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Abstract: Utilizing additive manufacturing (AM) techniques with shape memory alloys
(SMAs) like NiTi shows great promise for fabricating highly flexible and functionally
superior 3D metallic structures. Compared to methods relying on powder feedstocks, wire-
based additive manufacturing processes provide a viable alternative, addressing challenges
such as chemical composition instability, material availability, higher feedstock costs, and
limitations on part size while simplifying process development. This study presented
a novel approach by thoroughly assessing the printability of Ni-rich Ni55.94Ti (Wt. %)
SMA using the wire laser-directed energy deposition (WL-DED) technique, addressing
the existing knowledge gap regarding the laser wire-feed metal additive manufacturing
of NiTi alloys. For the first time, the impact of processing parameters—specifically laser
power (400–1000 W) and transverse speed (300–900 mm/min)—on single-track fabrication
using NiTi wires in the WL-DED process was examined. An optimal range of process
parameters was determined to achieve high-quality prints with minimal defects, such
as wire dripping, stubbing, and overfilling. Building upon these findings, we printed
five distinct cubes, demonstrating the feasibility of producing nearly porosity-free spec-
imens. Notably, this study investigated the effect of energy density on the printed part
density, impurity pick-up, transformation temperature, and hardness of the manufactured
NiTi cubes. The results from the cube study demonstrated that varying energy densities
(46.66–70 J/mm3) significantly affected the quality of the deposits. Lower to intermediate
energy densities achieved high relative densities (>99%) and favorable phase transforma-
tion temperatures. In contrast, higher energy densities led to instability in melt pool shape,
increased porosity, and discrepancies in phase transformation temperatures. These findings
highlighted the critical role of precise parameter control in achieving functional NiTi parts
and offer valuable insights for advancing AM techniques in fabricating larger high-quality
NiTi components. Additionally, our research highlighted important considerations for
civil engineering applications, particularly in the development of seismic dampers for
energy dissipation in structures, offering a promising solution for enhancing structural
performance and energy management in critical infrastructure.

Keywords: additive manufacturing (AM); shape memory alloys (SMAs); Ni-rich NiTi; wire
laser-directed energy deposition (WL-DED); printability assessment
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1. Introduction
The NiTi alloy, commonly referred to as nitinol, is recognized as a versatile functional

material valued for its shape memory effects and superelasticity, making it highly suitable
for a range of applications, including those in biomedical, aerospace, and civil engineer-
ing [1,2]. In particular, the exceptional properties of NiTi alloys are highly beneficial in civil
engineering, where their ability to endure substantial strains without permanent damage is
crucial. This makes them ideal for energy dissipation applications, such as seismic dampers,
which mitigate vibrations from earthquakes and wind. By enhancing the resilience and
longevity of structures, NiTi-based dampers address the growing demand for durable
infrastructure capable of withstanding natural disasters and the challenges posed by aging
buildings [3,4]. In recent years, additive manufacturing (AM) techniques have opened new
possibilities for fabricating NiTi components with complex geometries, reduced material
waste, and enhanced functionality and production rates [5–7].

Among AM methods, laser powder bed fusion (LPBF) [8–19] and direct energy deposi-
tion (DED) have emerged as practical options for producing customized NiTi parts [20–23].
DED has attracted significant attention for its ability to handle large material volumes and
fabricate parts with superior accuracy and surface quality. This technique involves the
utilization of a power source, such as a laser, plasma arc, or electron beam, in combination
with a feedstock comprising either wire or powder [24–27]. Both wire and powder feeding
methods yield comparable material and microstructural characteristics.

Powder-based DED, in particular, is effective for fabricating complex NiTi compo-
nents, enabling precise control over microstructure and mechanical properties. Numerous
studies explored the feasibility of using NiTi powder with DED techniques to manufacture
high-quality, efficient parts. Kumar et al. [28] showed that increasing laser power reduces
porosity but leads to the formation of Ti2Ni precipitates, enhancing hardness at the cost
of reduced recovery properties. Similarly, Baran and Polanski [29] reported that lower
laser scan speeds alter grain structure and promote secondary phase formation, influenc-
ing transformation temperatures and mechanical performance. Zheng et al. [30] found
that while DED techniques result in higher strengths, they also exhibit lower elongation
compared to selective laser melting (SLM), mainly due to porosity and phase precipitation.
Despite the advantages of utilizing powder in the DED technique, it presents challenges,
including contamination during preparation and deposition, limited material availability
and component size restrictions, and increased production time and costs due to addi-
tional powder handling and recycling steps. To overcome these limitations, wire-based
DED processes were explored, offering advantages such as enhanced composition con-
trol, reduced contamination risks, and higher deposition rates. In the case of NiTi, wire
is the most widely available semi-finished form of the material. According to industry
estimates, approximately 80–90% of all NiTi material produced for industrial applications
is in wire form. The widespread availability of wire in diameters from 0.0127 mm to 1.5 mm
make it an attractive option for DED, effectively addressing many challenges of powder-
based DED [31–33]. Wire-based DED methods, including wire arc additive manufacturing
(WAAM), wire laser DED (WL-DED), and electron beam DED, have gained significant
attention for medium- to large-scale applications. These methods offer high deposition
rates, cost-effectiveness, and reduced material waste by eliminating the need for extensive
powder handling

Wire arc additive manufacturing (WAAM) emerged as an effective technique for
fabricating NiTi components, particularly in large-scale applications [34–36]. Extensive
studies examined the impact of process parameters on the microstructure and functional
properties of WAAM-fabricated NiTi alloys [37–39]. Wang et al. [40] studied the effect of
deposition current on WAAM-fabricated NiTi components. It was found that deposition
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current significantly influences microstructure and properties, with lower currents improv-
ing functional performance by promoting favorable crystal orientation and finer grains.
Liu et al. [41] emphasized the importance of optimized deposition speed for achieving
uniform microstructures and enhancing superelasticity and shape memory properties.
Yu, Lin et al. [37] showed that CMT-based WAAM for NiTi alloys results in strong in-
terlayer bonding and minimal defects, with optimal mechanical properties occurring at
specific distances from the substrate, highlighting the importance of precise control over
deposition parameters.

