveraging a combination of low- and high-fidelity models within a Bayesian
optimization framework, we aim to establish a robust calibration protocol that improves
the predictive capabilities of thermal simulations, as well as substantiate its effectiveness
through comprehensive experimental validation.
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The study is structured to systematically outline the developed methodology, starting
with a discussion on FEM to establish the foundational understanding of thermal phe-
nomena in W-DED processes in Section 2. This section also introduces the calibration
approach, detailing critical parameter selection and a design of experiments (DOE) ap-
proach. It further explores the integration of low-fidelity (LF) and high-fidelity (HF) models,
culminating in a calibration model using Bayesian optimization. Section 3 presents the
results and discussions through a comprehensive case study, beginning with a detailed
account of how experimental data were acquired to calibrate the simulation model. Details
of the simulation model and parameters are included, and the details of the DOE and
MF surrogate model are discussed, along with the calibration results. Finally, Section 4
discusses the conclusion and future work, providing insights into the implications of the
findings and outlining potential avenues for further research.

2. Methodology

In this section, we outline the procedural framework and computational techniques
utilized to simulate the thermal dynamics of W-DED processes through FEM. A detailed
exposition of the model setup, incorporating a description of the geometric and material
properties essential for the simulation, is provided. The implementation of the heat transfer
equations and the specifics of heat source modeling, which were pivotal for understanding
the temperature distribution within the material, is explored. Additionally, the boundary
conditions set for the simulations and the use of the element birth and death technique
to model material deposition are outlined. Furthermore, the MF modeling approach is
introduced, integrating both low-fidelity and high-fidelity models to enhance the calibration
and accuracy of our simulations.

2.1. Finite Element Modeling for W-DED Thermal Analysis

A systematic workflow of the simulation process for W-DED thermal analysis is
illustrated in Figure 1.

To begin the FEM simulation, a 3D CAD model was needed that encompasses both
the substrate and the deposited geometry. The model accounts for the material properties,
which vary with temperature, such as density, thermal conductivity, and specific heat
capacity. The next step involved discretizing the spatial domain into small elements,
modeling the heat source, and applying proper initial and boundary conditions. Finally, the
deposition strategy was planned, specifying path planning, layer thickness, width, number
of layers, and dwell time.

These components were integrated within a FEM software environment (Ansys R2
(22.2)), executing a numerical simulation that yielded the temperature field, T. The field
varied with time, t, and spatial coordinates (x, y, z) and was governed by the 3D nonlinear
heat transfer equation, expressed as follows [31]:
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where, k is the conductivity, Cp is the specific heat, ρ is the material density, and q is the
volumetric heat source.
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Figure 1. Schematic of the FEM process for W-DED thermal analysis. 

Figure 1. Schematic of the FEM process for W-DED thermal analysis.
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2.1.1. Heat Source Modeling

Heat source modeling was utilized in the simulation of W-DED to precisely simulate
the complex thermal interactions inherent in the material deposition process. This aspect of
modeling was crucial, as it facilitates an accurate depiction of the heat’s impact on both the
substrate and the deposited material.

Through the integration of heat source models, such as the Goldak double-ellipsoidal
model (Figure 2) [32], simulations were enabled to predict temperature gradients and stress
distributions more effectively. In this study, the Goldak double-ellipsoidal heat source was
utilized, represented by the following equations:

q f (x, y, z) =
6
√

3q f f

a f bcπ
√

π
e
(− 3x2

a2
f
− 3y2

b2 − 3z2

c2 )

, for x ≥ 0 (2)
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6
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arbcπ

√
π

e
(− 3x2

a2
r
− 3y2

b2 − 3z2

c2 )
, for x < 0 (3)

where, q f and qr are the heat flux on the front and rear semi-ellipsoids, respectively, a f is
the length of the front ellipsoidal semi-axes, and ar is the length of the rear ellipsoidal semi-
axes. The parameter b represents the width of the heat source, while c indicates its depth.
The factors f f and fr are responsible for determining the heat distribution in the front and
rear halves of the heat source, respectively, and f f + fr = 2. In this context, the variable q
represents the energy input while considering η, calculated as per the equation provided:

Q = η × q, (4)

where, η is the thermal efficiency factor, which ranges from 0 to 1.
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2.1.2. Boundary Conditions

To accurately simulate the thermal environment of the W-DED process, specific bound-
ary conditions were defined. The initial temperatures of the materials were established at
ambient levels. Throughout the thermal analysis, the effects of convection and radiation
between the surface and the surrounding environment were considered and modeled using
the following equations:

qconv = h∞ (T∞ − T), and qrad = ε σ (T∞
4 − T4), (5)

where, h∞ is the convection coefficient, T∞ is the ambient temperature, ε is the emissivity,
and σ is the Stefan–Boltzmann constant, given as 5.67 × 10–8 Wm−2 K−4 [34].
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2.1.3. Material Deposition

To simulate the sequential addition of material in the W-DED process, the element
birth and death technique was employed [35]. This technique allowed for the activation
(birth) and deactivation (death) of elements to replicate the physical process of material
deposition and the corresponding thermal history (Figure 3).
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This mirrored the physical addition of material and the corresponding thermal effects
in W-DED, ensuring that only the elements representing currently deposited layers con-
tributed to the thermal calculations. Also, this study emphasized temperature distribution
during the deposition and, as such, the shape and size of the deposition geometry, illus-
trated as a cuboid, were designed to suffice for thermal analysis and did not impact the
focal thermal behavior evaluations.

