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Abstract: Ag-doped ZnO nanocomposites are successfully synthesized at different calcination
temperatures and times through a simple, effective, high-yield and low-cost mechanochemical
combustion technique. Effects of calcination temperature on the crystallinity and optical properties
of Ag/ZnO nanocomposites have been studied by X-ray diffraction (XRD), UV−visible diffuse
reflectance spectroscopy (UV-DRS), photoluminescence spectroscopy (PL) and X-ray photoelectron
spectroscopy (XPS). The XRD patterns of the synthesized Ag/ZnO exhibit a well-crystalline wurtzite
ZnO crystal structure. The grain size of Ag/ZnO nanocomposites is found to be 19 and 46 nm at
calcination temperatures of 400 ◦C and 700 ◦C, respectively. The maximum absorption in the UV
region is obtained for Ag/ZnO nanocomposites synthesized at a calcination temperature of 500 ◦C
for 3 h. The peak position of blue emissions is almost the same for the nanocomposites obtained at
300–700 ◦C calcination temperatures. The usual band edge emission in the UV is not obtained at
330 nm excitation. Band edge and blue band emissions are observed for the use of low excitation
energy at 335–345 nm.
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1. Introduction

Nano-sized semiconductors are of great interest because of their extraordinary physicochemical
properties, which differ from their bulk counterparts [1]. Zinc oxide (ZnO) is a wide direct band-gap
(3.2 eV) semiconductor with large exciton binding energy of 60 meV at room temperature [2].
ZnO also has excellent optical and electrical properties, catalytic activity, chemical stability as well
as environmental friendliness [3]. The n-type ZnO semiconductor has higher electron mobility,
high breakdown voltages and higher breakdown field strength [4]. Zinc oxide is promising for
applications including gas sensors, memory devices, UV-light emitting diodes, solar cells, piezo-
electric transducers, photodiodes, photodetectors and photocatalysts [5–7]. In addition, modified ZnO
has also been used as transparent conducting electrodes for several types of optoelectronic devices [2].

Fabrication of efficient devices based on semiconductor nanostructures requires an in-depth
understanding of their optoelectronic behaviors, which depend on their shape, size and impurity
contents. Due to the vast optoelectronic applications of ZnO nanostructures, several theoretical and
experimental studies have been conducted on the optical properties of ZnO nanostructures with
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different morphologies, such as nanoparticles, nanowires, nanobelts, nanoprisms and nanostructured
thin films [8–10]. Doping of transition metals into the ZnO lattice can lead to changes in the electrical,
optical and magnetic properties of ZnO [11]. Different transition or noble metals such as Mn, Fe, Ni,
Cu and Ag have been widely used in the doping of ZnO [12,13]. Among the metals, Ag doping has
many advantages; Ag nanoparticles act as electron sinks under UV, as a photo-sensitizer in visible light
and as an electron sink/photo-sensitizer under solar light. The surface plasmon resonance (SPR) effect
of Ag can enhance photocatalytic activity through its optical vibration under the visible region [14,15].
Also, ohmic contact at the Ag/ZnO interface can facilitate interfacial charge transfer, enhancing the
separation of photo-induced electron/hole pairs [12,16]. Thus, Ag/ZnO nanocomposites can have high
piezo/solar-photocatalytic activity by coupling the surface plasmon resonance and piezophototronic
effect [17]. Xue et al. [18] have studied the piezo-potential enhanced photocatalytic degradation
of organic dye using ZnO nanowires. Park et al. [19] have reported the role of Ag as a prominent
luminescent activator in compound semiconductor.

The present article has dealt with the synthesis of undoped and Ag-doped ZnO nanocomposites
through mechanochemical combustion method. Effects of calcination temperature on the X-ray
diffraction (XRD), diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL) and
X-ray photoelectron spectroscopy (XPS) behavior of the Ag/ZnO nanocomposites are studied in details.

