Machining-Induced Burr Suppression in Edge Trimming of Carbon Fibre-Reinforced Polymer (CFRP) Composites by Tool Tilting
Abstract
:1. Introduction
2. Description of the Novel Multi-Axis Edge-Trimming Technology
3. Experimental Setups and Methods
3.1. Materials, Tools and Equipment
3.2. Experimental Design
3.3. Applied Methods
4. Results and Discussion
4.1. Influence of the Feed Rate, Cutting Width and Strategy
4.2. Influence of the Tool Tilting Angle and Permanent Chamfer Size
4.3. Discussion and Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, S.-C.; Jeong, S.-T.; Park, J.-N.; Kim, S.-J.; Cho, G.-J. Study on Drilling Characteristics and Mechanical Properties of CFRP Composites. Acta Mech. Solida Sin. 2008, 21, 364–368. [Google Scholar] [CrossRef]
- Takacs, L.; Szabó, F. Automated Determination of the Optimal Manufacturing Direction of Polymer Composite Shell Structures. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1246, 012026. [Google Scholar] [CrossRef]
- Teti, R. Machining of Composite Materials. CIRP Ann. 2002, 51, 611–634. [Google Scholar] [CrossRef]
- Bernasconi, A.; Cosmi, F.; Dreossi, D. Local Anisotropy Analysis of Injection Moulded Fibre Reinforced Polymer Composites. Compos. Sci. Technol. 2008, 68, 2574–2581. [Google Scholar] [CrossRef]
- Poór, D.I.; Geier, N.; Pereszlai, C.; Xu, J. A Critical Review of the Drilling of CFRP Composites: Burr Formation, Characterisation and Challenges. Compos. Part B Eng. 2021, 223, 109155. [Google Scholar] [CrossRef]
- Dornfeld, D.; Min, S. A Review of Burr Formation in Machining. In Burrs-Analysis, Control and Removal, Proceedings of the CIRP International Conference on Burrs, Kaiserslautern, Germany, 2–3 April 2009; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3–11. ISBN 978-3-642-00567-1. [Google Scholar]
- Park, K.M.; Kurniawan, R.; Yu, Z.; Ko, T.J. Evaluation of a Hybrid Cryogenic Deburring Method to Remove Uncut Fibers on Carbon Fiber-Reinforced Plastic Composites. Int. J. Adv. Manuf. Technol. 2019, 101, 1509–1523. [Google Scholar] [CrossRef]
- Gaugel, S.; Sripathy, P.; Haeger, A.; Meinhard, D.; Bernthaler, T.; Lissek, F.; Kaufeld, M.; Knoblauch, V.; Schneider, G. A Comparative Study on Tool Wear and Laminate Damage in Drilling of Carbon-Fiber Reinforced Polymers (CFRP). Compos. Struct. 2016, 155, 173–183. [Google Scholar] [CrossRef]
- Voß, R.; Henerichs, M.; Rupp, S.; Kuster, F.; Wegener, K. Evaluation of Bore Exit Quality for Fibre Reinforced Plastics Including Delamination and Uncut Fibres. CIRP J. Manuf. Sci. Technol. 2016, 12, 56–66. [Google Scholar] [CrossRef]
- Geier, N.; Xu, J.; Poór, D.I.; Dege, J.H.; Davim, J.P. A Review on Advanced Cutting Tools and Technologies for Edge Trimming of Carbon Fibre Reinforced Polymer (CFRP) Composites. Compos. Part B Eng. 2023, 266, 111037. [Google Scholar] [CrossRef]
- Cunningham, C.R.; Shokrani, A.; Dhokia, V. Edge Trimming of Carbon Fibre Reinforced Plastic. Procedia CIRP 2018, 77, 199–202. [Google Scholar] [CrossRef]
- Jin, F.; Bao, Y.; Li, B.; Jin, X. Tool Wear Prediction in Edge Trimming of Carbon Fiber Reinforced Polymer Using Machine Learning with Instantaneous Parameters. J. Manuf. Process. 2022, 82, 277–295. [Google Scholar] [CrossRef]