Despite its advantages, WAAM faces challenges due to high heat input, which can
negatively affect part quality through melt pool geometry issues, residual stress, and dis-
tortion [42]. Laser- and electron-based DED processes offer more focused energy, favoring
near-net-shape manufacturing [24]. However, electron beam DED experiences reduced
precision, material distortion, and higher costs due to vacuum requirements [43]. These
limitations highlight the potential benefits of WL-DED, which provides a more controlled
deposition environment. WL-DED enables precise control over key process parameters,
such as laser power, travel speed, and wire feed rate, leading to improved mechanical
properties and enhanced microstructural integrity in NiTi alloys. The feasibility of the
LW-DED method was validated with a variety of materials, including Ti-alloys, Al-alloys,
and stainless steels [24,42–45]. Several studies emphasized the significant impact of these
parameters on the final product quality. Typically, the development of process parameters
begins with evaluating single tracks to identify optimal deposition conditions, which are
then applied to fabricate 3D parts. Akbari et al. [46] developed a robotized laser wire
additive manufacturing system to evaluate process feasibility through diverse geometry
fabrication. Challenges such as droplet formation, wire dripping, adherence issues, ir-
regular initial layer deposition, and wire tip deviations were identified, leading to the
need for optimizing process parameters. Their findings showed that higher laser power
reduced bead height and increased width, while higher travel speed decreased height with
little effect on width. Increased wire feed speed raised height and reduced width. Wang
et al. [47] studied the WL-DED processing of AA7075 to minimize porosity in thin-wall
structures. They adjusted laser power in the initial layers and stabilized it during the build,
finding that porosity was mainly influenced by energy input and the wire feed rate to scan
speed ratio. Higher energy levels significantly reduced porosity, improving the overall
quality of the structure. Motta et al. [48] optimized WL-DED process parameters using
stainless steel wire, creating a process map to identify stable deposition regions. Multi-layer
tests showed that a power decay strategy reduced defects at higher power levels compared
to constant power, emphasizing the importance of adaptive parameter control for ensuring
process stability.

Previous studies on additive manufacturing (AM) of NiTi alloys primarily focused on
techniques such as powder-based DED, LPBF, and WAAM. However, the application of
WL-DED in processing NiTi alloys remains relatively unexplored. Given the novelty of WL-
DED technology and its potential for NiTi application, there is a pressing need to develop
optimized processes for manufacturing high-quality components. Thorough optimization
and precise selection of process parameters are essential in manufacturing NiTi components
that meet the precise requirements of application-specific shape memory properties. This
study aimed to optimize the process parameters, including laser power, transverse speed to
fabricate defect-free NiTi components using laser wire DED. Using the oxide-free Ni55.94Ti
(Wt. %) wire, a series of single tracks were fabricated with laser power ranging from 400 to
1000 W and transverse speed of 300–900 mm/min. The melt pool shape and geometry were
evaluated to create a process map and identify the optimal region for fabricating dense
parts. The identified parameters, along with their associated energy densities, were then
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applied to fabricate cubes for comprehensive analysis. This analysis involved evaluating
various properties, including density, impurity pick-up, phase transformation temperature,
and hardness, essential characteristics for application in dampers, where the shape memory
properties are critical for performance.

2. Materials and Methods
2.1. Materials

In this study, Ni-rich Ni55.94Ti (Wt. %) wire with a diameter of 1.14 mm, supplied by
Fort Wayne Metals (FWM, South Bend, IN, USA), was employed as the starting material.
The substrate material consisted of NiTi cast supplied by FWM, machined to dimensions of
140 mm × 140 mm × 12 mm, with its surfaces cleaned using isopropanol before printing.
The chemical compositions of both wire and the substrate are provided in Table 1.

Table 1. Chemical composition of the Ni-rich NiTi wire and substrate (Wt. %).

Alloy Ni Ti C O N Co Cu Cr Fe Nb

NiTi Wire 55.94 Balance 0.0317 0.0300 0.0006 0.0001 0.0008 0.0005 0.0085 0.0001
NiTi Substrate 55.90 Balance 0.0010 0.0290 0.0010 0.0030 0.0050 0.0030 0.0020 0.0030

Prior to the experiments, the Ni-rich NiTi wire was subjected to several processing
steps, including straight annealing and cold drawing, to achieve approximately 40–50% cold
work. In the final processing step, the Ni-rich NiTi wire was heat-treated at 500 ◦C for one
minute to induce the desired microstructural changes. This heat treatment facilitated the
recrystallization of the cold-drawn nitinol wire, a crucial step for optimizing its functional
properties [49–53].

Differential scanning calorimetry (DSC) analysis was performed on the heat-treated
wire to characterize its phase transformation behavior, using a TA Instruments DSC 250
(Waters Discovery, New Castle, DE, USA), employing a heating/cooling rate of 10 ◦C/min.
Each sample was subjected to two cycles between −85 and 100 ◦C to ensure thorough
analysis. Nitrogen was used as a protective gas to prevent oxidation during the process. The
DSC curve and the corresponding transformation temperatures are presented in Figure 1
and Table 2. The heat-treated wire exhibited a single-stage transformation from the B2
austenite phase to the B19’ martensite phase during cooling. Upon heating, the wire showed
a two-stage transformation, first from B19’ to the R-phase and then from the R-phase to the
B2 austenite phase.
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Table 2. Transformation temperature of the oxide-free NiTi wire.