2. Materials and Methods

2.1. Chemicals and Materials

Zinc acetate dehydrate (C4H6O4Zn·2H2O), oxalic acid dehydrate (C2H2O4·2H2O), silver acetate
(C2H3O2Ag) and pure water (resistivity >18 MΩ cm) were used for the synthesis of the sample. All the
reagents were of analytical grade and used without further purification.

2.2. Preparation of Ag/ZnO

Ag/ZnO was prepared by the mechanochemical combustion technique with controlled
combustion method (Figure 1). In a typical synthesis, 2.195 g of zinc acetate dihydrate and 2.521 g of
oxalic acid dihydrate were taken in agate mortar and the mixture was ground for 10 min in order to
obtain a paste of zinc oxalate dihydrate and acetic acid. The existence of acetic acid was confirmed by
its typical smell. The loss of acetic acid byproduct in the form of fumes became a driving force for the
reaction. Silver acetate was added to the above paste as a source of silver, and the grinding process
was continued for the next 10 min to obtain zinc oxalate-silver oxalate precursor. The Ag doped zinc
oxide crystallites were obtained by calcination of precursor powders at the temperature of 300−700 ◦C
under an air atmosphere. The undoped ZnO was also synthesized by calcination of a paste of zinc
oxalate and acetic acid for the comparison.J. Compos. Sci. 2019, 3, x FOR PEER REVIEW 3 of 12 
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2.3. Characterization of Ag/ZnO

The powder X–ray diffractometer (XRD, RIGAKU Ultima IV, sample horizontal type) was used in
order to record the diffraction patterns of photocatalysts employing Cu Kα radiation of wavelength
0.15406 nm with tube current of 50 mA at 40 kV in 2θ angle range from 10◦ to 80◦ with a scan speed of
4◦/min and a step size of 0.02◦. A Hitachi S–4000 scanning electron microscope (SEM) was employed
to observe the morphologies of oxides. The particle size was measured by transmission electron
microscopy (TEM, JEOL, JEM−1011, Peabody, MA, USA) working at 100 kV. The diffuse reflectance
spectra (DRS) of photocatalysts were recorded over a range of 200−800 nm with a Shimadzu UV–2450
UV/vis system equipped with an integrating sphere diffuse reflectance accessory using the reference
material BaSO4 as a reference standard material. Photoluminescence (PL) spectra of oxide powders
were measured at room temperature using a Shimadzu RF–5300PC system equipped with solid sample
holder. X–ray photoelectron spectroscopy (XPS) measurements were carried out with PHI Quantera
SXM photoelectron spectrometer using Al Kα radiation.

3. Results and Discussion

3.1. Structural Analysis

Figure 2 displays XRD analysis of Ag/ZnO nanocomposites synthesized at calcination
temperatures from 300 ◦C to 700 ◦C. The major peaks of ZnO at 2θ values of 31.7◦, 34.4◦, 36.2◦

and 47.5◦ can be indexed to (100), (002), (101) and (102) crystal planes and characteristic ZnO peaks
become obvious at calcination temperatures above 300 ◦C. It should be noted that the formation of
the crystalline phase of ZnO begins at about 400 ◦C [20]. From Figure 2, it can be seen that Ag/ZnO
composite samples has four major peaks at 38.16◦, 44.34◦, 64.48◦ and 77.42◦, which are readily assigned
to the (111), (200), (220) and (311) planes of face–center–cubic (fcc) structure of Ag (JCPDS card no.
04–783), respectively [21].J. Compos. Sci. 2019, 3, x FOR PEER REVIEW 4 of 12 
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Figure 2. X-ray diffraction patterns of ZnO and Ag/ZnO synthesized at different calcination temperatures.

The half peak widths of the characteristic peaks gradually reduce with increasing calcination
temperatures. This fact suggests that ZnO particle sizes increase with increasing calcination
temperature. The diffraction intensities and angles of Ag do not significantly change with increasing
calcination temperatures. The grain size of the Ag-doped ZnO have been obtained from the full width
at half maximum (FWHM) of the most intense peaks of the respective crystals using the Scherrer
equation, D = 0.9λ/βcosθ, where λ is the X-ray wavelength, D the average crystallite size, θ the Bragg
diffraction angle and β the full width at half-maximum. The grain size is found to be 19 and 46 nm at
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calcination temperatures of 400 ◦C and 700 ◦C, respectively. Potti and Srivastava have also reported
that the crystallite size of the oxides expanded with increasing the calcination temperatures [22].

