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Abstract: Isotactic polypropylene (iPP) is a versatile polymer. It accounts for the second-largest
polymer consumption worldwide. However, iPP is difficult to 3D print via extrusion-based processing.
This is attributable to its rapid crystallization rate. In this study, spray-dried cellulose nanofibrils
(SDCNF) and maleic anhydride polypropylene (MAPP) were investigated to reveal their effects on
the nonisothermal crystallization kinetics and thermal expansion of iPP. SDCNF at 3 wt % and 30 wt %
accelerated the crystallization rate of iPP, while SDCNF at 10 wt % retarded the crystallization rate
by restricting crystal growth and moderately increasing the nucleation density of iPP. Additionally,
adding MAPP into iPP/SDCNF composites accelerated the crystallization rate of iPP. The effective
activation energy of iPP increased when more than 10 wt % SDCNF was added. Scanning electron
microscopy and polarized light microscopy results indicated that high SDCNF content led to a
reduced gap size among SDCNF, which hindered the iPP crystal growth. The coefficient of thermal
expansion of iPP/SDCNF10% was 11.7% lower than the neat iPP. In summary, SDCNF, at 10 wt %,
can be used to reduce the warping of iPP during extrusion-based additive manufacturing.

Keywords: additive manufacturing; fused deposition modeling; 3D printing; polypropylene;
crystallization retardant; transcrystallization; nucleation

1. Introduction

Cellulose nanofibrils (CNF) are a type of cellulose nanofiber which are derived from wood pulp
by mechanical disintegration [1]. CNF was found to be a good mechanical reinforcement for polymers
because of its high stiffness and fibril-like structure [2]. For the direct incorporation of CNF into a
hydrophobic thermoplastic matrix by conventional manufacturing methods, it is preferable that the
fiber is in dried form: this facilitates the processing stage [3]. Spray drying was reported to be a good
way of obtaining dried CNF in terms of drying costs and industrial scalability [3]. Extrusion-based
additive manufacturing (EAM) is one of the additive manufacturing methods that can be used to
print thermoplastics. Because of its low cost and simple operation, EAM is the most popular 3D
printing technique. However, EAM cannot print all thermoplastic polymers, for example, isotactic
polypropylene (iPP) [4]. Because iPP crystallizes quickly, the printed layers shrink and warp during
the deposition of subsequent layers. Table 1 displays a comparison on the crystallization rate of iPP
and poly(L-lactide) (PLLA) [5,6]. Because PLLA crystallizes much more slowly than iPP under the
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same processing conditions, PLLA is easier to use in the EAM process. Because iPP a very versatile
material with worldwide consumption, addressing its issue in 3D printing is important. To use iPP in
the EAM process, retarding the crystallization rate is required.

Table 1. A comparison on the crystallization rate of iPP and PLLA.

Materials Mn
a (g/mol) Tc

b (◦C) t1/2
c (min)

iPP 4.18 × 104 120 2.93
PLLA 4.5 × 104 120 21.5

a number-based molecular weight; b crystallization temperature; c crystallization half time.

During the EAM process, the crystallization temperature profile at the center of the bottom layer
of a specimen is shown in Figure 1 [7]. The printing orientation is along its long axis. The time period
within that increase-decrease cycle of temperature corresponds to the time required to build each layer.
The real-time temperature of one spot changes drastically when the printing nozzle is close enough
to it. When the printing nozzle moves away that spot, the temperature change is small. The average
temperature variation is also small. Therefore, two types of nonisothermal crystallization occur during
the EAM process. One is the crystallization at high cooling rate (>20 ◦C/min), which only occurs when
the nozzle is close enough to the polymer. This accounts for a very small portion of the crystallization
process. The other one is the crystallization occurring at low cooling rate (5~10 ◦C/min). When the
temperature drops below the crystallization temperature (Tc) of the polymer, the shrinkage of the
polymer is controlled by the thermal expansion of the amorphous portion. A previous study revealed
that the shrinkage of iPP above the Tc is much larger than the shrinkage below Tc when iPP is cooled
from its melt state [8]. Therefore, the crystallization is the primary force that drives iPP to shrink.
During the EAM processing, a bench-scale 3D printer (no screw in the barrel) induces extensional
flow and large-scale 3D printers (screw in the barrel) cause shear flow. Flow-induced crystallization
is an important factor which had been studied [9,10]. However, in this paper, differential scanning
calorimentry (DSC) was applied to materials at quiescent state for studying the crystallization kinetics
for simplicity.
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Figure 1. Cooling temperature profile of the bottom strand during extrusion-based additive
manufacturing (Adapted from Sun [7]).