Ms (◦C) Mf (◦C) As (◦C) Af (◦C)

NiTi wire 10.12 −18.32 −19.24 14.46

The small hysteresis observed in the DSC curves indicates that the peaks correspond
to the R-B2 transformation. This behavior is attributed to the high nickel content in the
alloy, which results in the formation of a high density of tiny Ni4Ti3 precipitates within
the B2 matrix [54–56] These precipitates enhance the shape memory behavior of the NiTi
alloys primarily by reducing the Ni content in the matrix, which increase the martensitic
transformation temperatures and improves thermal and mechanical properties. They create
localized stress fields that facilitate nucleation of the martensitic transformation, ensuring
better control and reversibility of the shape memory effect. Additionally, these precipitates
strengthen the matrix by their coherent interfaces, reducing plastic deformation during
phase transformation cycles and stabilizing the desired phases for enhanced shape recovery
and operational reliability. In addition to the influence of Ni4Ti3 precipitates, cold working
introduces dislocations, which are associated with deformation texture and can influence
phase transformations. The DSC analysis confirms the presence of the R-phase in the
cold-worked wire. While DSC cannot directly attribute the formation of the R-phase to
dislocations, the literature suggests that dislocations generated during cold working are
a potential factor contributing to its formation [49,57]. During heat treatment, aging also
takes place, leading to the formation of Ni4Ti3 precipitates. For the cold-worked specimen,
heat treatment induces recovery processes that relax the internal stresses in the matrix
and cause partial recrystallization [51,58]. These microstructural changes help stabilize the
R-phase during heating, contributing to the observed transformation behavior.

2.2. Additive Manufacturing of NiTi Parts

The fabrication process utilized a commercial DED printer (Meltio M450, DIRECT-
EDMETAL 3D, S.L., Linares, Jaen, Spain) equipped with six constant wave diode lasers,
each with a power of 200 W and a wavelength of 976 nm (Figure 2a). Figure 2b shows
the printing chamber, containing a substrate, coaxial wire deposition head with material
supply, shielding gas nozzle, and lasers. Each individual laser beam exhibited a near-
Gaussian energy distribution with a diameter of approximately 1 mm at the deposition
plane (Figure 2c). The alignment of six laser beams enabled coaxial feeding and sufficient
energy coverage for fully melting the NiTi wire. Laser alignment played a critical role
in ensuring the quality of the printed parts and preventing defects. Therefore, periodic
alignment checks were necessary to verify the correct laser positioning. Inert argon gas
(25 L/min) and air conditioners were utilized to minimize oxidation and excessive heating
during the laser-deposition process, maintaining a pressure of 4 bars in the print chamber.
The Meltio Horizon 1.2.0 software was employed to generate the codes controlling the
scanning pattern. Throughout the process, the deposition head remained stationary while
the building platform was moved both laterally and vertically.
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Sample fabrication and characterization were divided into two steps: (1) single tracks
and (2) bulk samples.

2.2.1. Single-Track Experiments

A comprehensive understanding of the melt pool behavior, particularly its shape and
stability, is essential for ensuring the production of defect-free 3D printed parts. These
characteristics are significantly influenced by two key processing parameters: laser power
(P, in watts) and traverse speed (V, in mm/min). Therefore, knowledge of how these
parameters affect the melt pool geometry is essential for successful 3D printing with
minimal defects. To investigate the relationship between processing parameters and melt
pool dimensions, single-track experiments were conducted. Thirty single tracks were
fabricated using various combinations of laser power and transverse speed to observe their
impact on the melt pool’s shape and geometry. Single tracks, each 20 mm long with 5 mm
spacing between adjacent tracks, were printed on the NiTi substrate. The NiTi substrate
was used to mitigate potential variations in material composition between the wire and
the substrate, which could affect the melt pool characteristics. The selection of process
parameters was based on their linear energy density, which combines laser power and
transverse speed to represent the total energy delivered to the material during printing.
Laser power and transverse speed were selected as the primary variables influencing
energy density as follows:

LED = P/v

(
J

mm

)
(1)

where LED is linear energy density, P is laser power, and V is transverse speed, as commonly
found in welding literature [59,60]. A 6 × 5 test matrix, with parameters listed in Table 3,
was used to fabricate single tracks. This characterization process allowed for narrowing
down the parameters to identify a suitable processing window for further investigation.
Optimal single-track parameter sets were considered to have a consistent deposition and
be free from characteristic build defects including lack of fusion, wire stubbing, and wire
dripping. After fabrication, top-view images of the single-tracks were captured using
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optical microscopy, OM, Keyence VHX-6000 (Keyence, Itasca, IL, USA, and the width of
each single track was measured to assess track continuity. Electrical discharge machining
(EDM 350, GF Machining Solutions LLC, Lincolnshire, IL, USA) was used to cut cross-
section samples from the NiTi substrate, which were subsequently ground to 1200 grit
and polished using a 1 µm colloidal silica solution. Geometrical measurements such as
single-track width (w), height (h), and depth of the melt pool (d), as shown in Figure 3. In
the final processing step, the Ni-rich NiTi wire was heat-treated at 500 ◦C for one minute to
induce the desired microstructural changes, were determined using the OM.

Table 3. Process parameters (P, V) and corresponding linear energy density for the NiTi single-
track process.

Laser power, P (W) 400, 600–1000

Transverse speed, V (mm/min) 300, 450, 600, 750, 900

Linear energy density, (J/mm) 26.66–200

J. Manuf. Mater. Process. 2025, 9, x FOR PEER REVIEW 7 of 27 
 

 

using optical microscopy, OM, Keyence VHX-6000 (Keyence, Itasca, IL, USA, and the 
width of each single track was measured to assess track continuity. Electrical discharge 
machining (EDM 350, GF Machining Solutions LLC, Lincolnshire, IL, USA) was used to 
cut cross-section samples from the NiTi substrate, which were subsequently ground to 
1200 grit and polished using a 1 µm colloidal silica solution. Geometrical measurements 
such as single-track width (w), height (h), and depth of the melt pool (d), as shown in 
Figure 3. In the final processing step, the Ni-rich NiTi wire was heat-treated at 500 °C for 
one minute to induce the desired microstructural changes, were determined using the 
OM. 

Table 3. Process parameters (P, V) and corresponding linear energy density for the NiTi single-track 
process. 

Laser power, P (W) 400, 600–1000 
Transverse speed, V (mm/min) 300, 450, 600, 750, 900 
Linear energy density, (J/mm) 26.66–200 

 

Figure 3. Geometrical measurements of single-track. w: single-track width; h: single-track height; d: 
penetration depth. 