The Figure 3 illustrates XRD analysis of Ag/ZnO at different calcination times from 0.5 h to
4 h. The diffraction intensities and angles of ZnO and Ag does not remarkably shift with increasing
calcination time.
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Figure 3. XRD patterns of Ag/ZnO synthesized at different calcination times.

3.2. Morphology study

Figure 4 displays SEM and TEM micrographs of the Ag/ZnO synthesized at the calcination
temperature at 500 ◦C for 3 h. From the Figure 4, it is seen that the Ag/ZnO is heterogeneous in nature
and distributed over the surface with the rod-shaped branches of building blocks. The average size of
the particles is in the nanometer range, which is consistent with the XRD results.

J. Compos. Sci. 2019, 3, x FOR PEER REVIEW 5 of 12 

 

3.2. Morphology study 

Figure 4 displays SEM and TEM micrographs of the Ag/ZnO synthesized at the calcination 
temperature at 500 °C for 3 h. From the Figure 4, it is seen that the Ag/ZnO is heterogeneous in 
nature and distributed over the surface with the rod-shaped branches of building blocks. The 
average size of the particles is in the nanometer range, which is consistent with the XRD results. 

  

Figure 4. (a) SEM and (b) TEM images of Ag/ZnO nanocomposite. 

3.3. Diffuse Reflectance Spectroscopic (DRS) Spectra 

The spectra of Ag-doped ZnO samples are measured by UV-diffuse reflectance spectroscopy. 
The absorption peaks at the UV region correspond to the absorption of ZnO. The zinc oxide–silver 
nanocomposites display strong absorption in the UV region and weak absorption in the visible 
region, which is related to the ZnO bands and surface plasmon resonance (SPR) bands of Ag 
nanoparticles, respectively [23,24]. The optical property of Ag/ZnO nanocomposites synthesized at 
different calcination temperatures has been studied by DRS (Figure 5a). The largest absorbance for 
all the nanocomposites is in the UV-region, whereas the Ag/ZnO nanocomposite prepared at a 
calcination temperature of 500 °C shows the maximum absorption.  

The reflectance data has been converted to the Kubelka−Munk equation which is expressed as 
F(R) = (1 − R)2/2R. The band gap of the oxides is deduced from the Tauc plot of [F(R)hν]2 versus 
photon energy. The Tauc plots are shown in Figure 5b. A slight decrease in the band gap of Ag/ZnO 
is obtained at the 500 °C calcination temperature, compared with those observed at other 
temperatures. The conduction and valence band positions of the semiconductor at the point of zero 
charge can be calculated by the following formula [25,26]:  𝐸 = 𝜒 − 𝐸ୣ + 0.5𝐸 (1) 𝐸େ = 𝐸 − 𝐸 (2) 

where EVB is the potential of the valence band, χ is the electronegativity of the semiconductor. The 
electronegativity value for Ag/ZnO is 5.79 eV [27]. The Ee is the energy of free electrons on the 
hydrogen scale (4.5 eV) and Eg is the band gap energy of the Ag/ZnO nanocomposites (3.24 eV). The 
EVB and ECB of Ag/ZnO prepared at the calcination temperature of 500 °C are 2.91 and –0.33 eV, 
respectively. 

(a) (b) 

Figure 4. (a) SEM and (b) TEM images of Ag/ZnO nanocomposite.

