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Abstract: This work introduces an end-to-end methodology, from data gathering to fault
notification, for the predictive maintenance of rotary components of machine tools. This is
done through fingerprint routines; that is, processes that are executed periodically under
the same no-load conditions to obtain a snapshot of the machine condition. High-frequency
vibration data gathered during these routines combined with knowledge about the machine
structure and its components are used to obtain failure-specific features. These features are
then introduced to an anomaly and paradigm shifts detection algorithm. The method is
evaluated through three distinct scenarios. First, we use synthetically generated data to
test its ability to detect controlled variations and edge cases. Second, we use with publicly
available data obtained from bearing run-to-failure tests under normal load conditions
on a specially designed test rig. Finally, the methodology is validated using real-world
data collected from a spindle bearing installed in a machine tool. The novelty of this
work lies in performing anomaly detection using failure-specific features derived from
fingerprint routines, ensuring stability over time and enabling precise identification of
machine conditions with minimal data requirements.

Keywords: machine tools; predictive maintenance; fingerprint routines; anomaly detection;
concept drift; Industry 4.0; smart manufacturing

1. Introduction
Predictive Maintenance (PdM) is one of the most trending topics in Industry 4.0. In

the last years, many survey papers have focused on the topic from a data-driven point
of view [1–4]. While most of the principles in PdM date back to the 1990s, recent ad-
vances in IoT, cloud computing, data analytics, and machine learning have enabled its
wide adoption [5]. Moreover, incorporating artificial intelligence into a facility operations
program can reduce labor hours and analysis time while also offering unbiased recommen-
dations for predictive maintenance and investments [6].

The manufacturing sector faces various challenges in maintaining equipment and
machinery. Current data-driven PdM solutions, while promising, present several disadvan-
tages that hinder their implementation. Firstly, they require a large amount of historical
data to function effectively [7–9]. In addition, lack of labeled data is a typical problem,
which impedes the development of classification models [10]. Due to this, significant
numbers of data-driven PdM solutions are based on anomaly detection algorithms [11,12],
and, often, these approaches use Deep Learning (DL) methods [7–9,13]. Nevertheless,
many of these methods rely on static thresholds that do not adapt to changing equipment
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conditions, leading to false alarms or the failure to detect imminent issues. Changes in
the conditions also impact the obtained data, resulting in variations in the monitored data,
which means that the distribution of points changes over time. In other words, the statistical
properties of the extracted features may change arbitrarily throughout the components’ life.
This phenomenon is known as concept drift [14], and it refers to techniques and methods
that identify and quantify this event by detecting change points or intervals. Indeed, the
authors in [12] encourage the use of dynamic and self-adjusting thresholds; thus, methods
that detect these changepoints are preferable. Therefore, it is essential for a truly reliable
and robust PdM solution to include a system that is capable of detecting potential con-
cept drifts in the data and resetting the anomaly detection method accordingly. In this
regard, the use of DL techniques hampers the interpretability of the results. Moreover,
implementing such solutions in a real-world environment is complex, requiring intensive
integration with existing systems and constant adaptation to the specifics of the operational
environment [15]. Using changepoint detection (CPD) techniques for concept drift allows
for the identification of abrupt shifts in data distributions, enabling timely adaptation of
anomaly detection frameworks. These methods provide a statistical foundation to detect
significant changes, ensuring that the systems remain accurate and responsive to evolving
patterns in dynamic environments. This approach is particularly effective when concept
changes are sudden and noticeable. Many techniques for changepoint detection have
been studied in the literature, but among them, those based on search methods such as
window-based, bottom-up, and binary segmentation stand out for being intuitive and easy
to implement [16]. These methods are particularly popular due to their simplicity and
effectiveness in detecting changes in data distributions.

In this work, we define an end-to-end methodology for PdM of rotary components
based on data gathered from predefined processes, named Fingerprint Routines (FRs).
An end-to-end approach ensures the methodology encompasses all stages, from data
acquisition to anomaly detection, providing a complete and autonomous solution. We
combine the use of these routines with the knowledge of the kinematic chain of the rotary
components of the machines, exemplified by rolling bearings. By integrating knowledge
about the machine structure, this new method allows for computing features regarding
very specific faults. Moreover, we also develop an anomaly and concept drift detection
algorithm based on dynamic thresholds. Detecting these changes is crucial for two reasons:
first, to automatically restart the algorithm once faults are corrected; and second, because
faults may not always appear as point anomalies, but rather as a gradual drift. Thus, we
automatically detect anomalies in the evolution of several features extracted from their
failure-related frequencies. The following are the contributions of our work:

• The anomaly detection algorithm is initialized using very little data.
• The thresholds are dynamically adjusted based on the evolution of the data over time.
• The algorithm also detects changepoints and automatically resets the threshold definitions.
• The failure-specific features that are extracted from the FRs support the interpretability

of the results, and the causality of the anomalies can be analyzed.
• All tasks are performed in an online manner, ensuring real-time adaptability and

responsiveness.