2.2.2. Fabrication of Bulk Samples 
After developing the initial printability map, specific combinations of laser power, 

transverse speed, and wire feed rate were selected from the printable region. These pa-
rameters were then used to fabricate bulk samples for further analysis. This analysis in-
vestigated the effects of processing parameters on the microstructure, phase transfor-
mation behavior, and hardness of the fabricated NiTi samples. 

To ensure the reliability of the results, four cube samples, each measuring 20 mm × 
20 mm × 20 mm, were fabricated for each of the five sets of optimized parameters identi-
fied from the smooth region of the printability map. The results presented in this paper 
are based on the average measurements obtained from these four cubes. All prints were 
produced using a bi-directional scanning strategy at ±45°, alternating by 90° with each 
layer. This approach ensured proper anisotropy and addressed potential gaps in complex 
geometries where the deposited line width exceeds the gap size. This scanning approach 
minimizes residual stress accumulation along specific directions [61]. An overlap of 60% 
between infill lines was set to minimize discontinuities during the deposition process. THe 
volumetric energy density (VED) for each cube was calculated, and the results were com-
pared based on increasing energy density as follows [62]: Volumetric energy density =  Laser power ሺWሻWire feed rate ሺmm s⁄ ሻ ൈ laser spot area ሺmmଶሻ  J/mmଷ (2)

where the wire feed rate determines the amount of material deposited. The layer height 
was kept constant at 1 mm for all cubes. 

  

Figure 3. Geometrical measurements of single-track. w: single-track width; h: single-track height; d:
penetration depth.

2.2.2. Fabrication of Bulk Samples

After developing the initial printability map, specific combinations of laser power,
transverse speed, and wire feed rate were selected from the printable region. These parame-
ters were then used to fabricate bulk samples for further analysis. This analysis investigated
the effects of processing parameters on the microstructure, phase transformation behavior,
and hardness of the fabricated NiTi samples.

To ensure the reliability of the results, four cube samples, each measuring
20 mm × 20 mm × 20 mm, were fabricated for each of the five sets of optimized pa-
rameters identified from the smooth region of the printability map. The results presented
in this paper are based on the average measurements obtained from these four cubes. All
prints were produced using a bi-directional scanning strategy at ±45◦, alternating by 90◦

with each layer. This approach ensured proper anisotropy and addressed potential gaps in
complex geometries where the deposited line width exceeds the gap size. This scanning ap-
proach minimizes residual stress accumulation along specific directions [61]. An overlap of
60% between infill lines was set to minimize discontinuities during the deposition process.
THe volumetric energy density (VED) for each cube was calculated, and the results were
compared based on increasing energy density as follows [62]:

Volumetric energy density =
Laser power (W)

Wire feed rate
(mm

s
)
× laser spot area (mm2)

J/mm3 (2)
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where the wire feed rate determines the amount of material deposited. The layer height
was kept constant at 1 mm for all cubes.

2.3. Material Characterization

After cube fabrication, each sample was cut from the substrate using an EDM machine.
To avoid the influence of the heat-affected zone (HAZ) on the cubes, EDM was performed at
a very low speed and a few millimeters away from the HAZ. This approach minimized the
thermal impact and prevented undesired changes in the phase transformation temperatures,
such as the precipitation of nickel-rich phases. The cubes were then cross-sectioned into
five segments parallel to the building direction. Three segments were mounted in epoxy
resin along the build direction, ground to 1200 grit, and polished with colloidal silica
solution. These prepared segments were utilized for visualizing melt pool formation and
conducting density measurements via image analysis. Quantitative density measurements
were conducted on three sections using an optical microscope (Keyence VHX 6000, Itasca,
IL, USA) at 100× magnification. The analysis focused on regions with the highest volume
fraction of visually identified pores. Porosity was quantified using ImageJ software, 1.54d,
with the average value across the sections reported as the final porosity measurement.
Scanning electron microscopy (SEM) was conducted using an FEI Quanta 3D FEG (Thermo
Fisher Scientific, Waltham, MA, USA) to verify high density and minimal pore formation
in samples fabricated with optimal processing parameters. Following imaging, the three
polished sections were subjected to hardness testing using a Vickers micro-hardness tester
model 900-391D. A force of 300 lb-f (pound force) was applied from bottom to top across
each sample’s cross-section. Fifteen indentations per cube (top, middle, bottom) were
measured, with the indentation marks positioned 5 mm from the center of the melt pool
to evaluate the hardness characteristics. Additionally, three specimens were extracted
from the bottom, middle, and top regions of the remaining two segments of each cube to
analyze the transition of transformation temperatures (TTs). The cube’s transformation
was studied using differential scanning calorimetry (DSC) using a TA Instruments DSC 250
(Waters Discovery, Delaware, USA), employing a heating/cooling rate of 10 ◦C/min. Each
sample was subjected to two thermal cycles between −85 and 100 ◦C to ensure thorough
analysis, with nitrogen gas used as a protective atmosphere to prevent oxidation during
the DSC testing. Impurity content specifically oxygen content, was assessed using the
ELEMENTRAC ONH-p analyzer. Solid ingots weighing approximately 100 ± 5 mg were
employed for ONH-p, within a nickel flux. Prior to analysis, the analyzer was calibrated
using appropriate calibration materials to ensure precise measurements. Each test was
conducted three times on samples from each cube section (bottom to top), producing an
average oxygen concentration measurement, reported as the final impurity level.

3. Results and Discussion
3.1. Single-Track Analysis from Top-View to Cross-Section

The initial assessment of single-track quality was conducted by analyzing top-view
images of the scan tracks. It was observed that both laser power and transverse speed
significantly influenced the stability of these tracks. Figure 4 illustrates the morphologies of
thirty single tracks deposited at various laser powers (400 to 1000 W) and transverse speeds
(300 to 900 mm/min), with detailed specifics outlined in Table 3. Significant variations
in size and shape were observed in the single tracks as laser power and transverse speed
were changed. At lower laser powers of 400 W and transverse speeds ranging from 300
to 900 mm/min, insufficient heat input prevented the wire from melting and depositing
properly, resulting in the deposition of unmelted wire.
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Conversely, increasing the laser power to 600–800 W, along with higher transverse
speeds, produced continuous and uniform tracks. Keeping a constant speed of 300 mm/min
while increasing the laser power resulted in a thicker single track. Notably, a higher laser
power of 1000 W produced wider tracks due to excessive heat input, leading to a rough,
wavy surface that indicates over-melting. In contrast, increasing the transverse speed
caused the track width to decrease. For example, at a fixed laser power of 600 W, in-
creasing the transverse speed resulted in a narrower track. A higher transverse speed of
900 mm/min, however, demonstrated inadequate penetration due to decreased heat input.
As a result, reduced substrate penetration limited the depth of material interaction with the
base substrate. Figure 5 illustrates the single-track cross-section, which is essential for eval-
uating single-track part quality and validating the printability map. During printing, the
depth of the melt pool is controlled by a dynamic equilibrium between the heat conduction
within the melt pool and the material beneath it [63].