3.3. Diffuse Reflectance Spectroscopic (DRS) Spectra

The spectra of Ag-doped ZnO samples are measured by UV-diffuse reflectance spectroscopy.
The absorption peaks at the UV region correspond to the absorption of ZnO. The zinc oxide–silver
nanocomposites display strong absorption in the UV region and weak absorption in the visible region,
which is related to the ZnO bands and surface plasmon resonance (SPR) bands of Ag nanoparticles,
respectively [23,24]. The optical property of Ag/ZnO nanocomposites synthesized at different
calcination temperatures has been studied by DRS (Figure 5a). The largest absorbance for all the
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nanocomposites is in the UV-region, whereas the Ag/ZnO nanocomposite prepared at a calcination
temperature of 500 ◦C shows the maximum absorption.J. Compos. Sci. 2019, 3, x FOR PEER REVIEW 6 of 12 
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Figure 5. (a) Diffuse reflectance UV–visible spectra of Ag/ZnO and (b) Tauc plot of [F(R)hν]2 versus
photon energy at different calcination temperatures.

The reflectance data has been converted to the Kubelka−Munk equation which is expressed as
F(R) = (1 − R)2/2R. The band gap of the oxides is deduced from the Tauc plot of [F(R)hν]2 versus
photon energy. The Tauc plots are shown in Figure 5b. A slight decrease in the band gap of Ag/ZnO is
obtained at the 500 ◦C calcination temperature, compared with those observed at other temperatures.
The conduction and valence band positions of the semiconductor at the point of zero charge can be
calculated by the following formula [25,26]:

EVB = χ − Ee + 0.5Eg (1)

ECB = EVB − Eg (2)

where EVB is the potential of the valence band, χ is the electronegativity of the semiconductor.
The electronegativity value for Ag/ZnO is 5.79 eV [27]. The Ee is the energy of free electrons
on the hydrogen scale (4.5 eV) and Eg is the band gap energy of the Ag/ZnO nanocomposites
(3.24 eV). The EVB and ECB of Ag/ZnO prepared at the calcination temperature of 500 ◦C are 2.91 and
–0.33 eV, respectively.

The effect of different calcination times on the optical properties of Ag/ZnO is investigated
by DRS (Figure 6a). The best absorption intensity of an Ag/ZnO composite is obtained for 3 h of
calcination time. The Tauc plots are shown in Figure 6b.
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Figure 6. (a) Diffuse reflectance UV–visible spectra of Ag/ZnO and (b) Tauc plot of [F(R)hν]2 versus
photon energy at different calcination times.
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3.4. Photoluminescence Study

The room temperature photoluminescence (PL) spectra of Ag/ZnO are recorded over the
wavelength range 350−600 nm. Figure 7 present the PL of Ag/ZnO synthesized at different calcination
temperatures. In the PL spectra for ZnO, typically there are emission bands in the ultraviolet (UV) and
visible (green, yellow, blue and violet) regions [28]. The Ag/ZnO composite shows a strong emission
peak at around 389 nm in the UV region, which is attributed to near band edge emission and also
related to the electron–hole charge recombination process [29]. The weak emission at 400–600 nm
corresponds to intrinsic or extrinsic defects in ZnO and oxygen vacancies. It is estimated that the blue
band emission is due to the transition from extended interstitial Zn states to the valence band [30].
The peak position of the blue emissions is almost the same for the samples obtained at 300–700 ◦C
calcination temperatures and the usual band edge emission is not obtained at the high excitation
energy (330 nm) for Ag/ZnO (Figure 7a). The band edge and blue band emissions are observed for the
use of low excitation energy at 335–345 nm, as presented in Figure 7b–d. The near band edge is weak
at 330 nm excitation due to low the exciton recombination and strong near band edge is observed on
excitation at 340 nm due to the high exciton transition from the localized level below the conduction
band to the valence band.
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Figure 7. Photoluminescence spectra for Ag/ZnO at different calcination temperatures. Excitation
source: (a) 330, (b) 335, (c) 340, (d) 345 nm.

Figure 8 present the PL of Ag/ZnO synthesized at different calcination times. The peak positions
of the blue emissions are almost the same for the composites obtained for calcination times (Figure 8).
The usual band edge emission in the UV region cannot be obtained at 330 nm excitation (Figure 8a).
At excitation energies of 335–345 nm, the usual band edge and deep-level emission in the blue band
can be seen, as shown in Figure 8b–d.
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Figure 8. Photoluminescence spectra for Ag/ZnO at different calcination times. Excitation source: (a)
330, (b) 335, (c) 340, (d) 345 nm.