The accuracy of FEM simulations relied heavily on precise input parameters, mainly
derived from experiments. However, measuring certain parameters, such as η, h, and ε,
was challenging due to their complex nature. These parameters were vital for simulations
to accurately mirror reality, yet direct measurement was often difficult. Consequently, a
robust calibration procedure became essential to iteratively adjust these parameters within
the simulation framework, ensuring the modeled outcomes were reflective of the physical
reality of the W-DED process.

2.2. Calibration Process

Achieving high-fidelity prediction of temperature distribution in W-DED simulations
was inherently challenging due to the assumptions required during model development.
This complexity was further amplified by the difficulty of directly measuring certain critical
parameters that significantly influence thermal predictions. Among these, the thermal effi-
ciency, convection film coefficient, and emissivity were crucial for the accuracy of W-DED
processes. These parameters were selected due to their direct impact on the heat transfer
dynamics within the material and because of the complexity of measuring them in the
experimental phase: thermal efficiency determined the amount of input power converted
to heat, the convection film coefficient affected heat dissipation to the environment, and
emissivity influenced radiative heat loss. Notably, they cannot be adjusted through other
direct or indirect factors that are easily measurable. However, other parameters could also
play significant roles, such as thermal conductivity (k; affected how quickly heat spread
through the material), specific heat capacity (c; influenced the material’s ability to store
heat), and density (ρ; affected the material’s thermal inertia and how it responded to heat-
ing). These parameters (i.e., k, c, and ρ) were not selected for the initial focus due to the
relative ease of obtaining their values from existing material property databases and their
comparatively less variable nature under typical process conditions. The calibration process
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was characterized by a multi-step methodology that began with the creation of a plan using
the DOE technique for executing numerous simulation models under varying settings.

This initial phase was crucial for establishing the foundation for further modeling
efforts. Subsequently, a response surface model (RSM), the low-fidelity model, was con-
structed based on the data derived from the DOE. The LF collaborated with a machine
learning (ML) model, the high-fidelity model, to predict the target values and ascertain
the most effective settings. The primary objective was to align the simulation results with
actual experimental data and to identify the optimal settings. These parameters were then
employed in the simulation model to derive the temperature distribution generated by
the simulation, which served for the validation of the model to confirm its accuracy and
reliability in determining the optimal parameters. An illustration of the MF calibration
process of the W-DED simulations is presented in Figure 4.
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2.2.1. Design of Experiments Strategy

To systematically explore the parameter space, a DOE approach was implemented in
our study. Among the various DOE methodologies available, the three-factor Box–Behnken
design (BBD) [36] was selected for its notable efficiency in navigating experimental space
with a reduced number of simulations (Figure 5). This choice was driven by the need
to balance the depth of the parameter exploration with practical considerations, such as
resource limitations and time constraints. The BBD was particularly advantageous for this
study due to its ability to provide sufficient data for the development of a robust model
without the extensive number of runs compared to a full factorial design (FFD) or the
potential edge-of-range issues associated with the central composite design (CCD).
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2.2.2. Multi-Fidelity Approach

The calibration of our simulation model of the W-DED process employed a MF strat-
egy, integrating both LF and HF models to refine parameters and enhance the accuracy
of simulations. Initially, the LF model, which demanded less computational effort, was
deployed to broadly assess the impact of various settings, effectively narrowing the scope
for parameter exploration. Following this, the HF model, which was more computationally
intensive, was utilized to provide an accurate representation of the simulation dynamics.
Insights derived from the LF model guided the focused application of the HF model, en-
suring efficient parameter optimization. Furthermore, the MF model acted as a surrogate
to the more computationally demanding FEM, striking a balance between computational
efficiency and accuracy. This approach was particularly advantageous for performing in-
verse analysis, which involved extracting realistic simulation parameters from the observed
data. By combining the MF model with an optimization technique, the calibration process
was significantly improved. This combination allowed for the systematic adjustment of
simulation parameters based on performance metrics, thereby improving the simulation’s
ability to replicate actual physical phenomena accurately. Moreover, this methodology
reduced the computational load and accelerated the identification of optimal parameters.

Low-Fidelity Model

In the early phase of calibrating the W-DED simulation, a RSM was used based on
the radial basis function (RBF) interpolator with a thin-plate spline kernel as the LF model.
This kernel was particularly suited for our purposes, as it provided a balance between
flexibility and smoothness in interpolation. RBF was perfect for the initial stages because it
could rapidly evaluate the simulation parameters while using minimal computing power.
The LF model was trained using data from the set of simulations prescribed by the DOE
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strategy that explored different combinations of key parameters, including η, h, and ε. This
dataset (DLFM) captured the maximum temperature (Tmax) and the temperature at the end
of the dwell time (Tend) for each deposited layer and will be available in the Supplementary
Data (Figure 6).
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By focusing on these critical temperature points, the thermal characteristics of the
deposition process could be effectively assessed without becoming overwhelmed by ex-
cessive detail. The first step in the calibration process was to gather and organize the
data for each deposited layer. The data were represented as a set of parameters and their
corresponding temperatures, as follows: {(ηi, hi, εi), Ti} for i = 1, 2, . . ., n. In this notation,
(ηi, hi, εi) stands for the ith combination of η, h, and ε, and Ti is the temperature associated
with that specific parameter combination. The variable n represents the total number of
parameter combinations being tested, which was determined by our DOE strategy.

The value of this radial function in the RBF model was determined by the distance
from a central point within the parameter space, enabling spatially aware interpolation.