The addition of a higher amount (~10 wt %) of nanofillers in polymer systems was found to
decrease the crystallization rate [11–13]. After drying, the SDCNF exhibits a circle-equivalent diameter
of approximately 10 µm. Moreover, the majority of SDCNF particles exhibit a spherical structure with
a small aspect ratio and smooth surface [14,15]. Those morphological properties can diminish the
nucleation ability of CNF. Because of losing its nano-scale, a larger amount of SDCNF is needed to
decelerate the overall crystallization rate of iPP as compare to CNF.

The addition of natural fibers into the iPP matrix is frequently reported to accelerate the
crystallization of iPP in nonisothermal conditions by increasing the nucleation density [16–19].
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The effect of surface treatments on the crystallization kinetics of iPP depends on the type of
treatment [20,21]. Thermal expansion of iPP or PP/PE blends was found to decrease with increasing
cellulose content [22,23]. So far, how SDCNF affects the nonisothermal crystallization kinetics and
thermal expansion of iPP has not been studied. This experiment was primarily designed to analyze the
effect of SDCNF content and MAPP on the nonisothermal crystallization kinetics of iPP at four cooling
rates (5, 10, 15, 20 ◦C/min). The cooling rates were chosen based on the previous analysis of the
crystallization temperature during 3D printing as shown in Figure 1. Thermal expansion analysis was
performed on the group with the slowest crystallization rate. The results of this study can be helpful
towards addressing the cause of iPP warping during EAM, as well as provide useful information on
processing iPP/SDCNF composites via conventional methods.

2. Materials and Methods

2.1. Materials

Isotactic polypropylene (iPP) homopolymer (H19G-01) was obtained from Ineos Olefins &
Polymers USA (League City, TX, USA). The iPP grade is specified for the extrusion of continuous
filaments. Basic iPP material properties are a density of 0.91 g/cm3, melting point of 160 ◦C, melt
flow index of 19 g/10 min (230 ◦C/2.16 kg), tensile strength (yield) of 37.2 MPa, flexural modulus of
1.78 GPa and notched Izod impact Strength of 2.8 kJ/m2. Maleic anhydride polypropylene (MAPP)
pellets (Polybond 3200) with a maleic anhydride content of about 1.0 wt % were obtained from
Chemtura Corporation (Lawrenceville, GA, USA). The MAPP has a density of 0.91 g/cm3 and a MFI
of 115 g/10 min (190 ◦C/2.16 kg). Cellulose nanofibrils suspension (~3 wt %) was obtained from the
University of Maine. SDCNF powders were produced by spray drying 1.2 wt % of the CNF suspension
on a pilot-scale spray dryer (GEA-Niro, Columbia, MD, USA). The spray drying processed parameters
were an inlet temperature of 250 ◦C, a disk spinning rate of 30,000 rpm and a feeding rate of 0.4 L/min.

2.2. Composite Manufacturing

A masterbatch was used to manufacture the SDCNF-reinforced iPP composites. More masterbatch
manufacturing details are available elsewhere [15]. Raw materials were oven-dried for 2 h at 105 ◦C.
SDCNF and iPP were hand-mixed using a fiber content of 30 wt % and metered into a co-rotating
twin-screw extruder (C. W. Brabender Instruments, South Hackensack, NJ, USA) for compounding.
The extruder process parameters were 200 ◦C across the heating sections with an extrusion speed of
250 rpm. Cooled extrudates were ground using a granulator (Hellweg MDS 120/150, Hackensack, NJ,
USA) to obtain masterbatch pellets. The masterbatch pellets, fresh iPP and MAPP were mixed and
compounded to make pellets containing 3 wt %, 10 wt % and 30 wt % SDCNF with and without MAPP.
The oven-dried compounded pellet formulations were injection molded using a Model #50 “Minijector”
at an injection pressure of 17 MPa and temperature of 200 ◦C. As-received iPP experienced exactly
same processing history to be served as a control. The formulations of the iPP/SDCNF composites are
listed in Table 2.

Table 2. Formulations of iPP/spray-dried cellulose nanofibrils (SDCNF) composites.