It is evident that laser power and transverse speed are the primary processing parame-
ters influencing melt pool geometry in WL-DED. At the minimum power setting of 400 W
and speeds ranging from 300 to 900 mm/min, there was insufficient energy to fully melt
the wire. Consequently, only melted wire was deposited onto the NiTi plate without proper
contact with the substrate, resulting in no penetration and the absence of a melt pool.
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Increasing the laser power increased the melt pool depth by intensifying energy
absorption and heat input into the wire material [64]. At the maximum laser power of
1000 W, over-melting occurred, resulting in a deeper melt pool. The elevated power
level allowed more material to melt into the track, thereby increasing the size of the melt
pool. In contrast, when the transverse speed was increased, the melt pool depth decreased,
resulting in a shallower melt pool. This occurred due to the decreased heat input and shorter
exposure time of the wire material to the laser beam. Consequently, most of the laser energy
was absorbed by the wire for melting, leaving less energy transferred to the substrate. As a
result, the rapid melting of the wire feedstock and reduced energy transfer to the substrate
led to a smaller and shallower melt pool [65]. Single tracks produced with parameter
combinations such as 600 W—600 mm/min, 700 W—600 mm/min, 700 W—750 mm/min,
700 W—900 mm/min, and 800 W—900 mm/min exhibit moderate energy input. These
combinations result in consistent melt pool shapes with sufficient penetration depth.

Figure 6 illustrates the influence of laser power and transverse speed on the width and
depth of the 30 single-track deposits. As shown in Figure 6a, increasing the laser power
from 600 W to 1000 W led to a larger deposition width. At a constant transverse speed,
increasing the laser power improved the wire’s absorption of laser energy, which facilitated
droplet formation and its transition into the molten pool. This, in turn, elevated the molten
pool temperature and reduced its solidification rate. As a result, the molten metal spread
outward, leading to an increase in the deposit size. For instance, at a constant transverse
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speed of 750 mm/min, as the laser power was increased from 600 to 1000 W, the width
of the melt pool increased from 1.7 mm to 2.49 mm. On the other hand, keeping the laser
power constant while increasing the transverse speed led to a reduction in track width.
With a laser power of 600 W, the deposit width decreased from 2.38 mm to 1.62 mm as
the transverse speed was increased from 300 to 900 mm/min. Figure 6b shows that both
laser power and transverse speed significantly influenced the amount of melting and the
penetration depth. When energy density was high (i.e., high power, low speed), a greater
depth of penetration was observed. Specifically, at lower transverse speeds (300 mm/min)
and higher power levels, the melt pool depth increased notably, from 245.07 µm at 600 W
to 357.9 µm at 1000 W. Conversely, as the transverse speed increased, both the input energy
density to the molten pool and the mass of the fed wire decreased. According to the law
of conservation of mass, this led to a reduction in the volume of the molten pool per unit
length. As a result, the melt pool depth decreased from 288.76 µm to 36.56 µm as the
transverse speed increased from 300 to 900 mm/min at a power level of 700 W.
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The evaluation of single-track quality was classified as either “acceptable” or “de-
fective”, based on track morphology and melt pool dimension. Five distinct states were
identified: a regular and smooth region, and defects including no fusion, stubbing, overfill-
ing, and wire dripping. Figure 7 illustrates top-view optical microscopy (OM) images of
single tracks representing these five states, providing a detailed classification of each. No
fusion (Figure 7a) occurred due to insufficient energy input, resulting from low laser power
and high transverse speed (400 W and 900 mm/min). In these cases, no visible scan track
was formed on the substrate, and only heat treatment was applied based on the ablation
trace [66]. Stubbing (Figure 7b) occurred in tracks printed with an energy density ranging
from 26.66 to 53.33 J/mm (using a low laser power of 400 W and transverse speeds from
450 to 900 mm/min). In these cases, the wire made contact with the base plate surface but
did not receive enough energy, resulting in unmelted wire residues within the track [48,67].
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The overfill defect (Figure 7c) occurred when higher laser power settings, particularly
within the energy density range of 80–100 J/mm, were used, resulting in increased heat
input to the deposition zone. This excess heat caused the material to melt and flow more
extensively, leading to deposition beyond the intended track boundaries. While a continu-
ous track remained during overfill, the excess volume of material could negatively affect
processability. When the energy density exceeded 100 J/mm, wire dripping occurred [68],
as shown in Figure 7d. In this case, the wire was prematurely melted by the laser, causing
it to drip above the melt pool and create a rough surface with irregular grooves. This phe-
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nomenon was observed at transverse speeds of 300 and 450 mm/min, with power levels
ranging from 400 to 1000 W. These uneven surfaces can lead to crack formation, which may
serve as stress concentration points under load or deformation [69]. The smooth region,
shown in Figure 7e, was characterized by an energy density range from 50 to 70 J/mm. In
this region, a continuous transfer of wire into the melt pool was observed, with the wire
tip melting at or near the intersection point with the melt pool. These optimal processing
conditions, which resulted in smooth wire transfer, were achieved with intermediate laser
power values and higher-speed settings (600–800 W power and 600–900 mm/min speed).