For coefficient calculation, the weights, λi, were calculated by the model such that the
interpolator, s(x), at an input point, x = (η, h, ε), is given by [37]:

s(x) = ∑n
i=1 λiϕ(∥ x − xi ∥) + p(x), (6)

where, xi = (ηi, hi, εi) are the known parameter points from the dataset, ϕ is the RBF
corresponding to the thin-plate spline kernel, p(x) is an additional polynomial term incor-
porated to achieve uniqueness and control extrapolation behavior, and ∥x−xi∥ denotes the
Euclidean distance. Optimization was key for the λi coefficients, ensuring that the RBF
interpolator closely fit the data points. This typically involved resolving a linear system
formulated from the parameter space distances [38,39]. Once the λi coefficients were opti-
mized, the RBF model was prepared to forecast temperatures for parameter sets that had
not yet been explored. The model, utilizing RBFs centered on the known points, xi, and the
derived weights, λi, interpolated the temperature for any new input, x. The RBF model
benefited from radial symmetry, enabling a smooth transition of the temperature response
across the parameter space, effectively mimicking the thermal dynamics of the W-DED
process. This interpolation process was inherently efficient and served as an essential step
to refine the parameter space in the calibration procedure.
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High-Fidelity Model

The HF model in our calibration process leveraged ML to predict the temperature
profiles at each data point with precision. This model utilized a DOE simulation-based
dataset (DHFM) that included key variables, i.e., η, h, and ε, as well as the time (t), and
this dataset will be available in the Supplementary Data. Unlike the LF model, which
takes in specific data points (Tmax and Tend) for each layer, the HF model processes a
continuous stream of temperature data at every timestep throughout the deposition process.
The extensive temporal data (t) allow the HF model to utilize the complete temperature
distribution for different simulation runs, capturing the complete heating and cooling
behavior in the W-DED process.

The regression task in ML was formulated typically, as follows: Given a set of input
features, X (i.e., W-DED simulation parameters: η, h, ε, and t), the goal was to predict a
continuous output, y, which in our case was the temperature (T). The model learned a
function, f (X), during the training phase, which was then used to make predictions on new,
unseen data. The regression model was represented by the equation:

y = f (X) + ξ, (7)

where, f (X) is the function learned from the data during the training phase, and ξ is the
error term representing the noise in the data.

An extensive analysis was conducted on a range of ten ML regression models to
determine the most effective one for predicting temperature. Among the various models
evaluated, one model was selected as superior, excelling in predictive accuracy, com-
putational efficiency, and its ability to generalize across different datasets. A detailed
discussion on the selected model and its comparative analysis against others is provided in
the Results Section.

2.2.3. Optimization

The optimization stage within our calibration framework employed the Gaussian
process (GP)-based Bayesian optimization to efficiently and effectively determine the
optimal parameters for W-DED process simulation. The core of the optimization was
represented by the objective function, g(x), where x = (η, h, ε) symbolizes the vector of
design parameters adopted for the calibration. The objective was to minimize the mean
absolute error (MAE) between the predictions from the MF surrogate model and the
experimental temperature values across different layers, expressed as:

Minimize MAE =
1
n∑n

i=1

∣∣Texp,i − g(xi; η, h, ε)
∣∣, (8)

where, Texp,i is the experimental temperature at the ith data point, g (xi; η, h, ε) is the tem-
perature prediction from the GP model based on the design parameters, and xi represents
the set of parameters at the ith evaluation.

The GP served as a probabilistic surrogate to approximate the function g(x), employing
the Matérn covariance function to ensure smooth variations in MAE in response to minor
changes in the parameters (η,
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, and ε) [40,41]. The optimization process was guided by
the expected improvement (EI) acquisition function, which aims to maximize the expected
reduction in MAE [42]. This function was crucial for identifying potential improvements
through adjustments in η,
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, and ε based on the observed temperatures. After each func-
tion evaluation, Bayesian inference was used to update the GP model, integrating new
data to refine MAE predictions. This update highlighted the impact of each parameter
on the observed temperatures. After each evaluation of the objective function, the GP
model was updated using Bayesian inference, integrating new data to refine the MAE
predictions. This update accounted for the impact of each parameter, i.e., η,

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 11 of 30 
 

 

the derived weights, λi, interpolated the temperature for any new input, 𝑥. The RBF model 

benefited from radial symmetry, enabling a smooth transition of the temperature response 

across the parameter space, effectively mimicking the thermal dynamics of the W-DED 

process. This interpolation process was inherently efficient and served as an essential step 

to refine the parameter space in the calibration procedure. 

High-Fidelity Model 

The HF model in our calibration process leveraged ML to predict the temperature 

profiles at each data point with precision. This model utilized a DOE simulation-based 

dataset (𝐷𝐻𝐹𝑀) that included key variables, i.e., η, h, and ε, as well as the time (t), and this 

dataset will be available in the Supplementary Data. Unlike the LF model, which takes in 

specific data points (Tmax and Tend) for each layer, the HF model processes a continuous 

stream of temperature data at every timestep throughout the deposition process. The ex-

tensive temporal data (t) allow the HF model to utilize the complete temperature distri-

bution for different simulation runs, capturing the complete heating and cooling behavior 

in the W-DED process. 

The regression task in ML was formulated typically, as follows: Given a set of input 

features, 𝑋 (i.e., W-DED simulation parameters: η, h, ε, and t), the goal was to predict a 

continuous output, 𝑦, which in our case was the temperature (T). The model learned a 

function, 𝑓(X), during the training phase, which was then used to make predictions on 

new, unseen data. The regression model was represented by the equation: 

𝑦 = 𝑓(𝑋) + ξ, (7) 

where, 𝑓(X) is the function learned from the data during the training phase, and ξ is the 

error term representing the noise in the data. 