- El-Hofy, M.; Helmy, M.O.; Escobar-Palafox, G.; Kerrigan, K.; Scaife, R.; El-Hofy, H. Abrasive Water Jet Machining of Multidirectional CFRP Laminates. Procedia CIRP 2018, 68, 535–540. [Google Scholar] [CrossRef]
- El-Hofy, M.H.; El-Hofy, H. Laser Beam Machining of Carbon Fiber Reinforced Composites: A Review. Int. J. Adv. Manuf. Technol. 2019, 101, 2965–2975. [Google Scholar] [CrossRef]
- Guu, Y.H.; Hocheng, H.; Tai, N.H.; Liu, S.Y. Effect of Electrical Discharge Machining on the Characteristics of Carbon Fiber Reinforced Carbon Composites. J. Mater. Sci. 2001, 36, 2037–2043. [Google Scholar] [CrossRef]
- Hintze, W.; Cordes, M.; Geis, T.; Blühm, M.; Emmelmann, C.; Canisius, M. Laser Scored Machining of Fiber Reinforced Plastics to Prevent Delamination. Procedia Manuf. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Wang, F.; Yin, J.; Ma, J.; Jia, Z.; Yang, F.; Niu, B. Effects of Cutting Edge Radius and Fiber Cutting Angle on the Cutting-Induced Surface Damage in Machining of Unidirectional CFRP Composite Laminates. Int. J. Adv. Manuf. Technol. 2017, 91, 3107–3120. [Google Scholar] [CrossRef]
- Su, Y.; Jia, Z.; Niu, B.; Bi, G. Size Effect of Depth of Cut on Chip Formation Mechanism in Machining of CFRP. Compos. Struct. 2017, 164, 316–327. [Google Scholar] [CrossRef]
- Schorník, V.; Daňa, M.; Zetková, I. The Influence of the Cutting Conditions on the Machined Surface Quality When the CFRP Is Machined. Procedia Eng. 2015, 100, 1270–1276. [Google Scholar] [CrossRef]
- Pecat, O.; Rentsch, R.; Brinksmeier, E. Influence of Milling Process Parameters on the Surface Integrity of CFRP. Procedia CIRP 2012, 1, 466–470. [Google Scholar] [CrossRef]
- Yashiro, T.; Ogawa, T.; Sasahara, H. Temperature Measurement of Cutting Tool and Machined Surface Layer in Milling of CFRP. Int. J. Mach. Tools Manuf. 2013, 70, 63–69. [Google Scholar] [CrossRef]
- Geier, N. Influence of Fibre Orientation on Cutting Force in up and down Milling of UD-CFRP Composites. Int. J. Adv. Manuf. Technol. 2020, 111, 881–893. [Google Scholar] [CrossRef]
- Liu, C.; Ren, J.; Shi, K.; Zhang, Y. Investigation of Fracture Mechanism Evolution Model for UD-CFRP and MD-CFRP during the Milling Process. Compos. Struct. 2023, 306, 116585. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X. A Comparative Experimental Study of Unidirectional CFRP High-Speed Milling in up and down Milling with Varied Angles. J. Manuf. Process. 2023, 101, 1147–1157. [Google Scholar] [CrossRef]
- Jia, Z.; Rao, F.; Fuji, W.; Qian, B.; Chunling, H. Temperature Effects in End Milling Carbon Fiber Reinforced Polymer Composites. Polym. Compos. 2016, 39, 437–447. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F.; Zhang, B.; Deng, J.; Fu, R.; He, Q.; Ma, X. A Novel Discrete-Edge Ball End Milling Cutter: Suitable for Milling Weakly Rigid Curved CFRP Parts. J. Mater. Process. Technol. 2023, 317, 117996. [Google Scholar] [CrossRef]