3.2. Printability Map

To prevent detrimental defects in builds, it was crucial to define the boundaries of four
defect-generation mechanisms on the printability map. This ensures precise identification
of the optimal, smooth printable region for WL-DED processing of NiTi. Figure 8 presents
the full process window, highlighting both defective and stable regions. Notably, process
stability is achieved only within a limited portion of the experimental range. It was found
that a minimum laser power of 600 W was necessary to enter the stable zone. Notably,
equivalent levels of linear energy density could lead to either defective or successful
deposition conditions. For instance, when the linear energy density exceeded 66.67 J/mm,
the deposition conditions shifted from defect-prone to successful. However, decreasing both
power and transverse speed subsequently led to stubbing. Similarly, maintaining constant
power while reducing transverse speed resulted in defective deposition, eventually causing
wire dripping. These observations are consistent with findings from previous studies on
laser metal wire DED with lateral feeding [67].

J. Manuf. Mater. Process. 2025, 9, x FOR PEER REVIEW 14 of 27 
 

 

process stability is achieved only within a limited portion of the experimental range. It 
was found that a minimum laser power of 600 W was necessary to enter the stable zone. 
Notably, equivalent levels of linear energy density could lead to either defective or suc-
cessful deposition conditions. For instance, when the linear energy density exceeded 66.67 
J/mm, the deposition conditions shifted from defect-prone to successful. However, de-
creasing both power and transverse speed subsequently led to stubbing. Similarly, main-
taining constant power while reducing transverse speed resulted in defective deposition, 
eventually causing wire dripping. These observations are consistent with findings from 
previous studies on laser metal wire DED with lateral feeding [67]. 

 

Figure 8. A process window map of NiTi single tracks illustrating different defects and stable point. 

3.3. Analysis of Bulk Cubes 

The cubes printed using the optimal single-track processing parameters, as specified 
in Table 4, exhibited a smooth surface finish and uniform shape with minimal discolora-
tion on both the top and bottom surfaces, as shown in Figure 9a. This discoloration results 
from varying cooldown rates across the parts; the outer shell experiences more oxidation 
than the inner areas because it cools more slowly in non-argon shielded regions after each 
layer is printed. Despite this, the cubes predominantly exhibit a silver color, indicating a 
low degree of oxidation [70]. Figure 9b illustrates an example of a defective cube printed 
with a power of 900 W and a transverse speed of 600 mm/min. As observed, the high 
energy input cause thermal energy to accumulate in the material, leading to overheating. 
This overheating results in defects such as porosity, high surface roughness, and dimen-
sional inaccuracies [71]. 

Table 4. Process parameters used in WL-DED NiTi cube parts. 

Parameter Set # Laser Power (W) Transverse Speed (mm/min) Wire Feed Rate (mm/s) Energy Density (J/mm3) 
1 600 600 9.8 60 
2 700 600 9.8 70 
3 700 750 12.25 56 
4 700 900 14.75 46.66 

Figure 8. A process window map of NiTi single tracks illustrating different defects and stable point.

3.3. Analysis of Bulk Cubes

The cubes printed using the optimal single-track processing parameters, as specified
in Table 4, exhibited a smooth surface finish and uniform shape with minimal discoloration
on both the top and bottom surfaces, as shown in Figure 9a. This discoloration results from
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varying cooldown rates across the parts; the outer shell experiences more oxidation than
the inner areas because it cools more slowly in non-argon shielded regions after each layer
is printed. Despite this, the cubes predominantly exhibit a silver color, indicating a low
degree of oxidation [70]. Figure 9b illustrates an example of a defective cube printed with
a power of 900 W and a transverse speed of 600 mm/min. As observed, the high energy
input cause thermal energy to accumulate in the material, leading to overheating. This
overheating results in defects such as porosity, high surface roughness, and dimensional
inaccuracies [71].

Table 4. Process parameters used in WL-DED NiTi cube parts.

Parameter Set
#

Laser Power
(W)

Transverse
Speed (mm/min)

Wire Feed
Rate (mm/s)

Energy Density
(J/mm3)

1 600 600 9.8 60
2 700 600 9.8 70
3 700 750 12.25 56
4 700 900 14.75 46.66
5 800 900 14.75 53.33
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3.3.1. Cross-Sectional Analysis of NiTi Cubes

The cross-sectional analysis of the melt pool reveals the track lines and melt pool
boundaries, as indicated by the black dashed lines (Figure 10). The cubes were cut parallel
to the building direction, providing insights into the melt pool characteristics during layer-
by-layer deposition. The printing strategy initiated from the longest diagonal of the square,
creating a triangular pattern that progressed towards one side, then returned to the center,
continuing in this manner. This pattern is reflected in the shapes of the melt pools, as
shown by the dashed red line.

This cross-sectional view clearly shows the melt pool boundaries. As reported in the
literature [72], the melt pool shape in WL-DED can vary depending on the local cooling
rate. In this study, due to the inherently rapid cooling rates associated with WL-DED, the
melt pool primarily exhibited an elongated oval geometry. The pink lines in the figure
represent two consecutive layers and indicate their respective thicknesses. The melt pool
for Layer 2 is clearly visible, as it was sectioned parallel to the building direction. However,
for Layer 1, which was printed after a 90-degree rotation, the melt pool is not apparent in
this cross-section due to the change in orientation.
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Effect of Energy Density on the Melt Pool Microstructure

Figure 11a–c present a cross-sectional analysis of the melt pools observed in three
fabricated NiTi cubes, each printed with different energy densities ranging from low to
high. The cube printed at the energy density of 46.66 J/mm3 exhibited a well-defined
and consistent melt pool shape, which was considered optimal for the wire laser-directed
energy deposition (DED) process (Figure 11a). The melt pool width was similar to that of
the other cubes, ensuring proper fusion between layers. At the intermediate energy density
of 56 J/mm3, shown in Figure 11b, the melt pool shape appeared elongated and oval. This
elongated shape is typically desirable, as it promotes strong metallurgical bonding and
interlayer adhesion.