An extensive analysis was conducted on a range of ten ML regression models to de-

termine the most effective one for predicting temperature. Among the various models 

evaluated, one model was selected as superior, excelling in predictive accuracy, compu-

tational efficiency, and its ability to generalize across different datasets. A detailed discus-

sion on the selected model and its comparative analysis against others is provided in the 

Results Section. 

2.2.3. Optimization 

The optimization stage within our calibration framework employed the Gaussian 

process (GP)-based Bayesian optimization to efficiently and effectively determine the op-

timal parameters for W-DED process simulation. The core of the optimization was repre-

sented by the objective function, g(x), where x = (η, h, ε) symbolizes the vector of design 

parameters adopted for the calibration. The objective was to minimize the mean absolute 

error (MAE) between the predictions from the MF surrogate model and the experimental 

temperature values across different layers, expressed as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑇𝑒𝑥𝑝,𝑖 − 𝑔(𝑥𝑖;

𝑛
𝑖=1 𝜂, ℎ, 𝜀)|,  (8) 

where, Texp,i is the experimental temperature at the ith data point, g (xi; η, h, ε) is the tem-

perature prediction from the GP model based on the design parameters, and xi represents 

the set of parameters at the ith evaluation. 

The GP served as a probabilistic surrogate to approximate the function g(x), employ-

ing the Matérn covariance function to ensure smooth variations in MAE in response to 

minor changes in the parameters (η, ℎ, and ε) [40,41]. The optimization process was guided 

by the expected improvement (EI) acquisition function, which aims to maximize the ex-

pected reduction in MAE [42]. This function was crucial for identifying potential improve-

ments through adjustments in η, ℎ, and ε based on the observed temperatures. After each 

function evaluation, Bayesian inference was used to update the GP model, integrating 

new data to refine MAE predictions. This update highlighted the impact of each 

, and ε, on the
observed temperatures.



J. Manuf. Mater. Process. 2024, 8, 222 11 of 27

In summary, each cycle of the optimization process iteratively defined the parameter
space, assessed the initial viability with the LF model, refined choices with the HF model,
and employed Bayesian optimization to converge on optimal parameters, minimizing
MAE until no significant gains were observed. To provide a clear and structured overview
of the complex interactions and decision points within our optimization framework, the
steps were compiled into a pseudo-algorithm. This algorithm illustrated the systematic
actions taken to achieve effective calibration of our simulation model. Algorithm 1 presents
the sequential steps, detailing each phase from initialization through to the final opti-
mization, encapsulating our methodical approach to enhancing simulation accuracy for
W-DED processes.

Algorithm 1: MF Calibration Approach of W-DED Thermal Analysis

1:
Input: Low-fidelity model dataset, DLFM, HF model dataset, DHFM, experimental dataset,
Dexp

2: Output: Optimized parameter set Θ∗ (η, h, ε)

3:
Initialize LF model MLFM using DLFM with inputs η, h, and ε and outputs Tmax and Tend for
each layer

4: Initialize HF model MHFM using DHFM with inputs η, h, ε, and t and output T at time t
5: Define design space X ⊆ Rn for parameters: η, h, and ε

6: LF Model Optimization:
7: for each layer in Dexp do
8: Extract layer-specific experimental data for comparison
9: Calculate predictions for Tmax and Tend using MLFM(θ)
10: Compare predictions with experimental data from Dexp
11: Calculate MAE for each layer
12: end for
13: Calculate unified MAE across all layers
14: Return optimized parameters from low-fidelity model ΘLFM (η, h, ε)
15: Update design space based on ΘLFM
16: HF Model Optimization:
17: for each layer in Dexp do
18: Extract layer-specific experimental data for detailed comparison
19: Calculate predictions for temperature profile T using MHFM (θ) with updated X
20: Calculate MAE for all temperature points per layer
21: end for
22: Calculate unified layer MAE across all layers
23: if reduction in MAE < threshold then
24: Stop optimization and retrieve best parameters Θ∗ (η, h, ε)
25: end if
26: return optimized parameters Θ∗

3. Results and Discussions

The outcomes and details of the experimental setup, which was designed to ensure
the reliability and consistency of the data obtained, are first presented in this section. The
specifics of the simulation models are covered, including heat source parameters, meshing
techniques, material properties, and a parameter sensitivity analysis. The discussion
continues with the presentation of DOE details and results from both the LF and HF
models. The section concludes with a discussion on the calibration results, emphasizing
the challenges addressed and successes achieved in the calibration of the simulation model
using the MF calibration approach.

3.1. Experimental Setup

The experimental setup, the methodology employed for data collection, and the subse-
quent analysis are detailed in this section, providing a clear linkage between experimental
observations and simulation adjustments. To acquire temperature data for the calibration
process, a reliable baseline of experimental data was required against which to calibrate our
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simulation model. Thin-wall deposition was chosen for its geometric simplicity. Accord-
ingly, a six-layer thin wall was constructed, each layer measuring 64 mm in length, with a
122 s dwell time between layers. This longer dwell time allowed for the comparison across
more data points during the cooling period, since the heating or deposition period was
relatively short. The W-DED system comprised a Fronius CMT 400i power source coupled
with an ABB IRB 2600 robot. For the deposition, φ 1.2 mm copper-coated AWS ER70S-6
wire was used. This wire’s composition includes carbon (C) 0.06–0.15%, manganese (Mn)
1.40–1.85%, silicon (Si) 0.80–1.15%, phosphorus (P) 0.025%, sulfur (S) 0.035%, nickel (Ni)
0.15%, chromium (Cr) 0.15%, molybdenum (Mo) 0.15%, and vanadium (V) 0.03%. The wire
was deposited onto a substrate (101.6 mm × 101.6 mm × 9.53 mm) of ASTM A36 mild steel
material. The process involved a shielding gas mix of 90% Ar and 10% CO2 at 18 L/min. A
visual guide to the setup and a CAD representation of the wall after deposition and the
path of the torch are provided in Figure 7.
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Four K-type thermocouples were used with a MAX6675 Module to obtain temperature
readings at T1, T2, T3, and T4 locations. T1, T3, and T4 were positioned on the back side of
the substrate, while T2 was located on the welding side. All thermocouples were set at a
safe distance of at least 10 mm from the center line of the deposition. This arrangement was
chosen to protect the thermocouples from heat damage and interference from the deposited
material. An Arduino microcontroller was utilized to interface with the thermocouples
and acquire temperature data, while temperature logging was performed using a Python
script. The thermocouples had a temperature range spanning from 0 to 1024 ◦C. Direct
contact between the thermocouples and the substrate was ensured to maintain accuracy in
temperature measurements. Deposition parameters are detailed in Table 1.