Samples Labels iPP (wt %) SDCNF (wt %) MAPP (wt %)

iPP iPP 100 0 0
iPP + MAPP iPP/MA 98 0 2

iPP + 3% SDCNF iPP/SDCNF3% 97 3 0
iPP + MAPP + 3% SDCNF iPP/MA/SDCNF3% 95 3 2

iPP + 10% SDCNF iPP/SDCNF10% 90 10 0
iPP + MAPP + 10% SDCNF iPP/MA/SDCNF10% 88 10 2

iPP + 30% SDCNF iPP/SDCNF30% 70 30 0
iPP + MAPP + 30% SDCNF iPP/MA/SDCNF30% 68 30 2
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2.3. Nonisothermal Crystallization Study

Nonisothermal crystallization behavior of the composites was determined using a differential
scanning calorimeter (DSC) (Instruments Q 2000, New Castle, DE, USA). About 1–2 mg of samples
were obtained from the pellets and sealed in Tzero aluminum pans. The weight was selected to ensure
that the pan lid was not broken during the pan sealing procedure. Samples were heated to 190 ◦C at a
heating rate of 50 ◦C/min and held at that temperature for 5 min to erase thermal history. Four cooling
rates (5, 10, 15 and 20 ◦C/min) were used examined for the crystallization study. Samples were cooled
down to 50 ◦C and their crystallization curves recorded. A cooling rate of 20 ◦C/min is the fastest
cooling rate the DSC achieves when the temperature is 50 ◦C. Samples were then reheated from 50 ◦C
to 190 ◦C at a temperature ramp of 10 ◦C/min to measure melting behavior. All DSC measurements
were performed in a nitrogen atmosphere at a flow rate of 50 mL/min. The crystallinity of iPP in the
composites was calculated based on the following equation:

Xc = ∆Hm/
(

∆H0
f × Φ

)
(1)

where ∆Hm is melting enthalpy of iPP, ∆H0
f is the fusion enthalpies of iPP with 100% crystallinity and

was reported to be 209 J/g from the literature [4]. The Φ is the fraction of the polymer contained in the
composites. A new sample was used for each cooling rate.

2.4. Microscopy Study

The crystal morphology of iPP/SDCNF composites was measured using a ME520 Series polarized
light microscope (PLM) (AmScope, Irvine, CA, USA). Sections of 3 µm-thick were acquired from the
cross section of injection molded specimens using a Sorvall MT2-B Ultramicrotome. Each microtomed
section was placed between a glass slide and a cover slip then transferred to a heating plate (Thermo
Scientific, Waltham, MA, USA) operated at 200 ◦C. The microtomed section remained on the hot plate
for 2 min before it was set aside and cooled to room temperature. It was observed that after 2 min of
heat exposure, sections were partially melted, generating images with better quality [14]. To visualize
the distribution of SDCNF in iPP, a scanning electron microscope (SEM) was used and (Hitachi
High-Technologies Corporation, Tokyo, Japan). The cross sections of impact fractured specimens were
directly observed using this SEM at an accelerating voltage of 15 KV.

2.5. Coefficient of Thermal Expansion (CTE)

Coefficient of thermal expansion measurements were conducted on the injection-molded
specimens along the flow direction according to ASTM D 696-16. Because iPP has a glass transition
temperature around 0 ◦C, thermal expansion measurements were performed separately over a
temperature range from −30 ◦C to 30 ◦C. The thermal expansion above Tg of iPP is larger than
that below Tg. For this study, the thermal expansion above Tg is of greater interest. The equation used
to calculate the coefficient of thermal expansion is

α = ∆L/L0∆T (2)

where ∆L is the change in length of specimen caused by temperature change, L0 is the length of
specimen at room temperature and ∆T is the change in temperature which is 30 ◦C. Three replicates
were measured for the CTE measurements.

3. Results and Discussion

3.1. Nonisothermal Crystallization Kinetics

The crystallization kinetics of iPP and its composites are displayed in Table 3. As a basic trend,
the onset temperature (To), crystallization peak temperature (Tp) and crystallinity of iPP (Xc) of all
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samples decreased as the cooling rate increased. At a slower cooling rate, more crystal nuclei can
be activated in the same time interval. Therefore, the crystallization occurs more completely during
slow cooling than fast cooling [18]. No consistent trend in the change of To and Tp was caused by
the addition of SDCNF at different fiber contents. The increase in Xc induced by the SDCNF is slight
except at 30 wt % loading level (up to 19%). This indicates that SDCNF is a weak nucleation agent
for iPP at low fiber content. The nucleation ability of natural fibers in a polymer matrix depends on
factors like fiber size, chemical composition, surface polarity and surface topography where the surface
topography is a decisive factor [24]. A coarse fiber is a better heterogeneous nucleation agent. Based on
a previous study, SDCNF is mostly a spherical particle with a smooth surface [14,15]. This explains the
weak nucleation ability of SDCNF for iPP and makes the SDCNF a suitable additive for iPP targeting
EAM processing.