The dependence of the intensity of UV and blue emissions on calcination temperatures can be
clearly associated in Figure 9a. The rapid increases of intensity at 390 nm and 467 nm using 340 nm
excitation are well demonstrated with increasing calcination temperatures. Figure 9b shows the
calcination times dependence of the intensity of UV and blue emissions using 340 nm excitation for
Ag/ZnO. The blue emissions intensity at 468 nm is almost flat for all of calcination times.
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Figure 9. Changes of relative intensity with (a) different calcination temperatures and (b) different
calcination times.

3.5. X-Ray Photoelectron Spectroscopic (XPS) Spectra

XPS is a sensitive technique for investigating the chemical composition of the surface of a
material. The surface compositions and chemical states of the pure ZnO are determined by XPS.
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Figure 10a displays the fully scanned spectrum of ZnO synthesized at a calcination temperature of
500 ◦C for 3 h. In Figure 10b, the peak of Zn 2p1/2 and Zn 2p3/2 is located at 1044.1 and 1021.0 eV,
respectively [31]. At 373.6 eV (Ag 3d3/2) and 367.6 eV (Ag 3d5/2), the peaks are not detected in
undoped ZnO (Figure 10c) [32]. The O1s spectra of ZnO are shown in Figure 10d. The 529.6 eV peak
belongs to the crystal lattice oxygen (OL) in ZnO, while the 531.2 eV peak can be assigned to the oxygen
of surface hydroxyl (OH) on the catalyst surface [33].J. Compos. Sci. 2019, 3, x FOR PEER REVIEW 9 of 12 
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Figure 10. (a) Full range X-ray photoelectron spectroscopy (XPS) spectra of ZnO; (b–d) High resolution
XPS spectra of Zn 2P, Ag 3d and O 1s for ZnO.

Figure 11a show the scan survey spectra for the representative Ag/ZnO synthesized at the
calcination temperature at 500 ◦C for 3 h. All of the peaks on the curve can be ascribed to Ag, Zn and O
elements and no peaks of other elements were observed (Figure 11). Therefore, the sample is composed
of Ag, Zn and O only and these results are agreement with the XRD patterns. The positions of Zn
2p3/2 peak for Ag/ZnO nanocomposites (Figure 11b) are nearly same value, compared with that of the
prepared undoped ZnO nanoparticles, which confirms that Zn element exists mainly in the form of the
Zn2+ chemical state on the sample surfaces. The difference between the two bonding energies of Zn
2p1/2 and Zn 2p3/2 for Ag/ZnO samples is 23.1 eV, which also suggests that the Zn is in a +2 oxidation
state [34]. Figure 11c illustrates the Ag 3d XPS spectra for Ag/ZnO samples. The difference between
the peaks of Ag 3d5/2 and 3d3/2 is 6.0 eV, indicates the presence of metallic Ag [35]. The high-resolution
spectra of O 1s are shown in Figure 11d. O 1s profile is asymmetric, which can be attributed to the
lattice oxygen of ZnO and physical adsorbed oxygen, respectively [34]. Patil et al. have mentioned
only OL in the O 1s spectrum of the Ag–ZnO sample at a binding energy of 529.75 eV [36]. The data is
similar to our synthesized Ag/ZnO nanocomposites and no OH peak is present at the binding energy
of about 531.2 eV (Figure 11d).
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4. Conclusions

Ag-doped ZnO nanocomposites were successfully synthesized at different calcination
temperatures and times through the mechanochemical combustion technique. The synthesized
nanocomposite materials were characterized by XRD, SEM, TEM, UV–DRS, PL and XPS. It was
shown that Ag/ZnO nanocomposites were composed of metallic Ag and wurtzite ZnO. The maximum
absorption intensity was obtained at a calcination temperature of 500 ◦C for 3 h. The usual band edge
emission in the UV region was not obtained at 330 nm excitation, whereas the band edge and blue
band emissions were observed at excitations of 335–345 nm.
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