Table 1. Deposition parameters during the experiment.

Parameter Value Unit

Torch velocity 12.7 mm/s

Wire feed speed 5 m/min

Contact-to-work distance 15 mm

To demonstrate the reliability of our experimental data, the experiment was repeated
multiple times. Figure 8 presents a comparative analysis of the temperature-over-time plots
at the T4 location across three trials, all of which show strong consistency. In this study, the
temperature readings from the T1 and T4 thermocouples were used because these locations
were closest to the welding line.
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3.2. Simulation Setup
3.2.1. Simulation Parameters and Heat Source Configuration

The subsequent phase involved transferring the experimental data into our simulation
framework to ensure accurate model inputs. In Table 2, the parameters are categorized as
directly available from the experimental setup or as variables that needed to be estimated
or derived for simulation purposes. The Ansys APDL script was utilized to input these
parameters, which included defining the substrate and deposit dimensions, material in-
formation, and process parameters, such as torch velocity, layer thickness, and dwell time.
Additionally, the script was configured to incorporate the Goldak heat source parameters
and account for cooling times between each layer.

Table 2. Parameters used to model the wire DED process simulation.

Parameters Experimental Value Simulation Value

Substrate 101.6 mm × 101.6 mm × 9.53 mm Same as experimental

Deposit 64 mm × 6 mm × 8.4 mm
(average) Same as experimental

Substrate material ASTM A36 Same as experimental

Deposited material ER 70S-6 Same as experimental

Torch velocity 12.7 mm/s Same as experimental

Layer thickness 6 mm Same as experimental

No. of layers 6 Same as experimental

Dwell time between layers 122 s Same as experimental

Mean power 3.32 KW Same as experimental

η Not available from experiment Not available (estimated
for simulation)

Effective power (Q = mean
power × η) η × 3.32 KW Same as experimental

Ambient temperature 21 ◦C Same as experimental

Thermocouple location As specified in Figure 7 Same as experimental

h Not available from experiment Not available (estimated
for simulation)

ε Not available from experiment Not available (estimated
for simulation)

Goldak heat source
parameter(af, ar, ff, fr, b, c) Listed in Table 3 Same as experimental

Table 3. Heat source parameters adopted in this study.

af (mm) ar (mm) ff fr b (mm) c (mm) Q (W)

6 12 0.6 1.4 3.8 1.2 3320

As highlighted in the methodology, factors such as η, h, and ε were not directly
measurable. The machine’s nominal input power was set at 3.32 kW, which served as
a baseline. However, the actual power absorbed can fluctuate due to variables, such as
wire feed speed and arc stability. To manage this, we introduced η (thermal efficiency)
as an input parameter in our simulation to model the real power conversion efficiency,
acknowledging the variability in power absorption. A value of 1 indicates perfect efficiency
(i.e., all the power was absorbed), while lower values represent increasing levels of power
loss. In the simulation, heat losses due to convection and radiation can be modeled if h
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and ε are available. Typically, these parameters are determined through trial-and-error in
conventional calibration approaches, which can be time-consuming and inefficient. In our
case, however, the calibration model was used to refine these parameters, enhancing the
accuracy and efficiency of our simulations.

To determine the shape parameters of the Goldak heat source (af, ar, ff, fr, b, and c), a
typical cross-sectional macrograph of the deposited material was analyzed, as shown in
Figure 9.
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These macrographs revealed the melt pool geometry, which is directly related to the
heat source distribution. By measuring the dimensions of the melt pool in the front, rear,
width, and depth directions, the corresponding Goldak parameters were estimated. The
values of ff and fr, where (ff + fr = 2), were assumed to be 0.6 and 1.4, respectively [43].
Table 3 provides the heat source parameters used in this study.

3.2.2. Mesh Model and Material Properties

The meshing of our simulation model was critical for achieving accurate results. As
shown in Figure 10, the model employed an 8-node solid element, termed “brick” in Ansys.
The mesh dimensions were set at 1.4 mm × 1.4 mm × 1.2 mm for the substrate, and
1.5 mm × 1.5 mm × 2 mm for the deposited geometry. Overall, the model comprised
30,540 nodes and 24,500 elements, providing a detailed representation to capture the
nuances of thermal behavior during the deposition process.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 17 of 30 
 

 

values of ff and fr, where (ff + fr = 2), were assumed to be 0.6 and 1.4, respectively [43]. Table 
3 provides the heat source parameters used in this study. 