- Sheikh-Ahmad, J.; El-Hofy, M.; Almaskari, F.; Kerrigan, K.; Takikawa, Y. The Evolution of Cutting Forces during Slot Milling of Unidirectional Carbon Fiber Reinforced Polymer (UD-CFRP) Composites. Procedia CIRP 2019, 85, 127–132. [Google Scholar] [CrossRef]
- El-Hofy, M.H.; Soo, S.L.; Aspinwall, D.K.; Sim, W.M.; Pearson, D.; M’Saoubi, R.; Harden, P. Tool Temperature in Slotting of CFRP Composites. Procedia Manuf. 2017, 10, 371–381. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Y. Study on Milling Force and Surface Quality during Slot Milling of Plain-Woven CFRP with PCD Tools. Materials 2022, 15, 3862. [Google Scholar] [CrossRef]
- Ning, H.; Zheng, H.; Yuan, X. Establishment of Instantaneous Milling Force Prediction Model for Multi-Directional CFRP Laminate. Adv. Mech. Eng. 2021, 13. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, X.; Kang, X.; Yi, H.; Wang, Q.; Cao, H. Energy Field-Assisted High-Speed Dry Milling Green Machining Technology for Difficult-to-Machine Metal Materials. Front. Mech. Eng. 2023, 18, 28. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Li, A. Laser Processing and Multi-Energy Field Manufacturing of High-Performance Materials. Materials 2023, 16, 5991. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Cheng, X.; Wang, J.; Sheng, L.; Zhang, Y.; Xu, J.; Jing, C.; Sun, S.; Xia, H.; Ru, H. A Review of Research Progress on Machining Carbon Fiber-Reinforced Composites with Lasers. Micromachines 2023, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Zenia, S.; Ben Ayed, L.; Nouari, M.; Delamézière, A. Numerical Analysis of the Interaction between the Cutting Forces, Induced Cutting Damage, and Machining Parameters of CFRP Composites. Int. J. Adv. Manuf. Technol. 2015, 78, 465–480. [Google Scholar] [CrossRef]
- Kerrigan, K.; Scaife, R.J. Wet vs Dry CFRP Drilling: Influence of Cutting Fluid on Tool Performance. Procedia CIRP 2018, 77, 315–319. [Google Scholar] [CrossRef]
- Gunaraj, L.; Paul, S.; Mohammed, J.; Sudhagar, E.; Thankachan, T. Optimization of Cutting Parameters for Hard Boring of AISI 4340 Steel Using Signal-to-Noise Ratio, Grey Relation Analysis and Analysis of Variance. Period. Polytech. Mech. Eng. 2023, 67, 259–269. [Google Scholar] [CrossRef]
- Geier, N.; Szalay, T.; Biró, I. Trochoid Milling of Carbon Fibre-Reinforced Plastics (CFRP). Procedia CIRP 2018, 77, 375–378. [Google Scholar] [CrossRef]
- Póka, G.; Balázs, B.Z. A Robust Digital Image Processing Method for Measuring the Planar Burr Length at Milling. J. Manuf. Process. 2022, 80, 706–717. [Google Scholar] [CrossRef]
- Balázs, B.Z.; Takács, M. Experimental Investigation of Surface Characteristics and Dynamic Effects at Micro Milling of Hardened Hot-Work Tool Steel. Int. J. Mach. Mach. Mater. 2020, 22, 504–526. [Google Scholar] [CrossRef]
- Sun, Z.; Geng, D.; Zheng, W.; Liu, Y.; Liu, L.; Ying, E.; Jiang, X.; Zhang, D. An Innovative Study on High-Performance Milling of Carbon Fiber Reinforced Plastic by Combining Ultrasonic Vibration Assistance and Optimized Tool Structures. J. Mater. Res. Technol. 2023, 22, 2131–2146. [Google Scholar] [CrossRef]