Table 3. Nonisothermal crystallization parameters at various cooling rates.

Samples λ a (K/min) To
b (◦C) Tp

c (◦C) Xc
d (%) t1/2

e (min)

iPP

5 134.8 126.1 49.0 1.75
10 131.2 122.7 49.6 0.88
15 129.2 120.8 48.4 0.59
20 127.2 119.0 46.1 0.46

iPP/SDCNF3%

5 134.0 125.9 50.0 1.59
10 131.8 122.6 48.4 0.85
15 129.7 120.9 45.9 0.60
20 127.5 118.7 47.8 0.47

iPP/SDCNF10%

5 135.2 125.8 51.6 1.85
10 131.8 122.6 48.2 0.95
15 130.4 120.7 49.3 0.66
20 128.9 119.5 49.1 0.49

iPP/SDCNF30%

5 134.3 126.2 56.4 1.56
10 132.3 123.2 54 0.88
15 130.3 121.3 57.6 0.58
20 128.7 120.2 47.7 0.42

iPP/MA

5 133.4 125.8 53.4 1.51
10 130.9 122.8 51.9 0.81
15 129.4 121.0 49.3 0.56
20 127.2 119.3 47.1 0.41

iPP/MA/SDCNF10%

5 133.0 125.3 52.1 1.51
10 130.8 122.4 50.1 0.83
15 128.6 120.3 49.2 0.55
20 127.1 118.3 49.3 0.46

a λ—cooling rate; b To—onset temperature; c Tp—peak temperature; d Xc—crystallinity and e t1/2—half
crystallization time.

During nonisothermal crystallization, the relative degree of crystallinity (Xt) is a function of
crystallization temperature that can be calculated from the following equation [25]:

Xt =
∫ T

T0

(
dHc

dT
)dT/

∫ T∞

T0

(
dHc

dT
)dT (3)

where To is the onset temperature, T is the temperature at time t, T∞ is the temperature when
crystallization completes, dHc is the enthalpy of crystallization. The Xt can also be associated with the
crystallization time considering the conversion from T to t:

t = (To − T)/λ (4)
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where λ is the cooling rate.
In Table 3, the t1/2 refers to the time when 50% Xt was achieved. As cooling rate increases,

the t1/2 decreases. This trend is consistent with previous study on iPP and natural fiber-filled iPP
composites [18,26]. With the incorporation of SDCNF at 3 wt %, the t1/2 of iPP decreased by 9%
at λ = 5 K/min. At 30 wt % SDCNF content, the t1/2 of iPP was reduced by 11% at λ = 5 K/min.
SDCNF at those loading levels accelerated the crystallization rate of iPP. However, at 10 wt % loading
level of SDCNF, the t1/2 of iPP was lowered by 6%, indicating SDCNF retarded the crystallization
rate of iPP. The addition of MAPP into iPP/SDCNF composite increased the crystallization rate of
iPP by 14% at λ = 5 K/min. There are three possible reasons. First, MAPP alone is reported to be a
nucleating agent for iPP that helps to form more spherulitic sites and smaller spherulites [5]. This is
confirmed by the shorter t1/2 of iPP/MA composites in Table 3. Second, MAPP was found to increase
the equilibrium melting point of wood flour/PP composites thus enlarging the degree of undercooling
for the system by facilitating the chain relaxation at the interfaces [24]. A higher degree of undercooling
is directly associated with faster crystallization. Lastly, MAPP can improve the compatibility between
SDCNF and iPP, distributing SDCNF better in iPP and thus enhancing the nucleation ability of SDCNF.
Therefore, MAPP is not necessarily an appealing additive for EAM processing of iPP. The overall
crystallization rate of iPP depends on the nucleation rate and crystal growth rate [27]. The addition
of SDCNF at various loading levels increases the nucleation rate and retards crystal growth rate at
various degrees, yielding the observed results. Microscopy of the crystal structure can help explain
these results and will be discussed in a subsequent section. To help understand how the crystallization
kinetics behaved, in the next section, nonisothermal crystallization kinetic models were applied to fit
the experimental data.