3.2.2. Mesh Model and Material Properties 
The meshing of our simulation model was critical for achieving accurate results. As 

shown in Figure 10, the model employed an 8-node solid element, termed “brick” in An-
sys. The mesh dimensions were set at 1.4 mm × 1.4 mm × 1.2 mm for the substrate, and 1.5 
mm × 1.5 mm × 2 mm for the deposited geometry. Overall, the model comprised 30,540 
nodes and 24,500 elements, providing a detailed representation to capture the nuances of 
thermal behavior during the deposition process. 

 
Figure 10. (a) Mesh model and (b) boundary conditions used in the Ansys simulation. 

Regarding material specifics, ASTM A36 and ER70S-6 were used for the substrate 
and deposited geometry, respectively, mirroring the experimental setup. The properties 
of these materials were sourced from the literature [32,44]. 

3.3. Design of Experiment 
As outlined in our methodology, the subsequent step involved implementing a DOE 

to minimize the number of simulations required for effective calibration. To illustrate the 
number of simulations required by various DOE strategies, Table A1 provides a compar-
ison, highlighting that the BBD required the fewest simulations, making it the most effi-
cient choice for our needs. The design space selected for investigation through the DOE is 
presented in Table 4. The ranges for each parameter were carefully chosen based on an 
extensive review of relevant literature using different materials and machines used in W-
DED processes [32,45–55]. This ensured that the ranges were representative of realistic 
operational conditions for the W-DED process. 

Table 4. Ranges of simulation parameters derived from the literature. 

Parameters Minimum Value Maximum Value 
η 0.6 0.99 

h (W/mm2) 0.000005 0.00005 
ε 0.01 0.99 

The three-level configurations used in our BBD are detailed in Table A2. The BBD 
facilitated the exploration of the simulation parameter space without the need for an ex-
cessive number of simulations. In addition, a parameter sensitivity analysis was con-
ducted within this range of parameters to demonstrate how each parameter affected the 
temperature profile during the heating and cooling periods. Details of this analysis can be 
found in Figure A1 of Appendix A. 

3.4. Multi-Fidelity Surrogate Model 

Figure 10. (a) Mesh model and (b) boundary conditions used in the Ansys simulation.

Regarding material specifics, ASTM A36 and ER70S-6 were used for the substrate and
deposited geometry, respectively, mirroring the experimental setup. The properties of these
materials were sourced from the literature [32,44].

3.3. Design of Experiment

As outlined in our methodology, the subsequent step involved implementing a DOE
to minimize the number of simulations required for effective calibration. To illustrate the
number of simulations required by various DOE strategies, Table A1 provides a comparison,
highlighting that the BBD required the fewest simulations, making it the most efficient
choice for our needs. The design space selected for investigation through the DOE is
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presented in Table 4. The ranges for each parameter were carefully chosen based on an
extensive review of relevant literature using different materials and machines used in
W-DED processes [32,45–55]. This ensured that the ranges were representative of realistic
operational conditions for the W-DED process.

Table 4. Ranges of simulation parameters derived from the literature.

Parameters Minimum Value Maximum Value

η 0.6 0.99

h (W/mm2) 0.000005 0.00005

ε 0.01 0.99

The three-level configurations used in our BBD are detailed in Table A2. The BBD facil-
itated the exploration of the simulation parameter space without the need for an excessive
number of simulations. In addition, a parameter sensitivity analysis was conducted within
this range of parameters to demonstrate how each parameter affected the temperature
profile during the heating and cooling periods. Details of this analysis can be found in
Figure A1 of Appendix A.

3.4. Multi-Fidelity Surrogate Model
3.4.1. Low-Fidelity Model

For each layer of deposition, two distinct LF models were constructed: one for predict-
ing the Tmax during the deposition and another for estimating Tend. Various interpolation
models were compared to enhance the accuracy of these predictions (Table A3 in Ap-
pendix B). The comparison included linear, polynomial, RBF, and kriging models. Among
these, the RBF model consistently outperformed the others, achieving an R2 of 1 and an
MSE close to 0 for both Tmax and Tend. This superior performance highlights the effective-
ness of the RBF model in capturing the thermal dynamics during the material deposition
process. Graphical presentations of the RBF-LF model predictions for Tmax and Tend across
all layers are provided in Figures A2 and A3 of Appendix B. Also, a comparison of Tmax and
Tend between RBF prediction and experimental data at location T1 is shown in Figure 11.
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3.4.2. High-Fidelity Model

A comprehensive evaluation involved ten different ML models, with the aim to assess
their performance across several metrics, such as MAE, mean squared error (MSE), root
mean squared error (RMSE), R2, and time. The results are shown in Table A4 of Appendix C.
The models were trained on dataset DHFM, obtained from the DOE simulation runs, which
included parameters η, h, ε, and t, alongside temperature measurements to predict the
overall temperature profile with high accuracy. The Extra Trees Regressor emerged as
the preferred model, as the performance metrics were compelling, achieving an MSE
of 1.1552 and an R2 score of 0.99, demonstrating its superior predictive capabilities. To
further validate the robustness of the Extra Trees Regressor, a 5-fold cross-validation was
performed. The results are summarized in Table A5. The cross-validation results confirmed
the reliability and consistency of the Extra Trees Regressor, with an average MSE of 0.520037
and an average R2 score of 0.999715. The low variance in MSE across the folds indicates that
the model generalized well to unseen data. The high R2 scores across all folds underscored
the model’s capacity to explain nearly all the variance in the target variable. These findings
suggest that the Extra Trees Regressor not only provided accurate predictions but also
maintained stability and robustness across different subsets of the dataset. Thus, it was a
highly reliable model for the calibration of the simulation process in this study.