The anomaly detection algorithm is applied to all the extracted features, no matter
the number of them, and can be configured to send notifications or activate alarms. It also
states how to integrate external information and gives the pipeline to extract the relevant
information. This implies a step towards productization, especially when multiple ma-
chines are monitored simultaneously. In order to prove its effectiveness, we have evaluated
our methodology using different approaches. First, we assessed the algorithm’s ability to
detect changepoints, using artificially generated data with labeled changes, regardless of
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the type of features extracted from the data. Next, we compared the performance of our
algorithm against several classical CPD techniques using real vibration data. Finally, we
evaluated the complete framework using a limited amount of real production data.

The rest of this article is structured as follows: first, the theoretical background for
feature extraction is thoroughly explained. Then, the methodology for data processing,
online anomaly detection, and the CPD approach are described. Afterwards, the results of
the methodology evaluations are presented and discussed. Last, conclusions and future
work are outlined.

2. Theoretical Background for Feature Extraction
In this section, we introduce some prior knowledge necessary for the extraction of

specific failure features.

2.1. Fingerprint Routines

FRs are predefined test cycles in no-load conditions [17]. In this work, FRs focus on
the machine’s rotary components. The FRs must meet the following requirements:

• Spin the rotary component without holding any tool or performing any machining
operation,

• For a predefined time interval, and
• At a constant, predefined rotational speed.

It is essential to ensure that during each FR execution, no workpieces or tools are
loaded, and the machine is in the same operational state. This guarantees that any variation
in the collected data can be attributed to the state of the rotary component and not to
changes in operating or loading conditions.

Since FR executions require the machine to be out of active production, the optimal
strategy is to schedule these runs regularly, at times that do not interfere with production.
The frequency of FR executions depends on multiple factors, such as machine availability,
and the temporal and/or economic costs of halting production. Striking a proper balance
between FR regularity and production impact is key to maximizing the effectiveness of
predictive maintenance without compromising operational efficiency.

2.2. Vibration

Vibration is a mechanical phenomenon in which oscillations occur around a point of
equilibrium. Usually, vibration is captured by accelerometers, so it is measured in m/s2.
Failures can be detected using different processing techniques on the acceleration signal.
The adequacy of each technique depends on the stage of the failure.

Regarding the early-stage failures, these are observed at high frequencies, and
envelope-based demodulation techniques are applied to the acceleration signal. This
is done to extract repetitive impact patterns from the signal, resulting in a demodulation
spectrum where the frequency components correspond to the bearing fault frequencies [18].
This technique has already been used to study incipient failures [19,20]. In the case of more
advanced-stage failures, the position displacement with respect to the point of equilibrium
is more significant. Via the integration property of Fourier’s transform [21], if

x(t) FT←→ X(ω) (1)

then ∫ t

−∞
x(s)ds FT←→ X(ω)

iω
if X(0) = 0 (2)
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where A FT←→ B means that B is the Fourier transform of A. Since the position equals
integrating twice the acceleration, the amplitude of the frequency ω of the position is
divided by ω2. This means that for medium (5–1000 Hz) and high (1000–10,000 Hz)
frequencies, the amplitudes of the signal are mitigated. Lastly, the medium frequency range
is where bearing faults typically become apparent once they have fully developed. Thus,
by studying the velocity instead of the displacement, the frequencies are only divided by
ω, so the medium frequencies are not so mitigated and faults are well observed. While
the theoretical foundation of FFT applies to continuous time series, in practice, we work
with discretized signals. In our work, numerical methods are applied to approximate the
integral over the sequence of discrete values, ensuring accurate feature extraction tailored
to the nature of the data.

2.3. Characteristic Fault Frequencies in Bearings

When a bearing is faulty or rolls on a faulty raceway, it impacts the raceway, generating
a detectable vibration [22]. Most commonly, failures come from wear in their inner race,
their outer race, or their balls, including cracks, pits, spalls on the rolling surface, and race
spalls [20]. This causes high-frequency resonances in the machine structure to be excited.
In this work, we focus on four types of failures: Ball Pass Frequency for Outer race (BPFO),
Ball Pass Frequency for Inner race (BPFI), Ball Spin Frequency (BSF), and Fundamental
Train Frequency (FTF). These frequencies are calculated as follows:

BPFO = fr ·
n
2
·
(

1− BD
PD

cos α

)
BPFI = fr ·

n
2
·
(

1 +
BD
PD

cos α

)
BSF = fr ·

PD
2 · BD

·
[(

1− BD
PD

cos α

)2
]

FTF = fr ·
1
2
·
(

1− BD
PD

cos α

)
,

(3)

where n is the number of balls, fr is the rotation frequency of the shaft to which they
are attached, α the contact angle, BD the ball diameter, and PD the pitch diameter. While
the remaining factors are intrinsic properties of the bearing, fr depends on the operating
conditions of the machine. In this work, we label the fundamental fault frequencies (FFFs)
of a bearing as BPFO, BPFI, BSF, and FTF providing a rotation speed of 60 RPM; that is,
fr = 1 Hz.