3.2. Nonisothermal Crystallization Kinetics Modeling

3.2.1. Jeziorny Method

Both isothermal and nonisothermal crystallization processes can be described by the Avrami’s
model [26]. The relation between relative degree of crystallinity (Xt) and elapsed crystallization time (t)
is as follows:

1 − Xt = exp(−Ktn) (5)

where K is the kinetic constant related to nucleation and crystal growth and n is the Avrami exponent
that is determined by the geometry of the nucleated and grew crystals. The higher the K, the faster the
crystallization rate. In practice, the above equation is expressed in its double logarithmic form:

ln [− ln(1 − Xt)] = n ln t + ln K (6)

Plot ln[−ln(1 − Xt)] against ln t within the Xt range of (0.01~63%) yields a straight line (Figure 2).
At higher Xt, curves lose linearity because secondary crystallization and impingement of crystals
dominate the process, which makes the Avrami’s method inapplicable [28,29]. The slope of the
line is n and the intercept with the y axis is ln K. Because the crystallization temperature changes
during nonisothermal crystallization, n and K are merely curve-fitting parameters with no physical
meaning [26]. Modification of the Avrami’s model was made by Jeziorny to make it meaningful to
describe the nonisothermal crystallization kinetics [30]. The parameter K was corrected to consider the
effect of cooling rate during the test. The modified crystallization rate constant KJ was calculated by

ln KJ = (ln K)/λ (7)
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Figure 2. Plot of ln[−ln(1 − Xt)] against ln t of iPP/SDCNF10% composites according to Jeziorny
model during crystallization at various cooling rates.

Data from fitting the curves obtained from Jeziorny method are displayed in Table 4. Generally, n
decreases and KJ increases as cooling rate increases. For iPP, n varied from 4.57 to 5.33, indicative of
tridimensional crystal growth [17]. Similar n values were reported by previous research on natural
fiber filled PP [16–18]. After the SDCNF was added to the polymer, n decreases. This is because
SDCNF, being a nucleating agent, generates more heterogeneous nucleation [16]. The iPP/SDCNF3%,
iPP/SDCNF30% and iPP/MA/SDCNF10% have larger KJ than iPP at a slower cooling rate. This is
consistent with the t1/2 values in Table 3. A similar change in the KJ of iPP caused by the addition of
microcrystalline cellulose was reported [17]. The iPP/SDCNF10% has a smaller KJ than iPP, which
is consistent with the results in Table 3. Therefore, the Jeziorny method is effective in describing the
nonisothermal crystallization kinetics of iPP/SDCNF composites.

Table 4. Crystallization parameters calculated from Jeziorny method.

Samples λ a n KJ R2

iPP

5 5.33 0.49 0.991
10 4.89 0.99 0.998
15 4.60 1.11 0.999
20 4.57 1.13 0.997

iPP/SDCNF3%

5 4.33 0.58 0.983
10 5.07 1.02 0.999
15 4.30 1.10 0.998
20 3.66 1.10 0.995

iPP/SDCNF10%

5 5.19 0.48 0.997
10 3.98 0.98 0.999
15 4.23 1.08 0.999
20 3.65 1.10 0.997

iPP/SDCNF30%

5 4.26 0.62 0.995
10 4.41 1.00 0.999
15 3.75 1.09 0.999
20 3.16 1.11 0.997

iPP/MA/SDCNF10%

5 4.23 0.61 0.984
10 4.69 1.03 0.999
15 3.98 1.11 0.998
20 3.90 1.12 0.999

a λ—cooling rate.
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3.2.2. Ozawa Method

The Ozawa method considers the nonisothermal crystallization process as a sum of many
isothermal crystallization processes occurring at an infinitesimal time over the crystallization
period [31]. His mathematical model was also based on the Avrami equation:

1 − Xt = exp[−K(T)/λm] (8)

where K(T) is the crystallization constant, depending on the crystallization temperature. And m is the
Ozawa exponent. A double logarithmic form can also be converted from above equation:

ln[− ln(1 − Xt)] = ln K(T)− m ln(λ) (9)