- Pereszlai, C.; Geier, N.; Poór, D.I.; Balázs, B.Z.; Póka, G. Drilling Fibre Reinforced Polymer Composites (CFRP and GFRP): An Analysis of the Cutting Force of the Tilted Helical Milling Process. Compos. Struct. 2021, 262, 113646. [Google Scholar] [CrossRef]
- Hosokawa, A.; Hirose, N.; Ueda, T.; Furumoto, T. High-Quality Machining of CFRP with High Helix End Mill. CIRP Ann. 2014, 63, 89–92. [Google Scholar] [CrossRef]
- Schulze, V.; Spomer, W.; Becke, C. A Voxel-Based Kinematic Simulation Model for Force Analyses of Complex Milling Operations Such as Wobble Milling. Prod. Eng. 2012, 6, 1–9. [Google Scholar] [CrossRef]
- Schulze, V.; Becke, C.; Weidenmann, K.; Dietrich, S. Machining Strategies for Hole Making in Composites with Minimal Workpiece Damage by Directing the Process Forces Inwards. J. Mater. Process. Technol. 2011, 211, 329–338. [Google Scholar] [CrossRef]
- Hintze, W.; Brügmann, F. Influence of Spatial Tool Inclination on Delamination When Milling CFRP. J. Mater. Process. Technol. 2018, 252, 830–837. [Google Scholar] [CrossRef]
- Pereszlai, C.; Geier, N. Comparative Analysis of Wobble Milling, Helical Milling and Conventional Drilling of CFRPs. Int. J. Adv. Manuf. Technol. 2020, 106, 3913–3930. [Google Scholar] [CrossRef]
- Geier, N.; Szalay, T.; Takács, M. Analysis of Thrust Force and Characteristics of Uncut Fibres at Non-Conventional Oriented Drilling of Unidirectional Carbon Fibre-Reinforced Plastic (UD-CFRP) Composite Laminates. Int. J. Adv. Manuf. Technol. 2019, 100, 3139–3154. [Google Scholar] [CrossRef]
Factors | Levels | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Feed rate | vf (m/min) | 100.000 | 143.934 | 250.000 | 356.066 | 400.000 |
Cutting width | ae (mm) | 0.300 | 0.343 | 0.450 | 0.556 | 0.600 |
Manufacturing technology | S (-) | conventional (C) | multi-axis (T) |
Factors | Levels | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Tool tilting angle | φ (°) | 10.000 | 20.251 | 45.000 | 69.749 | 80.000 |
Permanent chamfer size | c (mm) | 0.000 | 0.073 | 0.250 | 0.427 | 0.500 |
Experiment Number | Factors | Response Values | |||
---|---|---|---|---|---|
Feed Rate | Cutting Width | Strategy | Specific Average Edge Length | Maximum Burr Size | |
No. (-) | vf (mm/min) | ae (mm) | S (-) | Le (-) | Lb (μm) |
1 | 143.934 | 0.556 | C | 1.779 | 18.929 |
2 | 143.934 | 0.556 | T | 1.239 | 10.407 |
3 | 250.000 | 0.450 | C | 2.195 | 4.496 |
4 | 250.000 | 0.450 | T | 1.309 | 7.986 |
5 | 250.000 | 0.450 | C | 2.219 | 24.507 |
6 | 250.000 | 0.450 | T | 1.617 | 9.207 |
7 | 143.934 | 0.343 | C | 2.837 | 22.729 |
8 | 143.934 | 0.343 | T | 1.541 | 3.999 |
9 | 100.000 | 0.450 | C | 1.584 | 15.343 |
10 | 100.000 | 0.450 | T | 1.579 | 11.379 |
11 | 250.000 | 0.450 | C | 2.371 | 28.495 |
12 | 250.000 | 0.450 | T | 1.503 | 8.309 |
13 | 250.000 | 0.450 | C | 2.031 | 21.538 |
14 | 250.000 | 0.450 | T | 1.318 | 14.766 |
15 | 250.000 | 0.600 | C | 2.189 | 32.728 |
16 | 250.000 | 0.600 | T | 1.280 | 13.242 |
17 | 356.066 | 0.343 | C | 1.309 | 16.274 |
18 | 356.066 | 0.343 | T | 1.289 | 10.123 |
19 | 250.000 | 0.300 | C | 1.309 | 10.431 |
20 | 250.000 | 0.300 | T | 1.318 | 8.537 |
21 | 250.000 | 0.450 | C | 1.373 | 14.218 |