An example is shown in Figure 1. The amplitude corresponding to a fault is high-
lighted, as well as the values of the first ten multiples of its associated frequency. Notice
how these values are also the peaks of the spectrum. This example corresponds to the
bearing SKF [23] NN 3030 K/SPW33, whose FTF fault frequency is 0.455. The spectrum
was captured for 2000 RPM rotation. Then, if the FTF fault is taking place, an amplitude
peak is expected to happen at frequency (2000/60) · 0.455 ≈ 15.166. Also remember that,
with a vibration in a frequency, harmonic vibration usually takes place in frequencies that
are multiples of the fundamental fault frequency.

Knowing the bearing, its fault frequency information can be found, as many bearing
manufacturers provide them. For instance, the information on the NN 3030 K/SPW33
bearing is given by SKF [23]. By selecting the calculation, checking bearing frequencies,
and introducing the 60 RPM, the fault frequencies are computed.



J. Manuf. Mater. Process. 2025, 9, 12 5 of 22

Figure 1. Example of a frequency spectrum obtained from the vibration data of a rolling bearing. The
red crosses correspond to the amplitude peaks of the frequency associated with the FTF failure and
its harmonics.

2.4. Kinematic Chains

Machine tools contain a number of components, including motors, axles, and spindles.
Their movement is generated by motors and transmitted to other components through
kinematic chains of variying complexity, using elements such as gears and belts. On the one
hand, a simple example of this kind of chain is a spindle whose rotation is transmitted from
a motor by a belt. On the other hand, a more complicated chain is a motor transmitting the
rotation to a spindle by a combination of axles interacting with each other through gears.
In this work we assume that the kinematic chain is linear and the transmission along the
chain is performed by a ratio, considering that the vibration monitoring sensor is installed
on the last element of the kinematic chain.

Here are the definitions of some specific concepts related to kinematic chains:

• The main speed (MS) of a kinematic chain is the speed rotation by which the rest of the
speed rotations are computed. Take, for instance, a system where motor A transmits
its rotation to spindle B with a 1.5 rate. Then, if the motor speed is 1000 RPM, the
spindle speed is 1500 RPM. The MS of the system would be 1000 RPM, and the other
speed is computed from it.

• The main frequency (MF) is defined as the MS in Hz; that is, MS/60 if MS is given
in RPM.

• A transmission component (TC) is a machine component that has a rotating speed and
might transmit it to another TC.

• The relative speed (RS) of a TC is the speed that the TC rotates as a multiplier of
the MS.

• A TC is the child of a parent (another TC) if its RS is computed as a multiple of the RS
of its parent.

• For any parent–child tuple, the transmission rate (TR) from parent to child is the ratio
between the RS of the parent and the child.

• If a TC is not the child of any other TC, then it is called the main component (MC),
and its speed is computed as a multiple of the MS (generally with an RS of 1).
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• A potentially faulty element (PFE) is a component that spins with a TC. Each PFE
is associated with one, and only one, TC. Their transmission rate with respect to its
parent TC is usually 1.

• A fault is a property associated with a PFE. Each fault is defined by its name and its
relative fault frequency (RFF) with respect to the rotation speed of the PFE (which, in
the case of bearings, it is the FFF). The names of the faults, in the case of bearings, will
be the ones introduced in the correspondent section (BPFI, BPFO, etc.), and their RFFs
will be the relative frequencies with respect to their rotation that are excited when
those faults take place.

• The specific fault frequency (SFF) of a fault type for a specific PFE is the frequency
that will be excited in case a fault happens. It is computed as the RFF of the fault times
the RS of the bearing times the MF.

An illustrative example of a kinematic chain is shown in Figure 2. In this example,
there are four TCs: motor, axle 1, axle 2, and spindle. Each TC is the parent of the next TC.
The RS of the motor is 1; that is, its transmission rate with respect to the MS, since it is the
MC. For the rest of the TCs, its RS is the product of its TR and the TRs of all the TRs in the
chain going backwards until the MC. That is, The RS of Axle 2 would be 1.6 · 1.5 · 1 = 2.4.
The RFF for the BPFI failure for Bearing 1 is computed as 1 · 1.5 · 1.6 · 2.1 · 1 · 12.34 = 62.1936.
Then, if the rotation speed of the motor was 300 RPM, then the SFF for the BPFI failure for
Bearing 1 would be 300 RPM/60 · 62.1936 = 310.968 Hz. Therefore, a BPFI fault in Bearing
1 would imply a peak for the 310.968 Hz frequency (and its multiples).

Figure 2. Example diagram of a kinematic chain.

It is important to note that resonances in the kinematic chain can significantly impact
the analysis. If the elements of the chain (motors, shafts, etc.) share specific frequencies, the
amplitudes observed in the FFTs at those frequencies may become significantly elevated.
This phenomenon can lead to confusion when interpreting the peaks, as they might not
directly indicate faults but rather inherent resonances within the system. However, this
work does not address this issue, leaving it as a consideration for future studies.
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3. Methodology
The methodology consists of an end-to-end pipeline with four stages, which are

executed sequentially:

1. FR execution: The FR is executed.
2. Data gathering: The accelerometer data are stored.
3. Data processing: Data undergo a series of transformation steps.
4. Anomaly detection: Detection and notification of relevant events.

The data processing stage contains all the steps, from receiving the data and trans-
forming it into features suitable for anomaly detection to integrating knowledge about the
kinematic chain. Additionally, the anomaly detection stage introduces the algorithm that
will be used to deal with the problem using very short time series. These two stages are
thoroughly explained in the following sections.