3.5. Calibration of the Simulation Model

The calibration approach began with refining the parameter space using the LF model
optimization. The best parameter set obtained from the LF model optimization was η = 0.64,
h = 0.0000249, and ε = 0.99. Using this parameter set, a simulation was run to determine the
temperature at the T1 location. For each layer, the maximum and end temperatures were
recorded and compared with the LF model’s predicted values. The observed error, shown
in Figure 12, was expected because the LF model was based on a small dataset containing
only the Tmax and Tend for each layer. To improve the calibration accuracy, the parameter
space surrounding the results predicted by the LF model optimization was explored
through HF model optimization. This exploration was guided by Bayesian optimization to
systematically identify the optimal parameter set. A graphical representation of how the
parameter space was explored during the calibration process is shown in Figure 12.

The HF model optimization provided the final calibration parameters: η = 0.689,
h = 0.0000186, and ε = 0.90. Further details of the Bayesian optimization can be found in
Table A6. Following this optimization, a simulation was performed to obtain temperature
data at the T1 location using these parameters. Figure 13 shows the comparison of experi-
mental data and the simulation temperature at the T1 location. The visual plot supports
the success of the calibration strategy, where the simulation model, after optimization,
mirrored the experimental temperature profiles with impressive accuracy.

Also, in the same plot, the absolute error between these two datasets is shown. The
MAE between experiment and simulation temperatures was 7.47 ◦C, indicating a strong
alignment between the simulation and the experimental data throughout most of the depo-
sition process. Notably, there were instances, particularly during the rapid temperature
changes associated with layer deposition and the onset of dwell times, where the error
spikes were observed. These occasional spikes, reaching up to 35 ◦C, may be attributed to
the relatively short heating period (approximately 4–5 s), which limits the temporal resolu-
tion available for capturing the rapid thermal dynamics during the deposition process.

Despite these peaks, the overall error profile was consistent with the anticipated vari-
ability in a complex thermal system, such as W-DED. Despite these intermittent variances,
the simulation showcased a high degree of precision. To extend the verification, tempera-
tures at the T4 location were also extracted from the simulation for comparative analysis
with the experimental data (Figure 14).
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eters) at the T4 location.

The MAE for the T4 location was 7.36 ◦C, which further supports the accuracy of the
simulation in reflecting the experimental temperature profiles. Collectively, the outcomes of
the multi-layer calibration confirmed the robustness and reliability of the calibration model.
The calibrated simulation model demonstrated high precision in matching experimental
temperature profiles, emphasizing its potential in refining the W-DED process simulations
and enhancing predictive capabilities.

4. Conclusions and Future Work

This study successfully introduced a multi-fidelity modeling framework that signif-
icantly enhanced the calibration accuracy of thermal analysis in W-DED processes. By
seamlessly integrating LF and HF models within a Bayesian optimization strategy, a com-
prehensive method was developed for aligning simulation outputs with experimental
thermal data. The foundation of this approach was a structured DOE, which guided broad
parameter exploration using the LF model and pinpointed likely areas for more detailed
analysis. The HF model then conducted further optimization within the refined parameter
space to identify the parameter set that produced an accurate and complete temperature
profile. Key parameters optimized in this study included η, h, and ε, which are crucial for
influencing the thermal behavior of the W-DED process and achieving an accurate match
between simulation and experimental observations. The optimization process, driven by
GP-based Bayesian optimization, balanced exploration and exploitation to minimize the
MAE between experimental and simulation temperatures. This approach resulted in an
MAE as low as 7.47 ◦C, validating the effectiveness of the strategy through multi-layer
calibration. This modeling framework bridges the gap between numerical simulations
and practical experimental observations, offering a systematic approach to fine-tuning
the calibration in W-DED simulations. The methodology demonstrates the reliability of
the simulation models and enhances trust in simulation-generated data for research and
industrial applications, leading to more precise and reliable manufacturing outcomes.

Looking forward, future research should expand on this foundation to apply multi-
fidelity models to more complex geometries and diverse materials, further advancing
the precision of AM simulations. An important area for advancement could involve the
dynamic adaptation of parameters such as emissivity, which may vary with temperature
across different layers, to refine the model’s responsiveness to real-world conditions. Ul-
timately, the application of this advanced modeling framework promises to streamline
development cycles in W-DED by improving process reliability and product quality. It
provides a replicable method that could significantly reduce the need for extensive experi-
mental setups, ensuring manufacturing processes meet stringent quality requirements.
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Abbreviation
AM Additive manufacturing
BBD Box–Behnken design
CCD Central composite design
c Specific heat capacity
DOE Design of experiments
ε Emissivity
FFD Full factorial design
FEM Finite element modeling
GP Gaussian process
h Convection film coefficient
HF High fidelity
k Thermal conductivity
LF Low fidelity
MAE Mean absolute error
MF Multi-fidelity
MSE Mean squared error
ρ Density
RBF Radial basis function
RMSE Root mean squared error
RSM Response surface model
Tend Temperature at the end of dwell time
Tmax Maximum temperature
η Thermal efficiency factor
W-DED Wire-arc directed energy deposition
WAAM Wire-arc additive manufacturing

Appendix A

Appendix A discusses parameter sensitivity analysis, comparison of design of exper-
iment (DOE) methodologies, and DOE configurations. A parameter sensitivity analysis
was conducted for the three parameters considered for calibrating the simulation model:
η, h, and ε. Figure A1 presents the analysis within its feasible range, while holding the
other two parameters at fixed baseline values. This analysis helped illustrate their indi-
vidual influence on the temperature distribution. The results revealed that η significantly
influenced Tmax in each layer, emphasizing its role in heat generation and distribution
within the substrate and deposited layers. The h and ε markedly affected the temperature
profile during the cooling period, particularly in the later layers of the deposition process.

https://www.mdpi.com/article/10.3390/jmmp8050222/s1
https://www.mdpi.com/article/10.3390/jmmp8050222/s1
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Overall, this analysis underscored the criticality of η, h, and ε, confirming their integral role
in achieving an accurate thermal model for the W-DED process.
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A comparison of the DOE methodologies was conducted, and based on that, the
Box–Behnken design (BBD) was selected. The DOE comparison and BBD simulation
configuration are listed in Tables A1 and A2.