22 | 250.000 | 0.450 | T | 1.343 | 8.335 |
23 | 356.066 | 0.556 | C | 1.511 | 25.386 |
24 | 356.066 | 0.556 | T | 1.381 | 8.595 |
25 | 400.000 | 0.450 | C | 1.811 | 25.420 |
26 | 400.000 | 0.450 | T | 1.501 | 14.013 |
(a) | (b) | ||
---|---|---|---|
Le (-) | Lb (μm) | ||
Source | p-Value | Source | p-Value |
Model | 0.063 | Model | 0.003 |
Linear | 0.014 | Linear | 0.000 |
vf (mm/min) | 0.241 | vf (mm/min) | 0.669 |
ae (mm) | 0.936 | ae (mm) | 0.307 |
T (-) | 0.002 | T (-) | 0.000 |
Square | 0.592 | Square | 0.699 |
vf (mm/min) ∙ vf (mm/min) | 0.641 | vf (mm/min) ∙ vf (mm/min) | 0.548 |
ae (mm) ∙ ae (mm) | 0.342 | ae (mm) ∙ ae (mm) | 0.511 |
2-Way Interaction | 0.309 | 2-Way Interaction | 0.457 |
vf (mm/min) ∙ ae (mm) | 0.110 | vf (mm/min) ∙ ae (mm) | 0.233 |
vf (mm/min) ∙ T (-) | 0.379 | vf (mm/min) ∙ T (-) | 0.943 |
ae (mm) ∙ T (-) | 0.647 | ae (mm) ∙ T (-) | 0.290 |
Number of Experiments | Factors | Responses | ||
---|---|---|---|---|
Tool Tilting Angle | Permanent Chamfer Size | Specific Average Edge Length | Maximum Burr Size | |
No (-) | φ (°) | c (mm) | Le (-) | Lb (μm) |
1 | 143.934 | 0.556 | 1.779 | 18.929 |
2 | 143.934 | 0.556 | 1.239 | 10.407 |
3 | 250.000 | 0.450 | 2.195 | 4.496 |
4 | 250.000 | 0.450 | 1.309 | 7.986 |
5 | 250.000 | 0.450 | 2.219 | 24.507 |
6 | 250.000 | 0.450 | 1.617 | 9.207 |
7 | 143.934 | 0.343 | 2.837 | 22.729 |
8 | 143.934 | 0.343 | 1.541 | 3.999 |
9 | 100.000 | 0.450 | 1.584 | 15.343 |
10 | 100.000 | 0.450 | 1.579 | 11.379 |
11 | 250.000 | 0.450 | 2.371 | 28.495 |
12 | 250.000 | 0.450 | 1.503 | 8.309 |
13 | 250.000 | 0.450 | 2.031 | 21.538 |
(a) | (b) | ||
---|---|---|---|
Le (-) | Lb (μm) | ||
Source | p-Value | Source | p-Value |
Model | 0.001 | Model | 0.005 |
Linear | 0.000 | Linear | 0.004 |
φ (°) | 0.000 | φ (°) | 0.001 |
c (mm) | 0.246 | c (mm) | 0.803 |
Square | 0.003 | Square | 0.010 |
φ (°) ∙ φ (°) | 0.001 | φ (°) ∙ φ (°) | 0.003 |
c (mm) ∙ c (mm) | 0.060 | c (mm) ∙ c (mm) | 0.382 |
2-Way Interaction | 0.559 | 2-Way Interaction | 0.210 |
φ (°) ∙ c (mm) | 0.559 | φ (°) ∙ c (mm) | 0.210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tima, T.S.; Geier, N. Machining-Induced Burr Suppression in Edge Trimming of Carbon Fibre-Reinforced Polymer (CFRP) Composites by Tool Tilting. J. Manuf. Mater. Process. 2024, 8, 247. https://doi.org/10.3390/jmmp8060247
Tima TS, Geier N. Machining-Induced Burr Suppression in Edge Trimming of Carbon Fibre-Reinforced Polymer (CFRP) Composites by Tool Tilting. Journal of Manufacturing and Materials Processing. 2024; 8(6):247. https://doi.org/10.3390/jmmp8060247
Chicago/Turabian StyleTima, Tamás Sándor, and Norbert Geier. 2024. "Machining-Induced Burr Suppression in Edge Trimming of Carbon Fibre-Reinforced Polymer (CFRP) Composites by Tool Tilting" Journal of Manufacturing and Materials Processing 8, no. 6: 247. https://doi.org/10.3390/jmmp8060247
APA StyleTima, T. S., & Geier, N. (2024). Machining-Induced Burr Suppression in Edge Trimming of Carbon Fibre-Reinforced Polymer (CFRP) Composites by Tool Tilting. Journal of Manufacturing and Materials Processing, 8(6), 247. https://doi.org/10.3390/jmmp8060247