3.1. Data Processing

In this stage, the raw data are processed in order to extract failure-related features. We
divide the data processing stage into three sub-stages.

3.1.1. Preprocessing

As mentioned in Section 2.2, some transformations are applied to the raw vibration
signal before the FFT is calculated. In order to perform the vibration analysis in velocity, it
is necessary to compute the integral of the acceleration signal. In addition, envelope-based
techniques are applied to the raw signal to compute the FFT in demodulation.

3.1.2. Feature Extraction Considering Kinematic Chains

In order to analyze the faults using FRs, we need to obtain the RFF for each of the faults
of the components in the kinematic chain. For example, in the kinematic chain defined in
Figure 2, the RFFs of the faults are computed by multiplying all the factors for each line
from each fault until the first TC. Thus, the kinematic chains need to be well defined and
stored so that the information can be extracted on demand for pipeline automation.

The way to structure this information is using a relational database [24], with three
types of elements. The types of elements are the following:

• TCs: Each TC is defined by its TR and its parent (if they have one).
• PFEs: Each PFE is defined by its TR and the TC they are attached to.
• Faults: Each fault is defined by its FFF and the PFE they are related to.

TC chains can be indefinitely long, so the model contains a field of a table that refers
to another field of the same table. An example of the data model for a kinematic chain
of a machine is given in Figure 3. In TCs, the field Parent_TC contains its parent TC, and
it must be consistent with the names in TC_name. If a TC is the MC, then Parent_TC will
be null.

The steps to retrieve all the relevant information about the chain from the database are
the following:

1. Iterate through all the faults in Faults. For each of them:
2. Multiply its FFF by the TR of the PFE it is attached to.
3. Multiply the result by the TR of the TC the PFE is attached to.
4. If the Parent_TC of that TC is null, stop. If it is not, look for the table row for which

TC_name is equal to the Parent_TC of the current TC. Multiply our previous product
for the TR of this new TC. Repeat this step until Parent_TC is null. The result, for each
fault, is their RFF.
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Figure 3. Data model schema.

3.1.3. Severity Computations

Once we obtain the RFF of the faults and MS, the SFF can be computed. As mentioned
earlier, if a fault occurs, then vibration peaks will be observed in the SFF and its harmonics,
as seen in Figure 1. Peaks are observed for velocity or demodulation, depending on the
fault being apparent or incipient.

To measure the significance of the vibration data, we introduce the concept of severity.
We define the following set:

B =
10⋃

k=1

[min(k · β− 0.5, 0.98 · k · β),

max(k · β + 0.5, 1.02 · k · β)].
(4)

where β is the SFF for a fault. This set is the union of intervals around the first ten multiples
of β, with a width of ±2% that is a multiple of β, and with a lower width bound of ±0.5 Hz.
Figure 4 show these frequencies represented by the green bands.

Figure 4. Example of a FFT spectrum in velocity, obtained from the vibration data of a rolling
bearing. The green bands represent the set B, i.e., the union of frequency intervals used for the
severity computation.

We denote
{( fi, ai)|i = 1, . . . , N} (5)
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where fi and ai are the i-th frequency and amplitude values of the FFT, respectively. Then,
we can define the severity as follows:

S =

(
∑

fi∈B
a2

i

)1/2

, (6)

that is, the square root of the quadratic sum of amplitudes correspondent to frequencies
that belong to B.

3.2. Anomaly Detection and Changepoint Detection

An algorithm for anomaly detection is introduced based on previous works [25].
Nevertheless, the algorithm is adapted to the particularities of the context, considering the
length of the series and the evolution of the data.

First, the proposed algorithm deals the problem of anomaly detection for very short time
series. For example, if a FR is executed every two weeks, we collect 28 instances a year, a very
small sample size for an anomaly detection algorithm, and yet this is too much time for the
manufacturer to start obtaining insights about the critical components of the machines. The
proposed algorithm evaluates each new value of the series (from a new FR execution), and it
determines if the observation is anomalous with respect to the previous ones. In addition, the
first n values of the series are used to build the normality scenario, so they are not evaluated.
Notice that n must be a very small number, since we want to detect anomalies as soon as
possible. Otherwise, waiting too much for evaluating the features would allow faults to
go undetected.

Second, scenario changes can occur within the series, meaning that the distribution
of points may shift over time. In other words, the statistical properties of the extracted
features may change arbitrarily over time. This phenomenon is known as concept drift [14].
This concept refers to techniques and methods that identify and quantify this phenomena
by detecting change points or intervals. There are different types of concept drifts, but in
this work, we are focusing on sudden, gradual, and incremental drifts. Detecting these
changes is crucial for two reasons: first, to automatically restart the algorithm once faults
are corrected; and second, because faults may not always appear as point anomalies, but
rather as a gradual drift. Existing algorithms are not designed for time series as short as
ours, so we developed a custom algorithm.

The algorithm needs to:

• detect anomalies,
• detect concept drifts,

and derived from these

• to determine when to notify.