A plot of ln[−ln(1 − Xt)] versus ln λ at different crystallization temperatures should result in
linear curves (Figure 3). Then K(T) and m can be obtained from the intersection and slope. As seen
from the Ozawa graphs, the curves are relatively linear at lower crystallization temperature. At
high crystallization temperature, the curves deviate far from linearity. The Ozawa method does not
consider the secondary crystallization which can occur at the early stage during the crystallization [16].
Therefore, the Ozawa method is not effective in describing the nonisothermal crystallization of
iPP/SDCNF composites. This conclusion is consistent with previous findings [16–18]. No additional
analysis was performed using this method.
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3.2.3. Liu Method

Liu et al. proposed a method to exactly describe the nonisothermal crystallization kinetics by
combining Avrami and Ozawa methods [32]. The equation is

ln λ = ln F(T)− α ln t (10)

F(T) = [K(T)/K]1/m (11)

α = n/m (12)

where F(T) is the degree of cooling rate required during unit crystallization time when the polymer
has a certain degree of crystallinity. The smaller the F(T), the faster the crystallization. K is the Avrami
constant, n is the Avrami exponent, K(T) is the Ozawa constant, m is the Ozawa exponent and λ is the
cooling rate. Plotting ln λ against ln t results in a linear curve as shown in Figure 4. The α and ln F(T)
can be achieved from the slope and intercept of these curves. Kinetic parameters from the Liu method
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are shown in Table 5. The α values of iPP and iPP/SDCNF are close to 1, meaning the Jezioney and
Ozawa methods are similar in modeling the nucleation mechanism and crystal geometry, especially
at low Xt. The F(T) increases monotonically with the increase of Xt, indicating that crystallization
becomes more difficult at higher Xt. The iPP/SDCNF3%, iPP/SDCNF30% and iPP/MA/SDCNF10%
slightly decreases F(T) of iPP when compared at the same Xt, meaning that SDCNF at these loading
levels accelerates the crystallization rate of iPP. The iPP/SDCNF10% has the opposite effect on F(T)
of iPP compared to the other loading levels, meaning SDCNF10% retards the iPP crystallization rate.
These findings are consistent with the information provided by t1/2 in Table 3. Therefore, the Liu
method is effective in describing the nonisothermal crystallization kinetics of SDCNF/iPP composites.J. Compos. Sci. 2018, 2, x FOR PEER REVIEW  9 of 15 

 

 
Figure 4. Plots of ln λ as a function of ln t at different Xt for iPP/SDCNF10% composites based on the 
Liu method. 

Table 5. Crystallization parameters calculated from Liu method. 

Sample Xt a (%) α F(T) R2

iPP 

10 0.95 6.50 0.999 
30 1.00 7.86 0.999 
50 1.03 8.85 0.999 
70 1.07 9.95 0.999 
90 1.16 12.38 0.998 

iPP/SDCNF3% 

10 1.10 5.80 0.999 
30 1.11 7.47 0.999 
50 1.14 8.46 1.000 
70 1.20 9.65 0.999 
90 1.29 11.97 0.994 

iPP/SDCNF10% 

10 1.01 6.51 0.996 
30 1.03 8.28 0.998 
50 1.04 9.38 0.998 
70 1.07 10.57 0.999 
90 1.11 12.62 0.997 

iPP/SDCNF30% 

10 1.00 5.52 0.988 
30 1.05 7.22 0.995 
50 1.07 8.33 0.995 
70 1.10 9.45 0.997 
90 1.14 11.53 0.997 

iPP/MA/SDCNF10% 

10 1.08 5.45 0.996 
30 1.12 7.00 0.999 
50 1.15 8.05 0.996 
70 1.18 9.13 0.993 
90 1.27 11.35 0.994 

a Xt—relative degree of crystallinity. 

3.2.4. Effective Activation Energy 

The effective activation energy (ΔE) during polymer crystallization refers to the energy required 
to transport macromolecular segments to the surface of a crystal [18]. The Kissinger equation has 
been used to calculate ΔE using crystallization peak temperature (Tp) and cooling rate (λ) [33]. The 
Kissinger method equation is: 

Figure 4. Plots of ln λ as a function of ln t at different Xt for iPP/SDCNF10% composites based on the
Liu method.

Table 5. Crystallization parameters calculated from Liu method.