Table A1. Comparison of DOE methodologies and simulation requirements.

Name of DOE No. of Simulations

Box–Behnken design 13

Central composite design 22

Full factorial design 27

Table A2. BBD simulation configurations.

No. η h (W/mm2) ε

1 0.6 0.000005 0.5

2 0.99 0.000005 0.5

3 0.6 0.00005 0.5

4 0.99 0.00005 0.5

5 0.6 0.0000275 0.01

6 0.99 0.0000275 0.01

7 0.6 0.0000275 0.99

8 0.99 0.0000275 0.99

9 0.8 0.000005 0.0.1

10 0.8 0.00005 0.01

11 0.8 0.000005 0.99

12 0.8 0.00005 0.99

13 0.8 0.0000275 0.5



J. Manuf. Mater. Process. 2024, 8, 222 22 of 27

Appendix B

Appendix B presents a comprehensive comparison of interpolation models that an-
alyze thermal dynamics during material deposition processes. The models provide pre-
dictions for two crucial temperature points during each deposition layer: the maximum
temperature (Tmax), capturing the peak temperature of each layer, and the end temperature
(Tend), observed after a designated dwell time. The comparison includes four interpolation
methods: linear, polynomial, radial basis function (RBF), and kriging (Table A1). The visual-
izations illustrate the impact of calibration parameters, such as the thermal efficiency factor
(η), convection film coefficient (h), and emissivity (ε), on Tmax and Tend. Figures A2 and A3
display the evaluation results of all models for all 13 simulations in this study, showcasing
a total of 12 models. The results are organized in a table format (Table A3), highlighting
the mean squared error (MSE) and the coefficient of determination (R2) for each model,
providing a clear understanding of their performance across different layers.

Table A3. Comparison of interpolation models for maximum temperature and end temperature
across different layers.

Maximum Temperature End Temperature

Model Layer MSE R2 MSE R2

Linear 1 1.95785 0.99511 32.7835 0.00782

Linear 2 65 0.91579 168.981 0.02525

Linear 3 239.19 0.7785 471.389 0.05004

Linear 4 593.024 0.56174 934.328 0.11967

Linear 5 1084.38 0.37937 1517.54 0.16379

Linear 6 1691.16 0.2176 2157.58 0.19273

Polynomial 1 1.85112 0.99537 27.6582 0.16294

Polynomial 2 57.4989 0.92551 141.342 0.18469

Polynomial 3 203.992 0.8111 381.199 0.15087

Polynomial 4 485.343 0.64132 730.741 0.1243

Polynomial 5 856.403 0.50985 1159.62 0.1107

Polynomial 6 1298.76 0.39914 1622.45 0.1031

RBF 1 4.05 × 10−22 1 3.1 × 10−21 1

RBF 2 4.82 × 10−21 1 1.9 × 10−20 1

RBF 3 1.88 × 10−20 1 3.5 × 10−20 1

RBF 4 6.94 × 10−20 1 2.9 × 10−20 1

RBF 5 1.25 × 10−19 1 6.2 × 10−20 1

RBF 6 5.80 × 10−20 1 1 × 10−19 1

Kriging 1 inf inf 12.8729 0.61041

Kriging 2 0.20831 0.99973 65.4305 0.62257

Kriging 3 0.68909 0.99936 180.618 0.59767

Kriging 4 1.98457 0.99853 358.342 0.57057

Kriging 5 371.739 0.78724 584.417 0.55182

Kriging 6 585.332 0.7292 827.623 0.54248
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Table A4. Comparative evaluation of ML models.

Model MAE MSE RMSE R2 Time (s)

Extra Trees Regressor 0.3761 1.1552 1.0207 0.9999 0.157

Random Forest Regressor 1.365 8.4335 2.8785 0.9996 0.166

Light Gradient Boosting Machine 2.0142 14.2078 3.74 0.9993 0.838

Decision Tree Regressor 2.0984 22.8866 4.7295 0.9988 0.014

Gradient Boosting Regressor 9.1972 171.2841 13.0494 0.9912 0.096

AdaBoost Regressor 29.3596 1418.83 37.6006 0.9266 0.082

K Neighbors Regressor 30.6499 2066.029 45.3887 0.8931 0.281

Linear Regression 90.3094 14163.48 118.9368 0.2706 0.01

Least Angle Regression 90.3211 14162.43 118.9322 0.2706 0.009

Ridge Regression 92.3224 14625.5 120.8777 0.2466 0.009

Table A5. Cross-validation results of Extra Trees Regressor.

Fold MSE R2

1 0.601965 0.999661

2 0.506924 0.999722

3 0.295647 0.999831

4 0.954419 0.999494

5 0.241231 0.999866

Average 0.520037 0.999715

Table A6. Summary of the Bayesian optimization process.

Parameters Value

Callback function DeltaYStopper

Stopping criteria MAE improvement < 0.1 ◦C

No. of iterations when optimization stopped 43

Final combined MAE for all layers 74.03 ◦C

Calibrated parameters η = 0.689, h = 0.0000186 W/mm2, ε = 0.90
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