This point is significant, as it is crucial to report only events that are truly relevant. In a
real production scenario, we might have thousands of features to analyze, so it is important
to keep the number of notifications low by avoiding all the notifications that do not reveal
a fault (false positive).

Before defining the algorithm, we introduce some parameters:

• cs: Critical severity.
• dt: Density threshold.
• bs: Buffer size.
• Nmin: Minimal amount of points in the buffer before considering anomalies or changes.
• a f : Average factor.
• csa: Critical severity for average factor.
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Moreover, the following terms are also used in the algorithm, where their calculation
is performed iteratively and conditionally:

• x1, x2, x3, . . .: Incoming and ordered values of the series.
• mi: Accumulated mean of the series at the i-th point.
• m2,i: Accumulated mean of the squared series at the i-th point.

• si: Accumulated standard deviation of the series at the i-th point:
√

m2,i −m2
i .

• Ni: Number of values used for the mean and cumulative value at the i-th point.
• ai: Anomaly score of the series at the i-th point.
• Bi: Buffer at the i-th point.
• aBi: Anomaly buffer at the i-th point.

In Algorithm 1, the computations of the terms mi, m2,i, and si for each step and
scenario are defined. The buffer Bi is defined as a set of values xj with j ≤ i that is
preserved for later use. It is defined as a FIFO (First In First Out) object with a maximal
length of bs. If

Bi = {xi1 , xi2 . . . , xik} (7)

with i1 < i2 < . . . < ik, then we define the operator append as follows:

append(Bi , x) =

 {xi1 , xi2 . . . , xik , x} i f |Bi | < bs

{xi2 . . . , xik , x} i f |Bi | = bs
. (8)

That is, if Bi has size bs, then to append a new element implies removing the oldest. The
anomaly buffer is defined similarly, using the anomaly scores instead.

Once the previous parameters are defined, we can describe the anomaly detection
algorithm. Taking the sequence x1, . . . , xM, the goal is to compute an anomaly threshold
based on the cumulative mean and standard deviation to identify when this threshold is
exceeded. Additionally, the algorithm tracks when the cumulative mean of the most recent
values significantly deviates from the cumulative mean of the entire sequence. Anomalies
and changes are not considered until the buffers contain at least Nmin points, establishing a
normality scenario. After adding the values of Nmin to the buffer, the values of mi and m2,i

remain constant until a concept drift occurs. This approach ensures that gradual changes in
the values (such as a slow but steady increase) are eventually detected.

The algorithm is presented in Algorithm 1. It indicates how new values are added to
the algorithm, and it uses the function eval_change, presented in Algorithm 2. The next
step is to evaluate whether change happens by ci := eval_change.

• If there is not a minimal number of values in the buffer (Ni−1 < Nmin), then no change
is evaluated.

• If ci = NoChange, it means that no change of scenario happens.
• If ci = ChangeAnom, then a change of scenario happens via the accumulation of anoma-

lous values. This happens when the added value is anomalous, and the proportion of
anomalous values in the buffer exceeds the parameters dt.

• If ci = ChangeAvg, then a change of scenario happens through deviation from the
mean value mi. This happens when the mean of the values in the buffer that are not
anomalous under the csa threshold deviate from the previous mean value mi−1, in pro-
portion, more than csa; that is, when the last values are not necessarily anomalous, but
on average, they deviate too much from what was established as the average scenario.

Then, the value is added to the buffers, and the cumulative variables (mi, m2,i, si, Ni)
are updated.
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Algorithm 1 Anomaly and change detection algorithm

N1 := 1; m1 := x1; m2,1 := x2
1; B1 := {x1}

for i in 2, . . . , M do
if Ni−1 < Nmin then

mi := mi−1·(Ni−1) + xi
Ni

, m2,i := m2,i−1·(Ni−1) + x2
i

Ni

si =
√

m2,i −m2
i

Ni := Ni−1 + 1
Bi := append(Bi−1, xi)
aBi := append(aBi−1, 0)

else
ci := eval_change(Bi−1, aBi−1, mi−1, m2,i−1, xi)
if ci = NoChange then

ai := xi − mi−1
si1mi = mi−1, m2,i = m2,i−1

Ni := Ni−1
Bi := append(Bi−1, xi)
aBi := append(aBi−1, ai)

else if ci = ChangeAnom then
Baux := append(Bi−1, xi)
aBaux := append(aBi−1, ai)
aBi := {0|aik ∈ aBaux, |aik | > cs}
Bi := {xik |xik ∈ Baux, |aik | > cs}
Ni := |Bi|
mi =

1
Ni

∑x∈Bi
x, m2,i =

1
Ni

∑x∈Bi
x2

else if ci = ChangeAvg then
Baux := append(Bi−1, xi)
aBaux := append(aBi−1, ai)
Bi := {xik |xik ∈ Baux, |aik | < csa}
aBi := {aik |aik ∈ aBaux, |aik | < csa}
Ni := |Bi|
mi =

1
Ni

∑x∈Bi
x

m2,i =
1
Ni

∑x∈Bi
x2

end if
si =

√
m2,i −m2

i
end if

end for

This algorithm is inspired by streaming algorithms [26], where cumulative statistics
are computed without storing all the previous values. The main advantage of this kind
of algorithm is that the anomaly score has a statistical significance that is independent to
the magnitude of the values in the series. In contrast, the previous values of the series are
forgotten, but this is not suitable for scenario changes such as those discussed in this work.
Therefore, the buffer object is introduced.