Sample Xt
a (%) α F(T) R2

iPP

10 0.95 6.50 0.999
30 1.00 7.86 0.999
50 1.03 8.85 0.999
70 1.07 9.95 0.999
90 1.16 12.38 0.998

iPP/SDCNF3%

10 1.10 5.80 0.999
30 1.11 7.47 0.999
50 1.14 8.46 1.000
70 1.20 9.65 0.999
90 1.29 11.97 0.994

iPP/SDCNF10%

10 1.01 6.51 0.996
30 1.03 8.28 0.998
50 1.04 9.38 0.998
70 1.07 10.57 0.999
90 1.11 12.62 0.997

iPP/SDCNF30%

10 1.00 5.52 0.988
30 1.05 7.22 0.995
50 1.07 8.33 0.995
70 1.10 9.45 0.997
90 1.14 11.53 0.997

iPP/MA/SDCNF10%

10 1.08 5.45 0.996
30 1.12 7.00 0.999
50 1.15 8.05 0.996
70 1.18 9.13 0.993
90 1.27 11.35 0.994

a Xt—relative degree of crystallinity.
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3.2.4. Effective Activation Energy

The effective activation energy (∆E) during polymer crystallization refers to the energy required
to transport macromolecular segments to the surface of a crystal [18]. The Kissinger equation has been
used to calculate ∆E using crystallization peak temperature (Tp) and cooling rate (λ) [33]. The Kissinger
method equation is:

d
[
ln
(

λ/T2
p

)]
= −∆E

R
d
(
1/Tp

)
(13)

where λ is the cooling rate, Tp is the peak crystallization temperature and R is the universal gas
constant (8.314 J/(K*mol)). Plotting ln (λ/Tp

2) against 1/Tp yields a linear curve as in Figure 5. ∆E can
be obtained from the slope. Activation energies of different samples are listed in Table 6. These
activation energy values are close to what were reported for natural fiber-filled iPP [18]. The ∆E of
iPP/SDCNF3% is similar to iPP. On the other hand, iPP/SDCNF10% and iPP/SDCNF30% increase
the ∆E of iPP. The SDCNF at 30 wt % appears more likely to retard the crystallization speed of iPP.
Moreover, adding MAPP into iPP/SDCNF10% largely reduced the ∆E. These seemingly conflicting
results can be explained by considering the two components that determine the overall crystallization
rate and transcrystallization phenomenon which are analyzed in next section.
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Table 6. Effective activation energy calculated based on the Kissinger method.

Samples iPP iPPSDCNF3% iPPSDCNF10% iPPSDCNF30% iPP/MA/SDCNF10%

∆E (kJ/mol) 264.1 262.5 291.6 305.5 265.2
R2 0.997 0.989 0.999 0.999 0.988

It is worthy to note that besides using traditional models to fit the DSC data, researchers
have developed simulation tools using finite element analysis to predict the crystallization kinetics
of semi-crystalline thermoplastics [10]. The simulation provided reasonable results without
time-consuming analysis with experiments.

3.3. Microscopy Study

As seen in Figure 6, the distribution of SDCNF within the iPP is relatively good up to 30 wt %
fiber content. However, the dispersion of individual CNF was not achieved because the shear forces
during compounding did not break down the SDCNF agglomerates [15]. The space among SDCNF in
iPP/SDCNF3% is large. As the SDCNF content increases, the space among SDCNF becomes smaller.
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At 30 wt % level, the gaps among SDCNF are the smallest. When more SDCNF is added into iPP,
the free volume of iPP is reduced, imposing restriction on the crystallization of iPP.
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Injection-molded iPP and iPP/SDCNF composites were used as examples to illustrate the effect
of SDCNF on the crystalline morphology of iPP by polarized light microscopy as shown in Figure 7.
Because no cold-crystallization peaks were observed in the DSC scans for all specimens, the crystalline
morphology caused by microtome preparation of the samples was negligible [14]. As SDCNF content
increases, nucleation density increases, as indicated by the number of spherulites within the same area.
For example, in iPP/SDCNF3% (left bottom), one long SDCNF nucleates several iPP spherulites on
its surface. Meanwhile, spherulite’s size decreases as SDCNF content increases. Crystal diameters
of iPP, iPP/MA, iPP/SDCNF3%, iPP/SDCNF10%, iPP/SDCNF30% and iPP/MA/SDCNF10% are
30 ± 3 µm, 27 ± 2 µm, 29 ± 2 µm, 19 ± 2 µm, 11 ± 2 µm and 16 ± 3 µm. A previous study on the
isothermal crystallization kinetics of cellulose nanocrystals (CNC)-filled PP found that adding 1 wt %
spray-freeze-dried CNC increased the chain-folding work of PP significantly [29]. This implies that the
CNC restricted the folding motion of polymer chains during crystallization and made the re-entry of
polymer chains into the crystal face more difficult, resulting in smaller crystals [29]. Similar results
were reported for polymer composites containing a high content of nanofillers [11–13]. Hence, steric
hindrance attributed to the large amount of SDCNF is the reason for the higher ∆E for iPP as shown
in Table 6. As a compatibilizer, MAPP helps PP to wet the natural fiber better [24]. Also, MAPP is
reported to facilitate transcrystallization, a process where spherulites grow perpendicularly to the
surface [34]. Transcrystallization provides additional sites and directions for crystals to grow, thus
reducing the ∆E. A possible site of SDCNF transcrystallization was identified for iPP/MA/SDCNF10%
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in Figure 7 (right bottom). As a comparison, the morphology of iPP spherulites on SDCNF surface
in iPP/SDCNF3% composite is also shown which has no transcrystallization (bottom left). This may
prove the role of MAPP in transcrystalline layer formation.
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The overall crystallization rate of a polymer depends on both nucleation rate and crystal growth
rate [27]. The addition of SDCNF increased the nucleation rate by providing heterogeneous nucleation
sites. Meanwhile, crystal growth rate was impeded by the SDCNF attributed to steric hindrance and
reduced free volume. At 10 wt % addition of SDCNF, the increase in nucleation rate was outweighed
by the decrease in crystal growth rate. Therefore, only iPP/SDCNF10% showed slower crystallization
rate than iPP in this study.