Increasing the energy density to 70 J/mm3 resulted in a deeper melt pool, indicating a
higher degree of melting and material flow (Figure 11c). However, the excessive energy
input caused irregular melt pool shapes and boundaries. At high energy densities, excessive
melting of the material can lead to instabilities and irregularities in both the melt pool
shape and fluid flow behavior. It is important to note that the wire laser DED process
involves dynamic and complex interactions between the melt pool, laser, and wire. The
stochastic nature of these interactions can introduce randomness and variability in the
melt pool characteristics, even at the same energy density [73]. This inherent variability
highlights the importance of carefully controlling and optimizing the process parameters to
achieve consistent and desirable melt pool geometries. Scanning electron microscopy (SEM)
analysis was performed at the center of each cube to evaluate surface quality and identify
potential defects in the fabricated NiTi cubes across a range of investigated energy densities.
As shown in Figure 11d–f, SEM micrographs of cube printed at energy densities ranging
from 46.66 J/mm3 to 56 J/mm3 displayed defect-free surfaces, with no visible pores or
cracks. This observation suggests that these energy densities promote optimal melt pool
dynamics and material flow, resulting in a well-consolidated and homogeneous surface
microstructure. However, at a higher energy density of 70 J/mm3, a distinct transition
occurred. The corresponding SEM image (Figure 11f) revealed the formation of micro-pores
on the surface of the printed cubes.
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3.3.2. Effect of Energy Input on Relative Density of NiTi Cubes

Achieving full part density in additive manufacturing (AM) remains a significant
challenge due to the complex interaction between melt pool dynamics and various process
parameters that require optimization. In wire laser-directed energy deposition (WL-DED)
specifically, porosity formation is a critical concern, as it can significantly impact the me-
chanical properties of fabricated parts [24]. Two main types of porosity can occur: interlayer
porosity and intralayer porosity. Interlayer porosity results from insufficient melting during
deposition, often leading to poor fusion between layers [74]. In contrast, intralayer porosity
is associated with the use of inert shielding gases during WL-DED [75]. These gases can be-
come trapped within the melt pool, particularly during slower solidification, and typically
manifest as spherical pores distributed throughout the layer. Given the negative impact of
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porosity on part quality, this study focused on the relative density of fabricated NiTi cubes
in favorable regions, with particular attention to the effect of energy density. As shown
in Figure 12, a clear trend emerges: the highest relative part density was achieved at an
energy density of approximately 56 J/mm3. Below this value, there was a slight decrease in
density as energy density decreased. However, a more significant drop in density occurred
at higher energy densities, particularly at 60 J/mm3. The examination of the cubes printed
at high-energy density (60 and 70 J/mm3) revealed the small spherical micropore, as shown
in the SEM images in the preceding section. These pores are likely caused by trapped
vapor resulting from heat accumulation at these elevated energy densities. Furthermore,
the proximity of these high-energy density settings to the defect zone on the established
process map suggests that process instabilities may occur at these settings.
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It is important to note that larger prints may experience even higher overall tempera-
tures due to heat accumulation during the printing process, unlike single-track experiments
conducted on a cold substrate. This additional heat can exacerbate the formation of porosity
and other defects. Optical microscopy analysis of the cubes revealed that cubes fabricated
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at lower energy densities (except for those at 60 and 70 J/mm3) exhibited relative densities
exceeding 99%. This observation indicates that the processing parameters used below the
peak density were effective in producing nearly pore-free NiTi shape memory alloy cubes
from wire feedstock. This trend aligns with the findings of Walker et al. [19], who observed
a similar pattern in NiTi parts fabricated using LPBF process. The study highlighted a
sharp decrease in density below an optimal energy density, followed by a more gradual
decline as energy density increased beyond the peak.

3.3.3. Phase Transformation Temperature Analysis
Transformation Temperature Transition from Wire to Cube

The impact of the laser direct energy deposition (DED) process on the phase transfor-
mation behavior of NiTi was investigated by comparing the transformation temperatures
(TTs) of the as-received NiTi wire feedstock with those of a fabricated, dense NiTi cube.
Figure 13 shows the DSC curve, highlighting a notable difference between the TTS of the
NiTi wire and the dense cube fabricated with an energy density of 56 J/mm3. The NiTi
wire exhibited a two-stage transformation during heating, while the printed cube demon-
strated a single-stage transformation in both the heating and cooling cycles. This shift in
phase transformation behavior can be attributed to the specific conditions encountered
during the DED process. Localized heating from the laser beam caused rapid melting and
solidification cycles within the deposited material, altering its microstructure compared
to the as-received wire. Additionally, the layer-by-layer deposition characteristics of DED
introduced residual stresses and thermal gradients within the printed cube [76]. These
internal stresses influenced the material’s phase transformation behavior, as evidenced by
the variations observed in the DSC curves.
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The DSC curve and Table 5 demonstrate that the transformation temperatures (TTs)
decrease from the NiTi wire to the fabricated NiTi cube. This shift can be attributed to
several factors related to the laser-directed energy deposition (DED) process. A key factor is
the formation of secondary phases within the NiTi matrix induced by DED. In particular, the
presence of Ti2Ni precipitates played a crucial role in reducing TTs. During DED, localized
heating promoted the diffusion of Ti within the melt pool, leading to the formation of Ti2Ni,
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a Ti-rich phase [77]. This process depleted the surrounding matrix of Ti, resulting in an
enrichment of Ni. Ni-rich matrices generally exhibit lower transformation temperatures
compared to the stoichiometric NiTi composition.

Table 5. Transformation temperature of as-revived NiTi wire and cube fabricated at energy density of
56 J/mm3.