The first n values of the series are not evaluated, since the algorithm needs some time
to establish a normality scenario. Since the executions of FRs are expected to be sparse in
time, the parameters need to be set so they offer reliable notifications after not too long.

The criteria for notifications are the following:

• The execution is anomalous and above the cumulative mean (ai > cs). The anomaly
score is signed, so it is positive if the incoming value is above the cumulative mean
and negative if it is below.

• A changepoint is detected based on drift in cumulative mean (ci = ChangeAvg) and the
mean value after if it is greater than the mean value before (mi−1 < mi).
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Algorithm 2 eval_change(Bi−1, aBi−1, mi−1, m2,i−1, xi)

ai := xi − mi−1
si1

Baux := append(Bi−1, xi)
aBaux := append(aBi−1, ai)
change := NoChange
if ai > cs then

{Evaluate change via anomaly accumulation.}
aBanom = {a|a ∈ aBaux, |a| > cs}
if aBanom
|aBaux | ≥ dt then
change := ChangeAnom

end if
else

{Evaluate change via deviation in mean value.}
Bavg = {xik |xik ∈ Baux, |aik | < csa}
pavg = 1

|Bavg | ∑x∈Bavg x

if |pavg −mi−1|/mi−1 > a f then
change := ChangeAvg

end if
end if
return change

4. Results and Discussion
We evaluate our methodology in three distinct scenarios to ensure its robustness and

applicability. The first scenario involves artificially generated data, used exclusively to test
the methodology’s ability to detect concept drifts, regardless of the type of feature extracted
from the data. In the second scenario, we use real experimental data to assess performance
on standardized benchmarks. Finally, the third scenario is focused on real-world industrial
data to validate the methodology’s effectiveness in practical applications.

4.1. Artificially Generated Dataset

To thoroughly assess the performance of our methodology’s ability to detect concept
drifts, we create an artificially generated dataset. This dataset is designed to include
controlled concept drifts, representing shifts in the underlying data distribution over
time. By incorporating these artificial changes, we establish a well-labeled ground truth
that allows us to evaluate how accurately our methodology detects and adapts to these
transitions. This setup not only provides a controlled environment to test our approach but
also helps us measure its precision and responsiveness in detecting scenario changes under
varying conditions.

The synthetically generated sequence consists of 2000 samples, divided into five
segments, each with distinct statistical properties. The first segment follows a standard
normal distribution (µ = 0, σ = 1), while the second segment has a shifted mean (µ = 3,
σ = 0.7). The third segment follows a normal distribution with a mean of µ = −2 and a
smaller standard deviation (σ = 0.4). The fourth segment has a mean of µ = −2 with a
larger standard deviation (σ = 1.2). The fifth segment exhibits an upward trend, modeled
as the cumulative sum of normal noise (σ = 0.2), with additional Gaussian noise (µ = 0,
σ = 0.5) to simulate real-world variability. Concept drifts are introduced at the boundaries
between segments, simulating abrupt changes in data distributions and patterns. This
setup provides a controlled environment for benchmarking our algorithm. The generated
sequence is illustrated in Figure 5, where the concept drifts are clearly marked at the
segment boundaries.
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Figure 5. Synthetic signal with annotated concept drift points (red lines). The signal is presented in
arbitrary units (a.u.).

Our methodology is applied using a specific set of parameters, which are detailed
in Table 1. The results obtained from applying the method are graphically illustrated in
Figure 6.

Table 1. Parameters for anomaly detection algorithm using synthetically generated dataset.

cs dt bs Nmin a f csa

2 0.5 10 8 0.2 4

Figure 6. Results obtained using the proposed methodology on the synthetically generated dataset.

Our method effectively and quickly detects changes in the mean and/or increases
in the standard deviation. In this regard, our algorithm identifies three true positives.
However, in the case of time series with a marked trend, the algorithm does not reset
its parameters as quickly as in other cases. It fails to detect the last true positive while
subsequently identifying three false positives. Nevertheless, this behavior is actually prefer-
able, as failing to adapt in such cases could potentially mask an underlying deterioration
or change in the system. The trade-off between adaptation speed and accuracy in trend-
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dominated series highlights the robustness of the method in identifying significant changes
without overfitting to non-relevant patterns.

4.2. Real Experimental Data

This subsection focuses on evaluating the performance of our methodology using a
publicly available dataset. The dataset consists of real vibration data obtained from an
experimental study conducted by NSF I/UCR Center for Intelligent Maintenance Systems
(IMS) with support from Rexnord Corp. in Milwaukee, WI, where four bearings were
installed on a shaft and run-to-failure. The experiments were conducted with a constant
rotational speed of 2000 RPM. PCB 353B33 High-Sensitivity Quartz ICP accelerometers
were installed in the test rig, one per bearing. This study includes data from three different
tests, each designed to take the bearings to their breaking point. Each test is composed
of several files containing the vibration signals obtained by the accelerometers. Readers
interested in further details of the experimental setup are referred to [27].