3.4. Thermal Expansion

Based on the results from nonisothermal crystallization kinetics study, SDCNF at 10 wt % without
MAPP was selected to be incorporated into iPP for EAM. The effect of SDCNF on the thermal expansion
of iPP was investigated and the results are listed in Table 7. The CTE of iPP is within the CTE range
of iPP reported by previous research [35,36]. After adding 10 wt % SDCNF into the iPP, the CTE
decreased by 11.7%. This change is comparable with a previous study where the CTE of iPP containing
10 wt % wood flour was reduced by 16.9%. Because cellulose possesses a small CTE and the addition
of SDCNF replaces a portion of iPP, the composite displays a smaller CTE [23]. This would help
reduce the iPP shrinkage caused by temperature changes below the crystallization temperature during
the EAM.

Table 7. Coefficient of thermal expansion of iPP and iPP/SDCNF composites.

Samples α a (10−6/◦C) Significance

iPP 80.1 (3.1) b A c

iPP/SDCNF10% 70.7 (2.4) B
a coefficient of thermal expansion; b standard deviation and c capital letters represent statistical differences. Values
with different letters are significantly different at 95% confidence level.

4. Conclusions

This study investigated the SDCNF content and the use of MAPP on the nonisothermal
crystallization kinetics of SDCNF reinforced iPP composites. The iPP/SDCNF3% and iPP/SDCNF30%
reduced the t1/2 of iPP. This implied that SDCNF at these two levels accelerated iPP’s crystallization rate.
In contrast, iPP/SDCNF10% increased the t1/2 of iPP, retarding iPP’s crystallization rate. The addition
of MAPP into iPP/SDCNF10% composites reduced the t1/2 of iPP. This is because MAPP is a nucleating
agent and can facilitate transcrystallization. The Jeziorny and Liu methods were proven to be valid in
describing the nonisothermal crystallization process of iPP reinforced by SDCNF where the Ozawa
method did not work. The ∆E of iPP, calculated based on Kissinger method, was similar to that of
iPP/SDCNF3%, but smaller than those of iPP/SDCNF10% and iPP/SDCNF30%. The existence of
SDCNF at high loading level restricts the diffusion and folding of polymer chains during crystallization
by reducing the free volume of iPP. The addition of MAPP into iPP/SDCNF10% lowered the ∆E
because MAPP facilitated the occurrence of transcrystallization. The PLM graphs further confirmed
that a large amount of SDCNF can impede the crystal growth of iPP. Generally, the nucleation rate
was increased by the addition of SDCNF. At 10 wt % SDCNF, the increase in nucleation rate was
outweighed by the decreased crystal growth rate, making SDCNF a crystallization rate retardant.
Moreover, the CTE of iPP/SDCNF10% composites was 11.7% smaller than iPP. Based on this study,
SDCNF at 10 wt % loading level can help to reduce the shrinkage iPP caused by temperature changes
during EAM processing.
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