Alloy Ms (◦C) Mf (◦C) As (◦C) Af (◦C)

NiTi wire 10.12 −18.32 −19.24 14.46
NiTi cube (Ev = 56 J/mm3) −44.2 −73.84 −40.75 −4.53

Furthermore, the continuous nature of the DED process may have increased oxygen
uptake from the surrounding atmosphere or shielding gas. This elevated oxygen level
contributed to the formation of Ti-rich oxides, such as TiO2 or Ni2Ti4Ox. Similar to the
formation of Ti2Ni, these oxides consumed Ti from the NiTi matrix, resulting in a higher Ni
content and a reduction in transformation temperatures (TTs) [78]. Figure 14 supports these
findings, as shown in the ONHp analysis graph. The graph reveals a significant increase
in oxygen content, from 266 ppm (0.0266 Wt. %) in the as-received NiTi wire to 375 ppm
(0.0375 Wt. %) in the fabricated NiTi cube. This increase in oxygen content correlates with
the enhanced formation of Ti-rich oxides during the DED process.
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Effect of Energy Density on Transformation Temperature of Cubes

Figure 15 illustrates the transformation temperatures (TTs) of 3D-printed NiTi cubes
across a range of energy densities, as determined from curves. The investigation covered
an energy density range of 46.66 to 70 J/mm3. Initially, an increase in energy density from
46.66 to 56 J/mm3 resulted in a rise in TTs (Figure 15a). This increase can be attributed
to two primary factors. First, during laser processing, Ni evaporates at a faster rate than
Ti, leading to a relative depletion of Ni and a shift towards a Ti-rich composition [79,80],
which typically increases the TTs in NiTi alloys. Second, higher processing temperatures
associated with elevated energy density promote the formation of Ni-rich phases, such as
Ni4Ti3, Ni3Ti2, and Ni3Ti. These precipitates deplete the Ni content in the matrix, thereby
increasing TTs. However, when the energy density was increased from 56 to 60 J/mm3, a
decrease in TTs (Af (◦C)) was observed, with a shift of approximately 10 ◦C from −4.53 ◦C



J. Manuf. Mater. Process. 2025, 9, 15 20 of 26

to −14.6 ◦C (Figure 15b). This reduction in transformation temperatures is primarily due
to increased oxygen absorption during the printing process and the evaporation of Ni. The
increase oxygen pickup offsets the decrease in Ni content in the matrix [81].
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Figure 15. (a) DSC curves of the fabricated cube across a range of energy densities from low to high
and (b) transformation temperatures (Af and Ms) of the fabricated cube.

As illustrated in Figure 16, an energy density of 60 J/mm3 resulted in an oxygen
content of 436 ppm (0.0436 Wt. %) compared to 375 ppm (0.0375 Wt. %) at 56 J/mm3.
The increased oxygen content promoted the formation of Ti-rich oxides, such as TiO2 or
Ni2Ti4Ox, which consume Ti from the NiTi matrix, leading to a decrease in TTs. However,
at the highest energy density of 70 J/mm3, a slight increase in TTs is observed. This
behavior can be attributed to reduced oxygen pickup and lower degree of Ni depletion at
this energy density.
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3.3.4. Hardness Evaluation of Fabricated NiTi Cubes

The hardness analysis of the fabricated NiTi cubes, shown in Figure 17, reveals that
increasing the energy density enhances the material’s hardness. This phenomenon aligns
with the findings from Saedi et al. [82] on Ni-rich NiTi alloys, which observed a similar
effect. The likely explanation for this behavior is that higher energy density leads to greater
evaporation of nickel during the laser-based additive manufacturing process. Since Ti
is inherently harder than Ni, the higher Ti content resulting from the loss of Ni likely
contributes to the observed increase in hardness at higher energy density. It is important to
note that the phase transformation study indicated that all fabricated samples remain fully
austenitic at room temperature. Therefore, variations in energy density did not significantly
affect their phase behavior at room temperature, which aligns with observed trends in
phase transformation.
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The phase transformation behavior of the as-received NiTi wire differs significantly
from those observed in additively manufactured (AM) samples. The cold-drawn NiTi wire
exhibited a hardness of approximately 350 HV, primarily due to work hardening induced
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by the 40–50% cold work during wire drawing. In contrast, the printed NiTi cubes, which
did not undergo the cold working process, displayed a lower hardness of around 290 HV.
Furthermore, the localized heat input during from the laser during additive manufacturing
acts as a form of localized heat treatment, promoting recrystallization and relieving residual
stresses induced by wire cold working [83]. These processes of recrystallization and stress
relief contribute to the lower hardness observed in the printed NiTi cubes compared to the
cold-worked wire.

4. Conclusions
This study presented a novel method for fabricating NiTi shape memory alloy compo-

nents through wire laser-directed energy deposition (WL-DED). By optimizing the WL-DED
parameters, it effectively addresses a critical gap in the field, facilitating the production
of high-quality NiTi parts with minimal defects. A comprehensive process map for WL-
DED of NiTi was established using oxide-free Ni55.94Ti (Wt. %) wire with a diameter of
1.14 mm. Through single-track experiments with varying laser power (400–1000 W) and
transverse speed (300–900 mm/min), valuable insights were gained into the relationship
between processing parameters and part quality. This innovative method provides a solu-
tion to the challenges of producing large, complex NiTi components essential for various
industrial applications.

The key findings and contributions of this research include the following:

• The single-track study found that laser power between 600 W and 800 W, combined with
transverse speeds ranging from 600 mm/min to 900 mm/min, produced the optimal
results. These parameters corresponded to an energy density range of 46.66–70 J/mm3,
offering a valuable guideline for future NiTi fabrication using WL-DED.

• The cube study demonstrated that lower to intermediate energy densities (46.66 to
56 J/mm3) produced superior results, achieving relative densities exceeding 98%,
with some samples surpassing 99%, and favorable phase transformation temperatures
for Nickel-Titanium (NiTi) components. In contrast, high energy densities resulted
in uneven surfaces, while low energy densities caused discontinuous melts, both of
which adversely affected the quality of the parts produced.

• A correlation between increasing energy density and hardness was observed, with
higher energy densities leading to greater nickel evaporation and a relative increase
in titanium content. The printed NiTi cubes exhibited a hardness of approximately
290 HV, lower than the 350 HV of cold-drawn NiTi wire, due to the absence of work
hardening and the effects of localized heat treatment during laser processing.

• High-quality NiTi parts with minimal defects were successfully produced, addressing
challenges in manufacturing large and complex components. This advancement shows
great potential for industries such as biomedical, aerospace, and civil engineering,
particularly for applications like seismic dampers for energy dissipation, which could
enhance structural resilience in earthquake-prone areas.

These findings addressed the growing demand for precise shape memory and supere-
lastic materials, offering a method for creating functional NiTi components and expanding
their potential applications across various industries.
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