In the present work, we only consider the data obtained from the first bearing of the
second test. This test comprises 984 files, each containing accelerometer signals recorded
during the operation of the bearings. Specifically, the bearing analyzed in this study
exhibited an outer race fault. It is worth noting that anomalies within the dataset are not
explicitly labeled; however, information is available for each test regarding the specific
failures experienced by the bearings. This means we know how the life of each component
ends, but the onset of the degradation phase remains unknown. For the analysis, we extract
the severity related to the BPFO failure. A graphical illustration of its evolution throughout
the bearings’ life is shown in Figure 7.

Figure 7. Evolution of the severity values related to the BPFO failure.

Using our technique, both anomalies and concept drifts are effectively detected. To
assess the performance of scenario change detection, we compare our method with classical
CPD techniques, which are executed offline. The selected methods are binary segmentation,
windowing, bottom-up, and kernel-based approaches [16]. The specific parameters used
for each of these techniques are detailed in Table 2, allowing for a fair and transparent
comparison with our methodology. A key distinction of our methodology is that it operates
online, making it suitable for real-time applications. We also emphasize the importance of
detecting scenario changes promptly while avoiding an excessive number of detections
that could overwhelm the end user. A high frequency of scenario change alerts may
compromise the perceived reliability of the system, making it critical to strike a balance
between detection speed and the clarity of actionable insights.
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Table 2. Parameters for changepoint detection algorithms.

Window Based Bottom-Up Binary Segmentation Kernel Based

model = ’l2’ model = ’l2’ model = ’l2’ kernel = ’rbf’
min_size = 6 min_size = 6 min_size = 6 min_size = 6
window_size = 4 gamma = 100

We present the results starting from cycle 600, as no method detects scenario changes
before this point. The discussion of the results is divided into two sections: cycles 600 to 950
(Figure 8), and cycles beyond 950 (Figure 9), to better highlight the details. It is important
to note that, due to the lack of labels, accuracy rates cannot be computed.

In the first section (cycles 600 to 950), the first visually noticeable change occurs around
cycle 700. This change is detected by all methods except the window-based approach. The
kernel-based method detects an excessive number of changes, while the window-based
method fails to identify any. The other two methods produce similar segmentations;
however, our approach identifies one additional change. This extra change corresponds to
a slight, consecutive increase in feature values, triggering a model update. In the second
section (cycles beyond 950), the kernel-based method continues to detect an excessive
number of scenario changes. The other methods, including ours, identify approximately
two changes, which is consistent with the strong trend present in the data. This behavior
is desirable, as it avoids unnecessary updates while still capturing the main changes.
Considering that our method operates online while the others are executed offline, it clearly
stands out in comparison. Despite the inherent challenges of real-time processing, our
approach achieves highly satisfactory results, effectively balancing the timely detection of
scenario changes with the avoidance of excessive updates. This highlights the robustness
and practicality of our method in dynamic environments, where online performance
is critical.

Figure 8. Performance comparison between changepoint detection algorithms and our method for
cycles 600 to 950.



J. Manuf. Mater. Process. 2025, 9, 12 16 of 22

Figure 9. Performance comparison between changepoint detection algorithms and our method for
cycles 950 to 984.

4.3. Real Use Case

This section analyzes the performance of our methodology in a real-world use case,
focusing on data collected from a machine tool under operational conditions. The use
case involves the spindle of a centerless grinding machine equipped with an NN 3016
KTN/SP bearing, manufactured by SKF. Throughout the time frame of the dataset, the
bearing initially operates in good condition. However, as more FRs are executed, signs of
deterioration start to emerge. Specifically, the bearing begins to exhibit issues with the outer
ring, causing the spindle to resonate at its BPFO frequency. Figure 10 illustrates the damage
to the outer ring. Eventually, an intervention is performed after the failure occurs, and the
machine resumes operation under a new normal, where further deterioration of the bearing
is controlled. To the best of our knowledge, no previous work has addressed this issue by
integrating information about the kinematic chain. Additionally, the limited amount of
available data makes the application of DL techniques impractical. Furthermore, obtaining
real industrial data where the rotating component’s condition is clearly detectable is a
challenging task. These factors complicate the comparison with other approaches, failure
types, and similar studies.

Figure 10. Spalls on the bearing outer ring, highlighted with white arrows on the left, and wear in
one of the bearing balls, marked with a dotted frame on the right.
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4.3.1. FR Definition and Data Gathering

Data monitoring is done using two triaxial accelerometers placed in the front and rear
part of the spindle, as stated in [28]. The calibration of the entire system is performed by
measuring a vibration generator. This vibration generator is a small, handy, completely
self-contained vibration reference source. It is intended for rapid checking of vibration
measurement, monitoring, and recording systems using piezoelectric accelerometers, as
well as other types of vibration transducers, having a maximum weight of 210 g. The
accelerometers operate at a sampling rate of 25 kHz. On the other hand, the FR consists of
rotating a grinding spindle at 600 RPM for 12 s. The FRs are executed every two weeks,
provided it does not interfere with the production, in which case the execution could
be rescheduled.

The data gathering process is automated. Provided the machine is equipped with the
suitable IoT infrastructure, the captured data are written into a file. These data are stored in
structured files, which are indexed by the placement of the accelerometers, containing for
each placement a time series of time–acceleration tuples. These files are structured by the
location of the accelerometers. Each file type contains a series of time–acceleration tuples.
Figure 11 shows the raw signal from the accelerometer placed in the front of the spindle.

Figure 11. (left) Raw acceleration plot during a FR; (right) raw acceleration plot during a FR (detail).

4.3.2. FFT Signal Transformations

For each accelerometer, two FFT spectra are computed. Figure 12 shows the spectra
for the FR shown in Figure 11. Low frequencies are not significant for detecting peaks,
since they are masked by the non-stationary part of the series. The rotation speed of this
particular FR is 600 RPM; that is, the 10 Hz frequency. Thus, amplitude peaks appear
at 10 Hz, which is natural, since in the absence of further anomalies, it should be the
most dominant frequency. Therefore, only the amplitudes of the frequencies above 10 Hz
are considered.

4.3.3. Visual Exploration

The effectiveness of the solution is demonstrated through an example in which the
bearing mentioned above begins to deteriorate. The process of obtaining the relevant
frequency is straightforward, as the spindle’s rotation is transmitted directly from the
motor in a 1:1 ratio. The BPFO frequency of the bearing is 11.783 times its rotational
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frequency. Given that the spindle rotates at 600 RPM during the FR, the SFF for the BPFO
fault is calculated as follows:

600 RPM
60

· 11.783 = 117.83 Hz. (9)

Figure 12. FFTs in velocity (left) and demodulation (right). The data used to calculate these FFTs are
the same as in Figure 11.

Figure 13 shows how the demodulation spectra evolve over time. The bands related
to the SFF of the BPFO of that bearing are highlighted in green, and their values remain
steady until, at some point, they start to increase.

Figure 13. Evolution of the demodulation spectrum over the time of the NN 3016 KTN/SP bearing.
In green, the bands related to the SFF for the BPFO. The amplitudes of the spectrum become higher
progressively, indicating that the bearing is deteriorating.
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4.3.4. Algorithm Tuning and Anomaly Detection

The parameters of the anomaly detection algorithm must be configured to reliably
detect anomalies as early as possible. These values have been determined heuristically and
are summarized in Table 3.

Table 3. Parameters for anomaly detection algorithm.

cs dt bs Nmin a f csa

1 0.5 6 4 0.2 4

The parameters cs and csa depend on the desired sensibility. No specific rule of
thumb was followed, except for being satisfied with the level of notifications obtained.
The parameter a f = 0.2 tells that if the average of the last values is more than 20%
higher than the global average, a change in scenario will be notified; Nmin = 4 means no
notifications before four executions of the FRs. A FR is performed every two weeks, so
it took approximately two months before the new values could be evaluated using the
anomaly detection algorithm. Machine components are generally expected to have a much
longer life, so waiting during that time without making any inferences using the proposed
algorithm is considered an acceptable risk.

The evolution of the severity values over time is shown in Figure 14. In the beginning,
no notifications are issued, as no anomalous events are observed. The abnormally low
values correspond to problems with the measurement system. Then, in the end of 2021,
abnormally high severity values start to occur. This was because of an incipient problem in
the outer ring; thus, it was observed in the demodulation signal. A notification is sent to
manufacturers at the time that anomalies occur. As can be seen, the values continue increas-
ing, and more notifications and changes take place. Due to these alarms, the manufacturers
were able to perform maintenance works. Therefore, this algorithm enabled the preven-
tion of more significant damage to the rolling bearing. After detecting a few anomalies,
the algorithm automatically considers a change of scenario. After the detection of some
anomalies, the algorithm establishes a new level of normality, so no new notifications are
issued. In reality, the start of the new normality scenario corresponds to the moment when
maintenance work was performed. This automation spares the maintenance personnel
from having to manually restart the algorithm.

Figure 14. Re-stabilization of anomaly detection algorithm. The green dotted lines mark changes
in scenario.
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5. Conclusions
This work introduces an end-to-end methodology, from data gathering to fault no-

tification, for the predictive maintenance of rotary components of machine tools. This is
achieved through FRs; that is, processes that are executed periodically under the same
no-load conditions to obtain a snapshot of the machine condition. It addresses common
challenges such as data variability, limited historical datasets, and dynamic operational
conditions. By integrating domain-specific knowledge and dynamic anomaly detection,
it bridges the gap between theoretical approaches and real-world industrial needs. The
proposed methodology proves to be highly versatile, demonstrating its effectiveness in
various scenarios for detecting both concept drifts and anomalies. Moreover, when com-
bined with the extraction of key features related to the machine’s health status, it becomes
an invaluable tool for monitoring and diagnosing industrial systems.

This work opens new lines of work:

• In this work, we assume the kinematic chains to be linear. Using data extraction to
solve cases with more complex chains is an open line of work.

• Within the field of production engineering, the proposed methodology could be
applied using data gathered from repetitive manufacturing processes [29].

• It is essential to have more public datasets available in order to conduct effective
benchmarking studies.

• Developing advanced techniques that integrate anomaly detection and concept drift
detection is crucial.
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